/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "anv_private.h" #include "vk_format_info.h" #include "vk_util.h" #include "util/fast_idiv_by_const.h" #include "common/gen_aux_map.h" #include "common/gen_l3_config.h" #include "genxml/gen_macros.h" #include "genxml/genX_pack.h" /* We reserve : * - GPR 14 for secondary command buffer returns * - GPR 15 for conditional rendering */ #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14 #define __gen_get_batch_dwords anv_batch_emit_dwords #define __gen_address_offset anv_address_add #include "common/gen_mi_builder.h" static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, uint32_t pipeline); static void emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm) { anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = reg; lri.DataDWord = imm; } } void genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; UNUSED const struct gen_device_info *devinfo = &device->info; uint32_t mocs = isl_mocs(&device->isl_dev, 0); /* If we are emitting a new state base address we probably need to re-emit * binding tables. */ cmd_buffer->state.descriptors_dirty |= ~0; /* Emit a render target cache flush. * * This isn't documented anywhere in the PRM. However, it seems to be * necessary prior to changing the surface state base adress. Without * this, we get GPU hangs when using multi-level command buffers which * clear depth, reset state base address, and then go render stuff. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.RenderTargetCacheFlushEnable = true; pc.CommandStreamerStallEnable = true; #if GEN_GEN >= 12 pc.TileCacheFlushEnable = true; #endif #if GEN_GEN == 12 /* GEN:BUG:1606662791: * * Software must program PIPE_CONTROL command with "HDC Pipeline * Flush" prior to programming of the below two non-pipeline state : * * STATE_BASE_ADDRESS * * 3DSTATE_BINDING_TABLE_POOL_ALLOC */ if (devinfo->revision == 0 /* A0 */) pc.HDCPipelineFlushEnable = true; #endif } #if GEN_GEN == 12 /* GEN:BUG:1607854226: * * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline * mode by putting the pipeline temporarily in 3D mode. */ uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline; genX(flush_pipeline_select_3d)(cmd_buffer); #endif anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) { sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.GeneralStateMOCS = mocs; sba.GeneralStateBaseAddressModifyEnable = true; sba.StatelessDataPortAccessMOCS = mocs; sba.SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer); sba.SurfaceStateMOCS = mocs; sba.SurfaceStateBaseAddressModifyEnable = true; sba.DynamicStateBaseAddress = (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 }; sba.DynamicStateMOCS = mocs; sba.DynamicStateBaseAddressModifyEnable = true; sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 }; sba.IndirectObjectMOCS = mocs; sba.IndirectObjectBaseAddressModifyEnable = true; sba.InstructionBaseAddress = (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 }; sba.InstructionMOCS = mocs; sba.InstructionBaseAddressModifyEnable = true; # if (GEN_GEN >= 8) /* Broadwell requires that we specify a buffer size for a bunch of * these fields. However, since we will be growing the BO's live, we * just set them all to the maximum. */ sba.GeneralStateBufferSize = 0xfffff; sba.IndirectObjectBufferSize = 0xfffff; if (device->physical->use_softpin) { /* With softpin, we use fixed addresses so we actually know how big * our base addresses are. */ sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096; sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096; } else { sba.DynamicStateBufferSize = 0xfffff; sba.InstructionBufferSize = 0xfffff; } sba.GeneralStateBufferSizeModifyEnable = true; sba.IndirectObjectBufferSizeModifyEnable = true; sba.DynamicStateBufferSizeModifyEnable = true; sba.InstructionBuffersizeModifyEnable = true; # else /* On gen7, we have upper bounds instead. According to the docs, * setting an upper bound of zero means that no bounds checking is * performed so, in theory, we should be able to leave them zero. * However, border color is broken and the GPU bounds-checks anyway. * To avoid this and other potential problems, we may as well set it * for everything. */ sba.GeneralStateAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.GeneralStateAccessUpperBoundModifyEnable = true; sba.DynamicStateAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.DynamicStateAccessUpperBoundModifyEnable = true; sba.InstructionAccessUpperBound = (struct anv_address) { .bo = NULL, .offset = 0xfffff000 }; sba.InstructionAccessUpperBoundModifyEnable = true; # endif # if (GEN_GEN >= 9) if (cmd_buffer->device->physical->use_softpin) { sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { .bo = device->surface_state_pool.block_pool.bo, .offset = 0, }; sba.BindlessSurfaceStateSize = (1 << 20) - 1; } else { sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS; sba.BindlessSurfaceStateSize = 0; } sba.BindlessSurfaceStateMOCS = mocs; sba.BindlessSurfaceStateBaseAddressModifyEnable = true; # endif # if (GEN_GEN >= 10) sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 }; sba.BindlessSamplerStateMOCS = mocs; sba.BindlessSamplerStateBaseAddressModifyEnable = true; sba.BindlessSamplerStateBufferSize = 0; # endif } #if GEN_GEN == 12 /* GEN:BUG:1607854226: * * Put the pipeline back into its current mode. */ if (gen12_wa_pipeline != UINT32_MAX) genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline); #endif /* After re-setting the surface state base address, we have to do some * cache flusing so that the sampler engine will pick up the new * SURFACE_STATE objects and binding tables. From the Broadwell PRM, * Shared Function > 3D Sampler > State > State Caching (page 96): * * Coherency with system memory in the state cache, like the texture * cache is handled partially by software. It is expected that the * command stream or shader will issue Cache Flush operation or * Cache_Flush sampler message to ensure that the L1 cache remains * coherent with system memory. * * [...] * * Whenever the value of the Dynamic_State_Base_Addr, * Surface_State_Base_Addr are altered, the L1 state cache must be * invalidated to ensure the new surface or sampler state is fetched * from system memory. * * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit * which, according the PIPE_CONTROL instruction documentation in the * Broadwell PRM: * * Setting this bit is independent of any other bit in this packet. * This bit controls the invalidation of the L1 and L2 state caches * at the top of the pipe i.e. at the parsing time. * * Unfortunately, experimentation seems to indicate that state cache * invalidation through a PIPE_CONTROL does nothing whatsoever in * regards to surface state and binding tables. In stead, it seems that * invalidating the texture cache is what is actually needed. * * XXX: As far as we have been able to determine through * experimentation, shows that flush the texture cache appears to be * sufficient. The theory here is that all of the sampling/rendering * units cache the binding table in the texture cache. However, we have * yet to be able to actually confirm this. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.StateCacheInvalidationEnable = true; } } static void add_surface_reloc(struct anv_cmd_buffer *cmd_buffer, struct anv_state state, struct anv_address addr) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.offset + isl_dev->ss.addr_offset, addr.bo, addr.offset, NULL); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } static void add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer, struct anv_surface_state state) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; assert(!anv_address_is_null(state.address)); add_surface_reloc(cmd_buffer, state.state, state.address); if (!anv_address_is_null(state.aux_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.state.offset + isl_dev->ss.aux_addr_offset, state.aux_address.bo, state.aux_address.offset, NULL); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } if (!anv_address_is_null(state.clear_address)) { VkResult result = anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc, state.state.offset + isl_dev->ss.clear_color_state_offset, state.clear_address.bo, state.clear_address.offset, NULL); if (result != VK_SUCCESS) anv_batch_set_error(&cmd_buffer->batch, result); } } static bool isl_color_value_requires_conversion(union isl_color_value color, const struct isl_surf *surf, const struct isl_view *view) { if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle)) return false; uint32_t surf_pack[4] = { 0, 0, 0, 0 }; isl_color_value_pack(&color, surf->format, surf_pack); uint32_t view_pack[4] = { 0, 0, 0, 0 }; union isl_color_value swiz_color = isl_color_value_swizzle_inv(color, view->swizzle); isl_color_value_pack(&swiz_color, view->format, view_pack); return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0; } static bool anv_can_fast_clear_color_view(struct anv_device * device, struct anv_image_view *iview, VkImageLayout layout, union isl_color_value clear_color, uint32_t num_layers, VkRect2D render_area) { if (iview->planes[0].isl.base_array_layer >= anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level)) return false; /* Start by getting the fast clear type. We use the first subpass * layout here because we don't want to fast-clear if the first subpass * to use the attachment can't handle fast-clears. */ enum anv_fast_clear_type fast_clear_type = anv_layout_to_fast_clear_type(&device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, layout); switch (fast_clear_type) { case ANV_FAST_CLEAR_NONE: return false; case ANV_FAST_CLEAR_DEFAULT_VALUE: if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format)) return false; break; case ANV_FAST_CLEAR_ANY: break; } /* Potentially, we could do partial fast-clears but doing so has crazy * alignment restrictions. It's easier to just restrict to full size * fast clears for now. */ if (render_area.offset.x != 0 || render_area.offset.y != 0 || render_area.extent.width != iview->extent.width || render_area.extent.height != iview->extent.height) return false; /* On Broadwell and earlier, we can only handle 0/1 clear colors */ if (GEN_GEN <= 8 && !isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format)) return false; /* If the clear color is one that would require non-trivial format * conversion on resolve, we don't bother with the fast clear. This * shouldn't be common as most clear colors are 0/1 and the most common * format re-interpretation is for sRGB. */ if (isl_color_value_requires_conversion(clear_color, &iview->image->planes[0].surface.isl, &iview->planes[0].isl)) { anv_perf_warn(device, iview, "Cannot fast-clear to colors which would require " "format conversion on resolve"); return false; } /* We only allow fast clears to the first slice of an image (level 0, * layer 0) and only for the entire slice. This guarantees us that, at * any given time, there is only one clear color on any given image at * any given time. At the time of our testing (Jan 17, 2018), there * were no known applications which would benefit from fast-clearing * more than just the first slice. */ if (iview->planes[0].isl.base_level > 0 || iview->planes[0].isl.base_array_layer > 0) { anv_perf_warn(device, iview->image, "Rendering with multi-lod or multi-layer framebuffer " "with LOAD_OP_LOAD and baseMipLevel > 0 or " "baseArrayLayer > 0. Not fast clearing."); return false; } if (num_layers > 1) { anv_perf_warn(device, iview->image, "Rendering to a multi-layer framebuffer with " "LOAD_OP_CLEAR. Only fast-clearing the first slice"); } return true; } static bool anv_can_hiz_clear_ds_view(struct anv_device *device, struct anv_image_view *iview, VkImageLayout layout, VkImageAspectFlags clear_aspects, float depth_clear_value, VkRect2D render_area) { /* We don't do any HiZ or depth fast-clears on gen7 yet */ if (GEN_GEN == 7) return false; /* If we're just clearing stencil, we can always HiZ clear */ if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) return true; /* We must have depth in order to have HiZ */ if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) return false; const enum isl_aux_usage clear_aux_usage = anv_layout_to_aux_usage(&device->info, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, layout); if (!blorp_can_hiz_clear_depth(&device->info, &iview->image->planes[0].surface.isl, clear_aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, render_area.offset.x, render_area.offset.y, render_area.offset.x + render_area.extent.width, render_area.offset.y + render_area.extent.height)) return false; if (depth_clear_value != ANV_HZ_FC_VAL) return false; /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a fast-cleared * portion of a HiZ buffer. Testing has revealed that Gen8 only supports * returning 0.0f. Gens prior to gen8 do not support this feature at all. */ if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) return false; /* If we got here, then we can fast clear */ return true; } #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x)) #if GEN_GEN == 12 static void anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); const struct anv_surface *surface = &image->planes[plane].surface; uint64_t base_address = anv_address_physical(anv_address_add(image->planes[plane].address, surface->offset)); const struct isl_surf *isl_surf = &image->planes[plane].surface.isl; uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf); /* We're about to live-update the AUX-TT. We really don't want anyone else * trying to read it while we're doing this. We could probably get away * with not having this stall in some cases if we were really careful but * it's better to play it safe. Full stall the GPU. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); for (uint32_t a = 0; a < layer_count; a++) { const uint32_t layer = base_layer + a; uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0; for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; uint32_t logical_array_layer, logical_z_offset_px; if (image->type == VK_IMAGE_TYPE_3D) { logical_array_layer = 0; /* If the given miplevel does not have this layer, then any higher * miplevels won't either because miplevels only get smaller the * higher the LOD. */ assert(layer < image->extent.depth); if (layer >= anv_minify(image->extent.depth, level)) break; logical_z_offset_px = layer; } else { assert(layer < image->array_size); logical_array_layer = layer; logical_z_offset_px = 0; } uint32_t slice_start_offset_B, slice_end_offset_B; isl_surf_get_image_range_B_tile(isl_surf, level, logical_array_layer, logical_z_offset_px, &slice_start_offset_B, &slice_end_offset_B); start_offset_B = MIN2(start_offset_B, slice_start_offset_B); end_offset_B = MAX2(end_offset_B, slice_end_offset_B); } /* Aux operates 64K at a time */ start_offset_B = align_down_u64(start_offset_B, 64 * 1024); end_offset_B = align_u64(end_offset_B, 64 * 1024); for (uint64_t offset = start_offset_B; offset < end_offset_B; offset += 64 * 1024) { uint64_t address = base_address + offset; uint64_t aux_entry_addr64, *aux_entry_map; aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx, address, &aux_entry_addr64); assert(cmd_buffer->device->physical->use_softpin); struct anv_address aux_entry_address = { .bo = NULL, .offset = aux_entry_addr64, }; const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map); uint64_t new_aux_entry = (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits; if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage)) new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT; gen_mi_store(&b, gen_mi_mem64(aux_entry_address), gen_mi_imm(new_aux_entry)); } } cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT; } #endif /* GEN_GEN == 12 */ /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless * the initial layout is undefined, the HiZ buffer and depth buffer will * represent the same data at the end of this operation. */ static void transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, bool will_full_fast_clear) { uint32_t depth_plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT); if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE) return; #if GEN_GEN == 12 if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) && cmd_buffer->device->physical->has_implicit_ccs && cmd_buffer->device->info.has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, base_layer, layer_count); } #endif /* If will_full_fast_clear is set, the caller promises to fast-clear the * largest portion of the specified range as it can. For depth images, * that means the entire image because we don't support multi-LOD HiZ. */ assert(image->planes[0].surface.isl.levels == 1); if (will_full_fast_clear) return; const enum isl_aux_state initial_state = anv_layout_to_aux_state(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout); const enum isl_aux_state final_state = anv_layout_to_aux_state(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, final_layout); const bool initial_depth_valid = isl_aux_state_has_valid_primary(initial_state); const bool initial_hiz_valid = isl_aux_state_has_valid_aux(initial_state); const bool final_needs_depth = isl_aux_state_has_valid_primary(final_state); const bool final_needs_hiz = isl_aux_state_has_valid_aux(final_state); /* Getting into the pass-through state for Depth is tricky and involves * both a resolve and an ambiguate. We don't handle that state right now * as anv_layout_to_aux_state never returns it. */ assert(final_state != ISL_AUX_STATE_PASS_THROUGH); if (final_needs_depth && !initial_depth_valid) { assert(initial_hiz_valid); anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, base_layer, layer_count, ISL_AUX_OP_FULL_RESOLVE); } else if (final_needs_hiz && !initial_hiz_valid) { assert(initial_depth_valid); anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, 0, base_layer, layer_count, ISL_AUX_OP_AMBIGUATE); } } static inline bool vk_image_layout_stencil_write_optimal(VkImageLayout layout) { return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL || layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR; } /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless * the initial layout is undefined, the HiZ buffer and depth buffer will * represent the same data at the end of this operation. */ static void transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, bool will_full_fast_clear) { #if GEN_GEN == 7 uint32_t plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); /* On gen7, we have to store a texturable version of the stencil buffer in * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and * forth at strategic points. Stencil writes are only allowed in following * layouts: * * - VK_IMAGE_LAYOUT_GENERAL * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR * * For general, we have no nice opportunity to transition so we do the copy * to the shadow unconditionally at the end of the subpass. For transfer * destinations, we can update it as part of the transfer op. For the other * layouts, we delay the copy until a transition into some other layout. */ if (image->planes[plane].shadow_surface.isl.size_B > 0 && vk_image_layout_stencil_write_optimal(initial_layout) && !vk_image_layout_stencil_write_optimal(final_layout)) { anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, base_level, level_count, base_layer, layer_count); } #elif GEN_GEN == 12 uint32_t plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) return; if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) && cmd_buffer->device->physical->has_implicit_ccs && cmd_buffer->device->info.has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, base_level, level_count, base_layer, layer_count); /* If will_full_fast_clear is set, the caller promises to fast-clear the * largest portion of the specified range as it can. */ if (will_full_fast_clear) return; for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; const VkRect2D clear_rect = { .offset.x = 0, .offset.y = 0, .extent.width = anv_minify(image->extent.width, level), .extent.height = anv_minify(image->extent.height, level), }; uint32_t aux_layers = anv_image_aux_layers(image, VK_IMAGE_ASPECT_STENCIL_BIT, level); uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); /* From Bspec's 3DSTATE_STENCIL_BUFFER_BODY > Stencil Compression * Enable: * * "When enabled, Stencil Buffer needs to be initialized via * stencil clear (HZ_OP) before any renderpass." */ anv_image_hiz_clear(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, level, base_layer, level_layer_count, clear_rect, 0 /* Stencil clear value */); } } #endif } #define MI_PREDICATE_SRC0 0x2400 #define MI_PREDICATE_SRC1 0x2408 #define MI_PREDICATE_RESULT 0x2418 static void set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t base_layer, uint32_t layer_count, bool compressed) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); /* We only have compression tracking for CCS_E */ if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E) return; for (uint32_t a = 0; a < layer_count; a++) { uint32_t layer = base_layer + a; anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, layer); sdi.ImmediateData = compressed ? UINT32_MAX : 0; } } } static void set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum anv_fast_clear_type fast_clear) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect); sdi.ImmediateData = fast_clear; } /* Whenever we have fast-clear, we consider that slice to be compressed. * This makes building predicates much easier. */ if (fast_clear != ANV_FAST_CLEAR_NONE) set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true); } /* This is only really practical on haswell and above because it requires * MI math in order to get it correct. */ #if GEN_GEN >= 8 || GEN_IS_HASWELL static void anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); const struct gen_mi_value fast_clear_type = gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect)); if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) { /* In this case, we're doing a full resolve which means we want the * resolve to happen if any compression (including fast-clears) is * present. * * In order to simplify the logic a bit, we make the assumption that, * if the first slice has been fast-cleared, it is also marked as * compressed. See also set_image_fast_clear_state. */ const struct gen_mi_value compression_state = gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device, image, aspect, level, array_layer)); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), compression_state); gen_mi_store(&b, compression_state, gen_mi_imm(0)); if (level == 0 && array_layer == 0) { /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ struct gen_mi_value new_fast_clear_type = gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0))); gen_mi_store(&b, fast_clear_type, new_fast_clear_type); } } else if (level == 0 && array_layer == 0) { /* In this case, we are doing a partial resolve to get rid of fast-clear * colors. We don't care about the compression state but we do care * about how much fast clear is allowed by the final layout. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported < ANV_FAST_CLEAR_ANY); /* We need to compute (fast_clear_supported < image->fast_clear) */ struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), gen_mi_value_ref(&b, pred)); /* If the predicate is true, we want to write 0 to the fast clear type * and, if it's false, leave it alone. We can do this by writing * * clear_type = clear_type & ~predicate; */ struct gen_mi_value new_fast_clear_type = gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred)); gen_mi_store(&b, fast_clear_type, new_fast_clear_type); } else { /* In this case, we're trying to do a partial resolve on a slice that * doesn't have clear color. There's nothing to do. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); return; } /* Set src1 to 0 and use a != condition */ gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */ #if GEN_GEN <= 8 static void anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); struct gen_mi_value fast_clear_type_mem = gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect)); /* This only works for partial resolves and only when the clear color is * all or nothing. On the upside, this emits less command streamer code * and works on Ivybridge and Bay Trail. */ assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); assert(fast_clear_supported != ANV_FAST_CLEAR_ANY); /* We don't support fast clears on anything other than the first slice. */ if (level > 0 || array_layer > 0) return; /* On gen8, we don't have a concept of default clear colors because we * can't sample from CCS surfaces. It's enough to just load the fast clear * state into the predicate register. */ gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif /* GEN_GEN <= 8 */ static void anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, enum isl_format format, struct isl_swizzle swizzle, VkImageAspectFlagBits aspect, uint32_t level, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); #if GEN_GEN >= 9 anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #else /* GEN_GEN <= 8 */ anv_cmd_simple_resolve_predicate(cmd_buffer, image, aspect, level, array_layer, resolve_op, fast_clear_supported); #endif /* CCS_D only supports full resolves and BLORP will assert on us if we try * to do a partial resolve on a CCS_D surface. */ if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D) resolve_op = ISL_AUX_OP_FULL_RESOLVE; anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect, level, array_layer, 1, resolve_op, NULL, true); } static void anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, enum isl_format format, struct isl_swizzle swizzle, VkImageAspectFlagBits aspect, uint32_t array_layer, enum isl_aux_op resolve_op, enum anv_fast_clear_type fast_clear_supported) { assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT); assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE); #if GEN_GEN >= 8 || GEN_IS_HASWELL anv_cmd_compute_resolve_predicate(cmd_buffer, image, aspect, 0, array_layer, resolve_op, fast_clear_supported); anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect, array_layer, 1, resolve_op, NULL, true); #else unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail"); #endif } void genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, enum isl_aux_usage aux_usage, uint32_t level, uint32_t base_layer, uint32_t layer_count) { /* The aspect must be exactly one of the image aspects. */ assert(util_bitcount(aspect) == 1 && (aspect & image->aspects)); /* The only compression types with more than just fast-clears are MCS, * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually * track the current fast-clear and compression state. This leaves us * with just MCS and CCS_E. */ if (aux_usage != ISL_AUX_USAGE_CCS_E && aux_usage != ISL_AUX_USAGE_MCS) return; set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, layer_count, true); } static void init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect) { assert(cmd_buffer && image); assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); set_image_fast_clear_state(cmd_buffer, image, aspect, ANV_FAST_CLEAR_NONE); /* Initialize the struct fields that are accessed for fast-clears so that * the HW restrictions on the field values are satisfied. */ struct anv_address addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); if (GEN_GEN >= 9) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; const unsigned num_dwords = GEN_GEN >= 10 ? isl_dev->ss.clear_color_state_size / 4 : isl_dev->ss.clear_value_size / 4; for (unsigned i = 0; i < num_dwords; i++) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; sdi.Address.offset += i * 4; sdi.ImmediateData = 0; } } } else { anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = addr; if (GEN_GEN >= 8 || GEN_IS_HASWELL) { /* Pre-SKL, the dword containing the clear values also contains * other fields, so we need to initialize those fields to match the * values that would be in a color attachment. */ sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 | ISL_CHANNEL_SELECT_GREEN << 22 | ISL_CHANNEL_SELECT_BLUE << 19 | ISL_CHANNEL_SELECT_ALPHA << 16; } else if (GEN_GEN == 7) { /* On IVB, the dword containing the clear values also contains * other fields that must be zero or can be zero. */ sdi.ImmediateData = 0; } } } } /* Copy the fast-clear value dword(s) between a surface state object and an * image's fast clear state buffer. */ static void genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer, struct anv_state surface_state, const struct anv_image *image, VkImageAspectFlagBits aspect, bool copy_from_surface_state) { assert(cmd_buffer && image); assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); struct anv_address ss_clear_addr = { .bo = cmd_buffer->device->surface_state_pool.block_pool.bo, .offset = surface_state.offset + cmd_buffer->device->isl_dev.ss.clear_value_offset, }; const struct anv_address entry_addr = anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect); unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size; #if GEN_GEN == 7 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is * in-flight when they are issued even if the memory touched is not * currently active for rendering. The weird bit is that it is not the * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight * rendering hangs such that the next stalling command after the * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang. * * It is unclear exactly why this hang occurs. Both MI commands come with * warnings about the 3D pipeline but that doesn't seem to fully explain * it. My (Jason's) best theory is that it has something to do with the * fact that we're using a GPU state register as our temporary and that * something with reading/writing it is causing problems. * * In order to work around this issue, we emit a PIPE_CONTROL with the * command streamer stall bit set. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); #endif struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); if (copy_from_surface_state) { gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size); } else { gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size); /* Updating a surface state object may require that the state cache be * invalidated. From the SKL PRM, Shared Functions -> State -> State * Caching: * * Whenever the RENDER_SURFACE_STATE object in memory pointed to by * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is * modified [...], the L1 state cache must be invalidated to ensure * the new surface or sampler state is fetched from system memory. * * In testing, SKL doesn't actually seem to need this, but HSW does. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; } } /** * @brief Transitions a color buffer from one layout to another. * * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for * more information. * * @param level_count VK_REMAINING_MIP_LEVELS isn't supported. * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images, * this represents the maximum layers to transition at each * specified miplevel. */ static void transition_color_buffer(struct anv_cmd_buffer *cmd_buffer, const struct anv_image *image, VkImageAspectFlagBits aspect, const uint32_t base_level, uint32_t level_count, uint32_t base_layer, uint32_t layer_count, VkImageLayout initial_layout, VkImageLayout final_layout, bool will_full_fast_clear) { struct anv_device *device = cmd_buffer->device; const struct gen_device_info *devinfo = &device->info; /* Validate the inputs. */ assert(cmd_buffer); assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV); /* These values aren't supported for simplicity's sake. */ assert(level_count != VK_REMAINING_MIP_LEVELS && layer_count != VK_REMAINING_ARRAY_LAYERS); /* Ensure the subresource range is valid. */ UNUSED uint64_t last_level_num = base_level + level_count; const uint32_t max_depth = anv_minify(image->extent.depth, base_level); UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth); assert((uint64_t)base_layer + layer_count <= image_layers); assert(last_level_num <= image->levels); /* The spec disallows these final layouts. */ assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED && final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED); /* No work is necessary if the layout stays the same or if this subresource * range lacks auxiliary data. */ if (initial_layout == final_layout) return; uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect); if (image->planes[plane].shadow_surface.isl.size_B > 0 && final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { /* This surface is a linear compressed image with a tiled shadow surface * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so * we need to ensure the shadow copy is up-to-date. */ assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR); assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR); assert(isl_format_is_compressed(image->planes[plane].surface.isl.format)); assert(plane == 0); anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, base_level, level_count, base_layer, layer_count); } if (base_layer >= anv_image_aux_layers(image, aspect, base_level)) return; assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR); if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED || initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) { #if GEN_GEN == 12 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) { anv_image_init_aux_tt(cmd_buffer, image, aspect, base_level, level_count, base_layer, layer_count); } #else assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map)); #endif /* A subresource in the undefined layout may have been aliased and * populated with any arrangement of bits. Therefore, we must initialize * the related aux buffer and clear buffer entry with desirable values. * An initial layout of PREINITIALIZED is the same as UNDEFINED for * images with VK_IMAGE_TILING_OPTIMAL. * * Initialize the relevant clear buffer entries. */ if (base_level == 0 && base_layer == 0) init_fast_clear_color(cmd_buffer, image, aspect); /* Initialize the aux buffers to enable correct rendering. In order to * ensure that things such as storage images work correctly, aux buffers * need to be initialized to valid data. * * Having an aux buffer with invalid data is a problem for two reasons: * * 1) Having an invalid value in the buffer can confuse the hardware. * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is * invalid and leads to the hardware doing strange things. It * doesn't hang as far as we can tell but rendering corruption can * occur. * * 2) If this transition is into the GENERAL layout and we then use the * image as a storage image, then we must have the aux buffer in the * pass-through state so that, if we then go to texture from the * image, we get the results of our storage image writes and not the * fast clear color or other random data. * * For CCS both of the problems above are real demonstrable issues. In * that case, the only thing we can do is to perform an ambiguate to * transition the aux surface into the pass-through state. * * For MCS, (2) is never an issue because we don't support multisampled * storage images. In theory, issue (1) is a problem with MCS but we've * never seen it in the wild. For 4x and 16x, all bit patters could, in * theory, be interpreted as something but we don't know that all bit * patterns are actually valid. For 2x and 8x, you could easily end up * with the MCS referring to an invalid plane because not all bits of * the MCS value are actually used. Even though we've never seen issues * in the wild, it's best to play it safe and initialize the MCS. We * can use a fast-clear for MCS because we only ever touch from render * and texture (no image load store). */ if (image->samples == 1) { for (uint32_t l = 0; l < level_count; l++) { const uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); /* If will_full_fast_clear is set, the caller promises to * fast-clear the largest portion of the specified range as it can. * For color images, that means only the first LOD and array slice. */ if (level == 0 && base_layer == 0 && will_full_fast_clear) { base_layer++; level_layer_count--; if (level_layer_count == 0) continue; } anv_image_ccs_op(cmd_buffer, image, image->planes[plane].surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, level, base_layer, level_layer_count, ISL_AUX_OP_AMBIGUATE, NULL, false); if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) { set_image_compressed_bit(cmd_buffer, image, aspect, level, base_layer, level_layer_count, false); } } } else { if (image->samples == 4 || image->samples == 16) { anv_perf_warn(cmd_buffer->device, image, "Doing a potentially unnecessary fast-clear to " "define an MCS buffer."); } /* If will_full_fast_clear is set, the caller promises to fast-clear * the largest portion of the specified range as it can. */ if (will_full_fast_clear) return; assert(base_level == 0 && level_count == 1); anv_image_mcs_op(cmd_buffer, image, image->planes[plane].surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, base_layer, layer_count, ISL_AUX_OP_FAST_CLEAR, NULL, false); } return; } const enum isl_aux_usage initial_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout); const enum isl_aux_usage final_aux_usage = anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout); /* The current code assumes that there is no mixing of CCS_E and CCS_D. * We can handle transitions between CCS_D/E to and from NONE. What we * don't yet handle is switching between CCS_E and CCS_D within a given * image. Doing so in a performant way requires more detailed aux state * tracking such as what is done in i965. For now, just assume that we * only have one type of compression. */ assert(initial_aux_usage == ISL_AUX_USAGE_NONE || final_aux_usage == ISL_AUX_USAGE_NONE || initial_aux_usage == final_aux_usage); /* If initial aux usage is NONE, there is nothing to resolve */ if (initial_aux_usage == ISL_AUX_USAGE_NONE) return; enum isl_aux_op resolve_op = ISL_AUX_OP_NONE; /* If the initial layout supports more fast clear than the final layout * then we need at least a partial resolve. */ const enum anv_fast_clear_type initial_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout); const enum anv_fast_clear_type final_fast_clear = anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout); if (final_fast_clear < initial_fast_clear) resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE; if (initial_aux_usage == ISL_AUX_USAGE_CCS_E && final_aux_usage != ISL_AUX_USAGE_CCS_E) resolve_op = ISL_AUX_OP_FULL_RESOLVE; if (resolve_op == ISL_AUX_OP_NONE) return; /* Perform a resolve to synchronize data between the main and aux buffer. * Before we begin, we must satisfy the cache flushing requirement specified * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)": * * Any transition from any value in {Clear, Render, Resolve} to a * different value in {Clear, Render, Resolve} requires end of pipe * synchronization. * * We perform a flush of the write cache before and after the clear and * resolve operations to meet this requirement. * * Unlike other drawing, fast clear operations are not properly * synchronized. The first PIPE_CONTROL here likely ensures that the * contents of the previous render or clear hit the render target before we * resolve and the second likely ensures that the resolve is complete before * we do any more rendering or clearing. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT; for (uint32_t l = 0; l < level_count; l++) { uint32_t level = base_level + l; uint32_t aux_layers = anv_image_aux_layers(image, aspect, level); if (base_layer >= aux_layers) break; /* We will only get fewer layers as level increases */ uint32_t level_layer_count = MIN2(layer_count, aux_layers - base_layer); for (uint32_t a = 0; a < level_layer_count; a++) { uint32_t array_layer = base_layer + a; /* If will_full_fast_clear is set, the caller promises to fast-clear * the largest portion of the specified range as it can. For color * images, that means only the first LOD and array slice. */ if (level == 0 && array_layer == 0 && will_full_fast_clear) continue; if (image->samples == 1) { anv_cmd_predicated_ccs_resolve(cmd_buffer, image, image->planes[plane].surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, level, array_layer, resolve_op, final_fast_clear); } else { /* We only support fast-clear on the first layer so partial * resolves should not be used on other layers as they will use * the clear color stored in memory that is only valid for layer0. */ if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE && array_layer != 0) continue; anv_cmd_predicated_mcs_resolve(cmd_buffer, image, image->planes[plane].surface.isl.format, ISL_SWIZZLE_IDENTITY, aspect, array_layer, resolve_op, final_fast_clear); } } } cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT; } static VkResult genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer, const struct anv_render_pass *pass, const struct anv_framebuffer *framebuffer, const VkRenderPassBeginInfo *begin) { struct anv_cmd_state *state = &cmd_buffer->state; vk_free(&cmd_buffer->pool->alloc, state->attachments); if (pass->attachment_count > 0) { state->attachments = vk_zalloc(&cmd_buffer->pool->alloc, pass->attachment_count * sizeof(state->attachments[0]), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (state->attachments == NULL) { /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */ return anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_HOST_MEMORY); } } else { state->attachments = NULL; } const VkRenderPassAttachmentBeginInfoKHR *attach_begin = vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR); if (begin && !attach_begin) assert(pass->attachment_count == framebuffer->attachment_count); for (uint32_t i = 0; i < pass->attachment_count; ++i) { if (attach_begin && attach_begin->attachmentCount != 0) { assert(attach_begin->attachmentCount == pass->attachment_count); ANV_FROM_HANDLE(anv_image_view, iview, attach_begin->pAttachments[i]); state->attachments[i].image_view = iview; } else if (framebuffer && i < framebuffer->attachment_count) { state->attachments[i].image_view = framebuffer->attachments[i]; } else { state->attachments[i].image_view = NULL; } } if (begin) { for (uint32_t i = 0; i < pass->attachment_count; ++i) { const struct anv_render_pass_attachment *pass_att = &pass->attachments[i]; struct anv_attachment_state *att_state = &state->attachments[i]; VkImageAspectFlags att_aspects = vk_format_aspects(pass_att->format); VkImageAspectFlags clear_aspects = 0; VkImageAspectFlags load_aspects = 0; if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { /* color attachment */ if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; } else if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT; } } else { /* depthstencil attachment */ if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; } else if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT; } } if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { if (pass_att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; } else if (pass_att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) { load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT; } } } att_state->current_layout = pass_att->initial_layout; att_state->current_stencil_layout = pass_att->stencil_initial_layout; att_state->pending_clear_aspects = clear_aspects; att_state->pending_load_aspects = load_aspects; if (clear_aspects) att_state->clear_value = begin->pClearValues[i]; struct anv_image_view *iview = state->attachments[i].image_view; anv_assert(iview->vk_format == pass_att->format); const uint32_t num_layers = iview->planes[0].isl.array_len; att_state->pending_clear_views = (1 << num_layers) - 1; /* This will be initialized after the first subpass transition. */ att_state->aux_usage = ISL_AUX_USAGE_NONE; att_state->fast_clear = false; if (clear_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { assert(clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); att_state->fast_clear = anv_can_fast_clear_color_view(cmd_buffer->device, iview, pass_att->first_subpass_layout, vk_to_isl_color(att_state->clear_value.color), framebuffer->layers, begin->renderArea); } else if (clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { att_state->fast_clear = anv_can_hiz_clear_ds_view(cmd_buffer->device, iview, pass_att->first_subpass_layout, clear_aspects, att_state->clear_value.depthStencil.depth, begin->renderArea); } } } return VK_SUCCESS; } /** * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass. */ static VkResult genX(cmd_buffer_alloc_att_surf_states)(struct anv_cmd_buffer *cmd_buffer, const struct anv_render_pass *pass, const struct anv_subpass *subpass) { const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev; struct anv_cmd_state *state = &cmd_buffer->state; /* Reserve one for the NULL state. */ unsigned num_states = 1; for (uint32_t i = 0; i < subpass->attachment_count; i++) { uint32_t att = subpass->attachments[i].attachment; if (att == VK_ATTACHMENT_UNUSED) continue; assert(att < pass->attachment_count); if (!vk_format_is_color(pass->attachments[att].format)) continue; const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage; assert(util_bitcount(att_usage) == 1); if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT || att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) num_states++; } const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align); state->attachment_states = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, num_states * ss_stride, isl_dev->ss.align); if (state->attachment_states.map == NULL) { return anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_DEVICE_MEMORY); } struct anv_state next_state = state->attachment_states; next_state.alloc_size = isl_dev->ss.size; state->null_surface_state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; for (uint32_t i = 0; i < subpass->attachment_count; i++) { uint32_t att = subpass->attachments[i].attachment; if (att == VK_ATTACHMENT_UNUSED) continue; assert(att < pass->attachment_count); if (!vk_format_is_color(pass->attachments[att].format)) continue; const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage; assert(util_bitcount(att_usage) == 1); if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) state->attachments[att].color.state = next_state; else if (att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) state->attachments[att].input.state = next_state; else continue; state->attachments[att].color.state = next_state; next_state.offset += ss_stride; next_state.map += ss_stride; } assert(next_state.offset == state->attachment_states.offset + state->attachment_states.alloc_size); return VK_SUCCESS; } VkResult genX(BeginCommandBuffer)( VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); /* If this is the first vkBeginCommandBuffer, we must *initialize* the * command buffer's state. Otherwise, we must *reset* its state. In both * cases we reset it. * * From the Vulkan 1.0 spec: * * If a command buffer is in the executable state and the command buffer * was allocated from a command pool with the * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then * vkBeginCommandBuffer implicitly resets the command buffer, behaving * as if vkResetCommandBuffer had been called with * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts * the command buffer in the recording state. */ anv_cmd_buffer_reset(cmd_buffer); cmd_buffer->usage_flags = pBeginInfo->flags; /* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for * primary level command buffers. * * From the Vulkan 1.0 spec: * * VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a * secondary command buffer is considered to be entirely inside a render * pass. If this is a primary command buffer, then this bit is ignored. */ if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* We sometimes store vertex data in the dynamic state buffer for blorp * operations and our dynamic state stream may re-use data from previous * command buffers. In order to prevent stale cache data, we flush the VF * cache. We could do this on every blorp call but that's not really * needed as all of the data will get written by the CPU prior to the GPU * executing anything. The chances are fairly high that they will use * blorp at least once per primary command buffer so it shouldn't be * wasted. * * There is also a workaround on gen8 which requires us to invalidate the * VF cache occasionally. It's easier if we can assume we start with a * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).) */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT; /* Re-emit the aux table register in every command buffer. This way we're * ensured that we have the table even if this command buffer doesn't * initialize any images. */ if (cmd_buffer->device->info.has_aux_map) cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT; /* We send an "Indirect State Pointers Disable" packet at * EndCommandBuffer, so all push contant packets are ignored during a * context restore. Documentation says after that command, we need to * emit push constants again before any rendering operation. So we * flag them dirty here to make sure they get emitted. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; VkResult result = VK_SUCCESS; if (cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { assert(pBeginInfo->pInheritanceInfo); ANV_FROM_HANDLE(anv_render_pass, pass, pBeginInfo->pInheritanceInfo->renderPass); struct anv_subpass *subpass = &pass->subpasses[pBeginInfo->pInheritanceInfo->subpass]; ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pBeginInfo->pInheritanceInfo->framebuffer); cmd_buffer->state.pass = pass; cmd_buffer->state.subpass = subpass; /* This is optional in the inheritance info. */ cmd_buffer->state.framebuffer = framebuffer; result = genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, framebuffer, NULL); if (result != VK_SUCCESS) return result; result = genX(cmd_buffer_alloc_att_surf_states)(cmd_buffer, pass, subpass); if (result != VK_SUCCESS) return result; /* Record that HiZ is enabled if we can. */ if (cmd_buffer->state.framebuffer) { const struct anv_image_view * const iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); if (iview) { VkImageLayout layout = cmd_buffer->state.subpass->depth_stencil_attachment->layout; enum isl_aux_usage aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, layout); cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(aux_usage); } } cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; } #if GEN_GEN >= 8 || GEN_IS_HASWELL if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info = vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT); /* If secondary buffer supports conditional rendering * we should emit commands as if conditional rendering is enabled. */ cmd_buffer->state.conditional_render_enabled = conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable; } #endif return result; } /* From the PRM, Volume 2a: * * "Indirect State Pointers Disable * * At the completion of the post-sync operation associated with this pipe * control packet, the indirect state pointers in the hardware are * considered invalid; the indirect pointers are not saved in the context. * If any new indirect state commands are executed in the command stream * while the pipe control is pending, the new indirect state commands are * preserved. * * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant * commands are only considered as Indirect State Pointers. Once ISP is * issued in a context, SW must initialize by programming push constant * commands for all the shaders (at least to zero length) before attempting * any rendering operation for the same context." * * 3DSTATE_CONSTANT_* packets are restored during a context restore, * even though they point to a BO that has been already unreferenced at * the end of the previous batch buffer. This has been fine so far since * we are protected by these scratch page (every address not covered by * a BO should be pointing to the scratch page). But on CNL, it is * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_* * instruction. * * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a * context restore, so the mentioned hang doesn't happen. However, * software must program push constant commands for all stages prior to * rendering anything. So we flag them dirty in BeginCommandBuffer. * * Finally, we also make sure to stall at pixel scoreboard to make sure the * constants have been loaded into the EUs prior to disable the push constants * so that it doesn't hang a previous 3DPRIMITIVE. */ static void emit_isp_disable(struct anv_cmd_buffer *cmd_buffer) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.IndirectStatePointersDisable = true; pc.CommandStreamerStallEnable = true; } } VkResult genX(EndCommandBuffer)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return cmd_buffer->batch.status; /* We want every command buffer to start with the PMA fix in a known state, * so we disable it at the end of the command buffer. */ genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false); genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); emit_isp_disable(cmd_buffer); anv_cmd_buffer_end_batch_buffer(cmd_buffer); return VK_SUCCESS; } void genX(CmdExecuteCommands)( VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCmdBuffers) { ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer); assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); if (anv_batch_has_error(&primary->batch)) return; /* The secondary command buffers will assume that the PMA fix is disabled * when they begin executing. Make sure this is true. */ genX(cmd_buffer_enable_pma_fix)(primary, false); /* The secondary command buffer doesn't know which textures etc. have been * flushed prior to their execution. Apply those flushes now. */ genX(cmd_buffer_apply_pipe_flushes)(primary); for (uint32_t i = 0; i < commandBufferCount; i++) { ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]); assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); assert(!anv_batch_has_error(&secondary->batch)); #if GEN_GEN >= 8 || GEN_IS_HASWELL if (secondary->state.conditional_render_enabled) { if (!primary->state.conditional_render_enabled) { /* Secondary buffer is constructed as if it will be executed * with conditional rendering, we should satisfy this dependency * regardless of conditional rendering being enabled in primary. */ struct gen_mi_builder b; gen_mi_builder_init(&b, &primary->batch); gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG), gen_mi_imm(UINT64_MAX)); } } #endif if (secondary->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { /* If we're continuing a render pass from the primary, we need to * copy the surface states for the current subpass into the storage * we allocated for them in BeginCommandBuffer. */ struct anv_bo *ss_bo = primary->device->surface_state_pool.block_pool.bo; struct anv_state src_state = primary->state.attachment_states; struct anv_state dst_state = secondary->state.attachment_states; assert(src_state.alloc_size == dst_state.alloc_size); genX(cmd_buffer_so_memcpy)(primary, (struct anv_address) { .bo = ss_bo, .offset = dst_state.offset, }, (struct anv_address) { .bo = ss_bo, .offset = src_state.offset, }, src_state.alloc_size); } anv_cmd_buffer_add_secondary(primary, secondary); assert(secondary->perf_query_pool == NULL || primary->perf_query_pool == NULL || secondary->perf_query_pool == primary->perf_query_pool); if (secondary->perf_query_pool) primary->perf_query_pool = secondary->perf_query_pool; } /* The secondary isn't counted in our VF cache tracking so we need to * invalidate the whole thing. */ if (GEN_GEN >= 8 && GEN_GEN <= 9) { primary->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT; } /* The secondary may have selected a different pipeline (3D or compute) and * may have changed the current L3$ configuration. Reset our tracking * variables to invalid values to ensure that we re-emit these in the case * where we do any draws or compute dispatches from the primary after the * secondary has returned. */ primary->state.current_pipeline = UINT32_MAX; primary->state.current_l3_config = NULL; primary->state.current_hash_scale = 0; /* Each of the secondary command buffers will use its own state base * address. We need to re-emit state base address for the primary after * all of the secondaries are done. * * TODO: Maybe we want to make this a dirty bit to avoid extra state base * address calls? */ genX(cmd_buffer_emit_state_base_address)(primary); } #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000 /** * Program the hardware to use the specified L3 configuration. */ void genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, const struct gen_l3_config *cfg) { assert(cfg || GEN_GEN >= 12); if (cfg == cmd_buffer->state.current_l3_config) return; if (INTEL_DEBUG & DEBUG_L3) { mesa_logd("L3 config transition: "); gen_dump_l3_config(cfg, stderr); } UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM]; /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.StateCacheInvalidationEnable = true; pc.PostSyncOperation = NoWrite; } /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; } #if GEN_GEN >= 8 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]); #if GEN_GEN >= 12 #define L3_ALLOCATION_REG GENX(L3ALLOC) #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num) #else #define L3_ALLOCATION_REG GENX(L3CNTLREG) #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num) #endif uint32_t l3cr; anv_pack_struct(&l3cr, L3_ALLOCATION_REG, #if GEN_GEN < 11 .SLMEnable = has_slm, #endif #if GEN_GEN == 11 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set * in L3CNTLREG register. The default setting of the bit is not the * desirable behavior. */ .ErrorDetectionBehaviorControl = true, .UseFullWays = true, #endif .URBAllocation = cfg->n[GEN_L3P_URB], .ROAllocation = cfg->n[GEN_L3P_RO], .DCAllocation = cfg->n[GEN_L3P_DC], .AllAllocation = cfg->n[GEN_L3P_ALL]); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr); #else const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL]; const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; assert(!cfg->n[GEN_L3P_ALL]); /* When enabled SLM only uses a portion of the L3 on half of the banks, * the matching space on the remaining banks has to be allocated to a * client (URB for all validated configurations) set to the * lower-bandwidth 2-bank address hashing mode. */ const struct gen_device_info *devinfo = &cmd_buffer->device->info; const bool urb_low_bw = has_slm && !devinfo->is_baytrail; assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]); /* Minimum number of ways that can be allocated to the URB. */ const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0; assert(cfg->n[GEN_L3P_URB] >= n0_urb); uint32_t l3sqcr1, l3cr2, l3cr3; anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1), .ConvertDC_UC = !has_dc, .ConvertIS_UC = !has_is, .ConvertC_UC = !has_c, .ConvertT_UC = !has_t); l3sqcr1 |= GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : IVB_L3SQCREG1_SQGHPCI_DEFAULT; anv_pack_struct(&l3cr2, GENX(L3CNTLREG2), .SLMEnable = has_slm, .URBLowBandwidth = urb_low_bw, .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb, #if !GEN_IS_HASWELL .ALLAllocation = cfg->n[GEN_L3P_ALL], #endif .ROAllocation = cfg->n[GEN_L3P_RO], .DCAllocation = cfg->n[GEN_L3P_DC]); anv_pack_struct(&l3cr3, GENX(L3CNTLREG3), .ISAllocation = cfg->n[GEN_L3P_IS], .ISLowBandwidth = 0, .CAllocation = cfg->n[GEN_L3P_C], .CLowBandwidth = 0, .TAllocation = cfg->n[GEN_L3P_T], .TLowBandwidth = 0); /* Set up the L3 partitioning. */ emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2); emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3); #if GEN_IS_HASWELL if (cmd_buffer->device->physical->cmd_parser_version >= 4) { /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep * them disabled to avoid crashing the system hard. */ uint32_t scratch1, chicken3; anv_pack_struct(&scratch1, GENX(SCRATCH1), .L3AtomicDisable = !has_dc); anv_pack_struct(&chicken3, GENX(CHICKEN3), .L3AtomicDisableMask = true, .L3AtomicDisable = !has_dc); emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1); emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3); } #endif #endif cmd_buffer->state.current_l3_config = cfg; } void genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer) { UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info; enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits; if (cmd_buffer->device->physical->always_flush_cache) bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS; /* * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization": * * Write synchronization is a special case of end-of-pipe * synchronization that requires that the render cache and/or depth * related caches are flushed to memory, where the data will become * globally visible. This type of synchronization is required prior to * SW (CPU) actually reading the result data from memory, or initiating * an operation that will use as a read surface (such as a texture * surface) a previous render target and/or depth/stencil buffer * * * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization": * * Exercising the write cache flush bits (Render Target Cache Flush * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only * ensures the write caches are flushed and doesn't guarantee the data * is globally visible. * * SW can track the completion of the end-of-pipe-synchronization by * using "Notify Enable" and "PostSync Operation - Write Immediate * Data" in the PIPE_CONTROL command. * * In other words, flushes are pipelined while invalidations are handled * immediately. Therefore, if we're flushing anything then we need to * schedule an end-of-pipe sync before any invalidations can happen. */ if (bits & ANV_PIPE_FLUSH_BITS) bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; /* HSD 1209978178: docs say that before programming the aux table: * * "Driver must ensure that the engine is IDLE but ensure it doesn't * add extra flushes in the case it knows that the engine is already * IDLE." */ if (GEN_GEN == 12 && (bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)) bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; /* If we're going to do an invalidate and we have a pending end-of-pipe * sync that has yet to be resolved, we do the end-of-pipe sync now. */ if ((bits & ANV_PIPE_INVALIDATE_BITS) && (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) { bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT; bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT; } if (GEN_GEN >= 12 && ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) || (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) { /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush * Enable): * * Unified Cache (Tile Cache Disabled): * * When the Color and Depth (Z) streams are enabled to be cached in * the DC space of L2, Software must use "Render Target Cache Flush * Enable" and "Depth Cache Flush Enable" along with "Tile Cache * Flush" for getting the color and depth (Z) write data to be * globally observable. In this mode of operation it is not required * to set "CS Stall" upon setting "Tile Cache Flush" bit. */ bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT; } /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which * invalidates the instruction cache */ if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)) bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT; if ((GEN_GEN >= 8 && GEN_GEN <= 9) && (bits & ANV_PIPE_CS_STALL_BIT) && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) { /* If we are doing a VF cache invalidate AND a CS stall (it must be * both) then we can reset our vertex cache tracking. */ memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0, sizeof(cmd_buffer->state.gfx.vb_dirty_ranges)); memset(&cmd_buffer->state.gfx.ib_dirty_range, 0, sizeof(cmd_buffer->state.gfx.ib_dirty_range)); } /* Project: SKL / Argument: LRI Post Sync Operation [23] * * "PIPECONTROL command with “Command Streamer Stall Enable” must be * programmed prior to programming a PIPECONTROL command with "LRI * Post Sync Operation" in GPGPU mode of operation (i.e when * PIPELINE_SELECT command is set to GPGPU mode of operation)." * * The same text exists a few rows below for Post Sync Op. * * On Gen12 this is GEN:BUG:1607156449. */ if (bits & ANV_PIPE_POST_SYNC_BIT) { if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0 */)) && cmd_buffer->state.current_pipeline == GPGPU) bits |= ANV_PIPE_CS_STALL_BIT; bits &= ~ANV_PIPE_POST_SYNC_BIT; } if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT)) { anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { #if GEN_GEN >= 12 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT; #endif pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT; pipe.RenderTargetCacheFlushEnable = bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must * be set with any PIPE_CONTROL with Depth Flush Enable bit set. */ #if GEN_GEN >= 12 pipe.DepthStallEnable = pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT); #else pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT; #endif pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT; pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT; /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory": * * "The most common action to perform upon reaching a * synchronization point is to write a value out to memory. An * immediate value (included with the synchronization command) may * be written." * * * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization": * * "In case the data flushed out by the render engine is to be * read back in to the render engine in coherent manner, then the * render engine has to wait for the fence completion before * accessing the flushed data. This can be achieved by following * means on various products: PIPE_CONTROL command with CS Stall * and the required write caches flushed with Post-Sync-Operation * as Write Immediate Data. * * Example: * - Workload-1 (3D/GPGPU/MEDIA) * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write * Immediate Data, Required Write Cache Flush bits set) * - Workload-2 (Can use the data produce or output by * Workload-1) */ if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) { pipe.CommandStreamerStallEnable = true; pipe.PostSyncOperation = WriteImmediateData; pipe.Address = cmd_buffer->device->workaround_address; } /* * According to the Broadwell documentation, any PIPE_CONTROL with the * "Command Streamer Stall" bit set must also have another bit set, * with five different options: * * - Render Target Cache Flush * - Depth Cache Flush * - Stall at Pixel Scoreboard * - Post-Sync Operation * - Depth Stall * - DC Flush Enable * * I chose "Stall at Pixel Scoreboard" since that's what we use in * mesa and it seems to work fine. The choice is fairly arbitrary. */ if (pipe.CommandStreamerStallEnable && !pipe.RenderTargetCacheFlushEnable && !pipe.DepthCacheFlushEnable && !pipe.StallAtPixelScoreboard && !pipe.PostSyncOperation && !pipe.DepthStallEnable && !pipe.DCFlushEnable) pipe.StallAtPixelScoreboard = true; } /* If a render target flush was emitted, then we can toggle off the bit * saying that render target writes are ongoing. */ if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT) bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES); if (GEN_IS_HASWELL) { /* Haswell needs addition work-arounds: * * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization": * * Option 1: * PIPE_CONTROL command with the CS Stall and the required write * caches flushed with Post-SyncOperation as Write Immediate Data * followed by eight dummy MI_STORE_DATA_IMM (write to scratch * spce) commands. * * Example: * - Workload-1 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write * Immediate Data, Required Write Cache Flush bits set) * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address) * - Workload-2 (Can use the data produce or output by * Workload-1) * * Unfortunately, both the PRMs and the internal docs are a bit * out-of-date in this regard. What the windows driver does (and * this appears to actually work) is to emit a register read from the * memory address written by the pipe control above. * * What register we load into doesn't matter. We choose an indirect * rendering register because we know it always exists and it's one * of the first registers the command parser allows us to write. If * you don't have command parser support in your kernel (pre-4.2), * this will get turned into MI_NOOP and you won't get the * workaround. Unfortunately, there's just not much we can do in * that case. This register is perfectly safe to write since we * always re-load all of the indirect draw registers right before * 3DPRIMITIVE when needed anyway. */ anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = 0x243C; /* GEN7_3DPRIM_START_INSTANCE */ lrm.MemoryAddress = cmd_buffer->device->workaround_address; } } bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT); } if (bits & ANV_PIPE_INVALIDATE_BITS) { /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "If the VF Cache Invalidation Enable is set to a 1 in a * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to * a 1." * * This appears to hang Broadwell, so we restrict it to just gen9. */ if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.StateCacheInvalidationEnable = bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT; pipe.ConstantCacheInvalidationEnable = bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT; pipe.VFCacheInvalidationEnable = bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT; pipe.TextureCacheInvalidationEnable = bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT; pipe.InstructionCacheInvalidateEnable = bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT; /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL", * * "When VF Cache Invalidate is set “Post Sync Operation” must be * enabled to “Write Immediate Data” or “Write PS Depth Count” or * “Write Timestamp”. */ if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) { pipe.PostSyncOperation = WriteImmediateData; pipe.Address = cmd_buffer->device->workaround_address; } } #if GEN_GEN == 12 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) && cmd_buffer->device->info.has_aux_map) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num); lri.DataDWord = 1; } } #endif bits &= ~ANV_PIPE_INVALIDATE_BITS; } cmd_buffer->state.pending_pipe_bits = bits; } void genX(CmdPipelineBarrier)( VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, VkBool32 byRegion, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); /* XXX: Right now, we're really dumb and just flush whatever categories * the app asks for. One of these days we may make this a bit better * but right now that's all the hardware allows for in most areas. */ VkAccessFlags src_flags = 0; VkAccessFlags dst_flags = 0; for (uint32_t i = 0; i < memoryBarrierCount; i++) { src_flags |= pMemoryBarriers[i].srcAccessMask; dst_flags |= pMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) { src_flags |= pBufferMemoryBarriers[i].srcAccessMask; dst_flags |= pBufferMemoryBarriers[i].dstAccessMask; } for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) { src_flags |= pImageMemoryBarriers[i].srcAccessMask; dst_flags |= pImageMemoryBarriers[i].dstAccessMask; ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image); const VkImageSubresourceRange *range = &pImageMemoryBarriers[i].subresourceRange; uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(image->extent.depth, range->baseMipLevel); } else { base_layer = range->baseArrayLayer; layer_count = anv_get_layerCount(image, range); } if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, base_layer, layer_count, pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout, false /* will_full_fast_clear */); } if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { transition_stencil_buffer(cmd_buffer, image, range->baseMipLevel, anv_get_levelCount(image, range), base_layer, layer_count, pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout, false /* will_full_fast_clear */); } if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { VkImageAspectFlags color_aspects = anv_image_expand_aspects(image, range->aspectMask); uint32_t aspect_bit; anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) { transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit, range->baseMipLevel, anv_get_levelCount(image, range), base_layer, layer_count, pImageMemoryBarriers[i].oldLayout, pImageMemoryBarriers[i].newLayout, false /* will_full_fast_clear */); } } } cmd_buffer->state.pending_pipe_bits |= anv_pipe_flush_bits_for_access_flags(cmd_buffer->device, src_flags) | anv_pipe_invalidate_bits_for_access_flags(cmd_buffer->device, dst_flags); } static void cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer) { VkShaderStageFlags stages = cmd_buffer->state.gfx.pipeline->active_stages; /* In order to avoid thrash, we assume that vertex and fragment stages * always exist. In the rare case where one is missing *and* the other * uses push concstants, this may be suboptimal. However, avoiding stalls * seems more important. */ stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT; if (stages == cmd_buffer->state.gfx.push_constant_stages) return; #if GEN_GEN >= 8 const unsigned push_constant_kb = 32; #elif GEN_IS_HASWELL const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16; #else const unsigned push_constant_kb = 16; #endif const unsigned num_stages = util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS); unsigned size_per_stage = push_constant_kb / num_stages; /* Broadwell+ and Haswell gt3 require that the push constant sizes be in * units of 2KB. Incidentally, these are the same platforms that have * 32KB worth of push constant space. */ if (push_constant_kb == 32) size_per_stage &= ~1u; uint32_t kb_used = 0; for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) { unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) { alloc._3DCommandSubOpcode = 18 + i; alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0; alloc.ConstantBufferSize = push_size; } kb_used += push_size; } anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) { alloc.ConstantBufferOffset = kb_used; alloc.ConstantBufferSize = push_constant_kb - kb_used; } cmd_buffer->state.gfx.push_constant_stages = stages; /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS: * * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to * the next 3DPRIMITIVE command after programming the * 3DSTATE_PUSH_CONSTANT_ALLOC_VS" * * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of * pipeline setup, we need to dirty push constants. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS; } static struct anv_address anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer, struct anv_descriptor_set *set) { if (set->pool) { /* This is a normal descriptor set */ return (struct anv_address) { .bo = set->pool->bo, .offset = set->desc_mem.offset, }; } else { /* This is a push descriptor set. We have to flag it as used on the GPU * so that the next time we push descriptors, we grab a new memory. */ struct anv_push_descriptor_set *push_set = (struct anv_push_descriptor_set *)set; push_set->set_used_on_gpu = true; return (struct anv_address) { .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo, .offset = set->desc_mem.offset, }; } } static VkResult emit_binding_table(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, struct anv_shader_bin *shader, struct anv_state *bt_state) { struct anv_subpass *subpass = cmd_buffer->state.subpass; uint32_t state_offset; struct anv_pipeline_bind_map *map = &shader->bind_map; if (map->surface_count == 0) { *bt_state = (struct anv_state) { 0, }; return VK_SUCCESS; } *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, map->surface_count, &state_offset); uint32_t *bt_map = bt_state->map; if (bt_state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; /* We only need to emit relocs if we're not using softpin. If we are using * softpin then we always keep all user-allocated memory objects resident. */ const bool need_client_mem_relocs = !cmd_buffer->device->physical->use_softpin; struct anv_push_constants *push = &pipe_state->push_constants; for (uint32_t s = 0; s < map->surface_count; s++) { struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s]; struct anv_state surface_state; switch (binding->set) { case ANV_DESCRIPTOR_SET_NULL: bt_map[s] = 0; break; case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS: /* Color attachment binding */ assert(shader->stage == MESA_SHADER_FRAGMENT); if (binding->index < subpass->color_count) { const unsigned att = subpass->color_attachments[binding->index].attachment; /* From the Vulkan 1.0.46 spec: * * "If any color or depth/stencil attachments are * VK_ATTACHMENT_UNUSED, then no writes occur for those * attachments." */ if (att == VK_ATTACHMENT_UNUSED) { surface_state = cmd_buffer->state.null_surface_state; } else { surface_state = cmd_buffer->state.attachments[att].color.state; } } else { surface_state = cmd_buffer->state.null_surface_state; } assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; break; case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: { struct anv_state surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); struct anv_address constant_data = { .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo, .offset = shader->kernel.offset + shader->prog_data->const_data_offset, }; unsigned constant_data_size = shader->prog_data->const_data_size; const enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, ISL_SURF_USAGE_CONSTANT_BUFFER_BIT, constant_data, constant_data_size, 1); assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, surface_state, constant_data); break; } case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: { /* This is always the first binding for compute shaders */ assert(shader->stage == MESA_SHADER_COMPUTE && s == 0); struct anv_state surface_state = anv_cmd_buffer_alloc_surface_state(cmd_buffer); const enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, ISL_SURF_USAGE_CONSTANT_BUFFER_BIT, cmd_buffer->state.compute.num_workgroups, 12, 1); assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, cmd_buffer->state.compute.num_workgroups); } break; } case ANV_DESCRIPTOR_SET_DESCRIPTORS: { /* This is a descriptor set buffer so the set index is actually * given by binding->binding. (Yes, that's confusing.) */ struct anv_descriptor_set *set = pipe_state->descriptors[binding->index]; assert(set->desc_mem.alloc_size); assert(set->desc_surface_state.alloc_size); bt_map[s] = set->desc_surface_state.offset + state_offset; add_surface_reloc(cmd_buffer, set->desc_surface_state, anv_descriptor_set_address(cmd_buffer, set)); break; } default: { assert(binding->set < MAX_SETS); const struct anv_descriptor_set *set = pipe_state->descriptors[binding->set]; if (binding->index >= set->descriptor_count) { /* From the Vulkan spec section entitled "DescriptorSet and * Binding Assignment": * * "If the array is runtime-sized, then array elements greater * than or equal to the size of that binding in the bound * descriptor set must not be used." * * Unfortunately, the compiler isn't smart enough to figure out * when a dynamic binding isn't used so it may grab the whole * array and stick it in the binding table. In this case, it's * safe to just skip those bindings that are OOB. */ assert(binding->index < set->layout->descriptor_count); continue; } const struct anv_descriptor *desc = &set->descriptors[binding->index]; switch (desc->type) { case VK_DESCRIPTOR_TYPE_SAMPLER: /* Nothing for us to do here */ continue; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: { if (desc->image_view) { struct anv_surface_state sstate = (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? desc->image_view->planes[binding->plane].general_sampler_surface_state : desc->image_view->planes[binding->plane].optimal_sampler_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); if (need_client_mem_relocs) add_surface_state_relocs(cmd_buffer, sstate); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: assert(shader->stage == MESA_SHADER_FRAGMENT); assert(desc->image_view != NULL); if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) { /* For depth and stencil input attachments, we treat it like any * old texture that a user may have bound. */ assert(desc->image_view->n_planes == 1); struct anv_surface_state sstate = (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ? desc->image_view->planes[0].general_sampler_surface_state : desc->image_view->planes[0].optimal_sampler_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); if (need_client_mem_relocs) add_surface_state_relocs(cmd_buffer, sstate); } else { /* For color input attachments, we create the surface state at * vkBeginRenderPass time so that we can include aux and clear * color information. */ assert(binding->input_attachment_index < subpass->input_count); const unsigned subpass_att = binding->input_attachment_index; const unsigned att = subpass->input_attachments[subpass_att].attachment; surface_state = cmd_buffer->state.attachments[att].input.state; } break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: { if (desc->image_view) { struct anv_surface_state sstate = (binding->write_only) ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state : desc->image_view->planes[binding->plane].storage_surface_state; surface_state = sstate.state; assert(surface_state.alloc_size); if (need_client_mem_relocs) add_surface_state_relocs(cmd_buffer, sstate); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: if (desc->buffer_view) { surface_state = desc->buffer_view->surface_state; assert(surface_state.alloc_size); if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); } } else { surface_state = cmd_buffer->device->null_surface_state; } break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { if (desc->buffer) { /* Compute the offset within the buffer */ uint32_t dynamic_offset = push->dynamic_offsets[binding->dynamic_offset_index]; uint64_t offset = desc->offset + dynamic_offset; /* Clamp to the buffer size */ offset = MIN2(offset, desc->buffer->size); /* Clamp the range to the buffer size */ uint32_t range = MIN2(desc->range, desc->buffer->size - offset); /* Align the range for consistency */ if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) range = align_u32(range, ANV_UBO_ALIGNMENT); struct anv_address address = anv_address_add(desc->buffer->address, offset); surface_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); enum isl_format format = anv_isl_format_for_descriptor_type(cmd_buffer->device, desc->type); isl_surf_usage_flags_t usage = desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ? ISL_SURF_USAGE_CONSTANT_BUFFER_BIT : ISL_SURF_USAGE_STORAGE_BIT; anv_fill_buffer_surface_state(cmd_buffer->device, surface_state, format, usage, address, range, 1); if (need_client_mem_relocs) add_surface_reloc(cmd_buffer, surface_state, address); } else { surface_state = cmd_buffer->device->null_surface_state; } break; } case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: if (desc->buffer_view) { surface_state = (binding->write_only) ? desc->buffer_view->writeonly_storage_surface_state : desc->buffer_view->storage_surface_state; assert(surface_state.alloc_size); if (need_client_mem_relocs) { add_surface_reloc(cmd_buffer, surface_state, desc->buffer_view->address); } } else { surface_state = cmd_buffer->device->null_surface_state; } break; default: assert(!"Invalid descriptor type"); continue; } assert(surface_state.map); bt_map[s] = surface_state.offset + state_offset; break; } } } return VK_SUCCESS; } static VkResult emit_samplers(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, struct anv_shader_bin *shader, struct anv_state *state) { struct anv_pipeline_bind_map *map = &shader->bind_map; if (map->sampler_count == 0) { *state = (struct anv_state) { 0, }; return VK_SUCCESS; } uint32_t size = map->sampler_count * 16; *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32); if (state->map == NULL) return VK_ERROR_OUT_OF_DEVICE_MEMORY; for (uint32_t s = 0; s < map->sampler_count; s++) { struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s]; const struct anv_descriptor *desc = &pipe_state->descriptors[binding->set]->descriptors[binding->index]; if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER && desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) continue; struct anv_sampler *sampler = desc->sampler; /* This can happen if we have an unfilled slot since TYPE_SAMPLER * happens to be zero. */ if (sampler == NULL) continue; memcpy(state->map + (s * 16), sampler->state[binding->plane], sizeof(sampler->state[0])); } return VK_SUCCESS; } static uint32_t flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer, struct anv_cmd_pipeline_state *pipe_state, struct anv_shader_bin **shaders, uint32_t num_shaders) { const VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty; VkShaderStageFlags flushed = 0; VkResult result = VK_SUCCESS; for (uint32_t i = 0; i < num_shaders; i++) { if (!shaders[i]) continue; gl_shader_stage stage = shaders[i]->stage; VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage); if ((vk_stage & dirty) == 0) continue; result = emit_samplers(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.samplers[stage]); if (result != VK_SUCCESS) break; result = emit_binding_table(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.binding_tables[stage]); if (result != VK_SUCCESS) break; flushed |= vk_stage; } if (result != VK_SUCCESS) { assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY); result = anv_cmd_buffer_new_binding_table_block(cmd_buffer); if (result != VK_SUCCESS) return 0; /* Re-emit state base addresses so we get the new surface state base * address before we start emitting binding tables etc. */ genX(cmd_buffer_emit_state_base_address)(cmd_buffer); /* Re-emit all active binding tables */ flushed = 0; for (uint32_t i = 0; i < num_shaders; i++) { if (!shaders[i]) continue; gl_shader_stage stage = shaders[i]->stage; result = emit_samplers(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.samplers[stage]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } result = emit_binding_table(cmd_buffer, pipe_state, shaders[i], &cmd_buffer->state.binding_tables[stage]); if (result != VK_SUCCESS) { anv_batch_set_error(&cmd_buffer->batch, result); return 0; } flushed |= mesa_to_vk_shader_stage(stage); } } cmd_buffer->state.descriptors_dirty &= ~flushed; return flushed; } static void cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer, uint32_t stages) { static const uint32_t sampler_state_opcodes[] = { [MESA_SHADER_VERTEX] = 43, [MESA_SHADER_TESS_CTRL] = 44, /* HS */ [MESA_SHADER_TESS_EVAL] = 45, /* DS */ [MESA_SHADER_GEOMETRY] = 46, [MESA_SHADER_FRAGMENT] = 47, [MESA_SHADER_COMPUTE] = 0, }; static const uint32_t binding_table_opcodes[] = { [MESA_SHADER_VERTEX] = 38, [MESA_SHADER_TESS_CTRL] = 39, [MESA_SHADER_TESS_EVAL] = 40, [MESA_SHADER_GEOMETRY] = 41, [MESA_SHADER_FRAGMENT] = 42, [MESA_SHADER_COMPUTE] = 0, }; anv_foreach_stage(s, stages) { assert(s < ARRAY_SIZE(binding_table_opcodes)); assert(binding_table_opcodes[s] > 0); if (cmd_buffer->state.samplers[s].alloc_size > 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) { ssp._3DCommandSubOpcode = sampler_state_opcodes[s]; ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset; } } /* Always emit binding table pointers if we're asked to, since on SKL * this is what flushes push constants. */ anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) { btp._3DCommandSubOpcode = binding_table_opcodes[s]; btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset; } } } static struct anv_address get_push_range_address(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, const struct anv_push_range *range) { struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; switch (range->set) { case ANV_DESCRIPTOR_SET_DESCRIPTORS: { /* This is a descriptor set buffer so the set index is * actually given by binding->binding. (Yes, that's * confusing.) */ struct anv_descriptor_set *set = gfx_state->base.descriptors[range->index]; return anv_descriptor_set_address(cmd_buffer, set); } case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: { if (gfx_state->base.push_constants_state.alloc_size == 0) { gfx_state->base.push_constants_state = anv_cmd_buffer_gfx_push_constants(cmd_buffer); } return (struct anv_address) { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = gfx_state->base.push_constants_state.offset, }; } default: { assert(range->set < MAX_SETS); struct anv_descriptor_set *set = gfx_state->base.descriptors[range->set]; const struct anv_descriptor *desc = &set->descriptors[range->index]; if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { if (desc->buffer_view) return desc->buffer_view->address; } else { assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); if (desc->buffer) { const struct anv_push_constants *push = &gfx_state->base.push_constants; uint32_t dynamic_offset = push->dynamic_offsets[range->dynamic_offset_index]; return anv_address_add(desc->buffer->address, desc->offset + dynamic_offset); } } /* For NULL UBOs, we just return an address in the workaround BO. We do * writes to it for workarounds but always at the bottom. The higher * bytes should be all zeros. */ assert(range->length * 32 <= 2048); return (struct anv_address) { .bo = cmd_buffer->device->workaround_bo, .offset = 1024, }; } } } /** Returns the size in bytes of the bound buffer * * The range is relative to the start of the buffer, not the start of the * range. The returned range may be smaller than * * (range->start + range->length) * 32; */ static uint32_t get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, const struct anv_push_range *range) { assert(stage != MESA_SHADER_COMPUTE); const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; switch (range->set) { case ANV_DESCRIPTOR_SET_DESCRIPTORS: { struct anv_descriptor_set *set = gfx_state->base.descriptors[range->index]; assert(range->start * 32 < set->desc_mem.alloc_size); assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size); return set->desc_mem.alloc_size; } case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: return (range->start + range->length) * 32; default: { assert(range->set < MAX_SETS); struct anv_descriptor_set *set = gfx_state->base.descriptors[range->set]; const struct anv_descriptor *desc = &set->descriptors[range->index]; if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) { if (!desc->buffer_view) return 0; if (range->start * 32 > desc->buffer_view->range) return 0; return desc->buffer_view->range; } else { if (!desc->buffer) return 0; assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); /* Compute the offset within the buffer */ const struct anv_push_constants *push = &gfx_state->base.push_constants; uint32_t dynamic_offset = push->dynamic_offsets[range->dynamic_offset_index]; uint64_t offset = desc->offset + dynamic_offset; /* Clamp to the buffer size */ offset = MIN2(offset, desc->buffer->size); /* Clamp the range to the buffer size */ uint32_t bound_range = MIN2(desc->range, desc->buffer->size - offset); /* Align the range for consistency */ bound_range = align_u32(bound_range, ANV_UBO_ALIGNMENT); return bound_range; } } } } static void cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer, gl_shader_stage stage, struct anv_address *buffers, unsigned buffer_count) { const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; assert(stage < ARRAY_SIZE(push_constant_opcodes)); assert(push_constant_opcodes[stage] > 0); anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) { c._3DCommandSubOpcode = push_constant_opcodes[stage]; if (anv_pipeline_has_stage(pipeline, stage)) { const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; #if GEN_GEN >= 9 /* This field exists since Gen8. However, the Broadwell PRM says: * * "Constant Buffer Object Control State must be always programmed * to zero." * * This restriction does not exist on any newer platforms. * * We only have one MOCS field for the whole packet, not one per * buffer. We could go out of our way here to walk over all of the * buffers and see if any of them are used externally and use the * external MOCS. However, the notion that someone would use the * same bit of memory for both scanout and a UBO is nuts. Let's not * bother and assume it's all internal. */ c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0); #endif #if GEN_GEN >= 8 || GEN_IS_HASWELL /* The Skylake PRM contains the following restriction: * * "The driver must ensure The following case does not occur * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with * buffer 3 read length equal to zero committed followed by a * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to * zero committed." * * To avoid this, we program the buffers in the highest slots. * This way, slot 0 is only used if slot 3 is also used. */ assert(buffer_count <= 4); const unsigned shift = 4 - buffer_count; for (unsigned i = 0; i < buffer_count; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; /* At this point we only have non-empty ranges */ assert(range->length > 0); /* For Ivy Bridge, make sure we only set the first range (actual * push constants) */ assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0); c.ConstantBody.ReadLength[i + shift] = range->length; c.ConstantBody.Buffer[i + shift] = anv_address_add(buffers[i], range->start * 32); } #else /* For Ivy Bridge, push constants are relative to dynamic state * base address and we only ever push actual push constants. */ if (bind_map->push_ranges[0].length > 0) { assert(buffer_count == 1); assert(bind_map->push_ranges[0].set == ANV_DESCRIPTOR_SET_PUSH_CONSTANTS); assert(buffers[0].bo == cmd_buffer->device->dynamic_state_pool.block_pool.bo); c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length; c.ConstantBody.Buffer[0].bo = NULL; c.ConstantBody.Buffer[0].offset = buffers[0].offset; } assert(bind_map->push_ranges[1].length == 0); assert(bind_map->push_ranges[2].length == 0); assert(bind_map->push_ranges[3].length == 0); #endif } } } #if GEN_GEN >= 12 static void cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer, uint32_t shader_mask, struct anv_address *buffers, uint32_t buffer_count) { if (buffer_count == 0) { anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) { c.ShaderUpdateEnable = shader_mask; c.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0); } return; } const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; static const uint32_t push_constant_opcodes[] = { [MESA_SHADER_VERTEX] = 21, [MESA_SHADER_TESS_CTRL] = 25, /* HS */ [MESA_SHADER_TESS_EVAL] = 26, /* DS */ [MESA_SHADER_GEOMETRY] = 22, [MESA_SHADER_FRAGMENT] = 23, [MESA_SHADER_COMPUTE] = 0, }; gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask); assert(stage < ARRAY_SIZE(push_constant_opcodes)); assert(push_constant_opcodes[stage] > 0); const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; uint32_t *dw; const uint32_t buffer_mask = (1 << buffer_count) - 1; const uint32_t num_dwords = 2 + 2 * buffer_count; dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_CONSTANT_ALL), .ShaderUpdateEnable = shader_mask, .PointerBufferMask = buffer_mask, .MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0)); for (int i = 0; i < buffer_count; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; GENX(3DSTATE_CONSTANT_ALL_DATA_pack)( &cmd_buffer->batch, dw + 2 + i * 2, &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) { .PointerToConstantBuffer = anv_address_add(buffers[i], range->start * 32), .ConstantBufferReadLength = range->length, }); } } #endif static void cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer, VkShaderStageFlags dirty_stages) { VkShaderStageFlags flushed = 0; struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx; const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline; #if GEN_GEN >= 12 uint32_t nobuffer_stages = 0; #endif /* Compute robust pushed register access mask for each stage. */ if (cmd_buffer->device->robust_buffer_access) { anv_foreach_stage(stage, dirty_stages) { if (!anv_pipeline_has_stage(pipeline, stage)) continue; const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; struct anv_push_constants *push = &gfx_state->base.push_constants; push->push_reg_mask[stage] = 0; /* Start of the current range in the shader, relative to the start of * push constants in the shader. */ unsigned range_start_reg = 0; for (unsigned i = 0; i < 4; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; if (range->length == 0) continue; unsigned bound_size = get_push_range_bound_size(cmd_buffer, stage, range); if (bound_size >= range->start * 32) { unsigned bound_regs = MIN2(DIV_ROUND_UP(bound_size, 32) - range->start, range->length); assert(range_start_reg + bound_regs <= 64); push->push_reg_mask[stage] |= BITFIELD64_RANGE(range_start_reg, bound_regs); } cmd_buffer->state.push_constants_dirty |= mesa_to_vk_shader_stage(stage); range_start_reg += range->length; } } } /* Resets the push constant state so that we allocate a new one if * needed. */ gfx_state->base.push_constants_state = ANV_STATE_NULL; anv_foreach_stage(stage, dirty_stages) { unsigned buffer_count = 0; flushed |= mesa_to_vk_shader_stage(stage); UNUSED uint32_t max_push_range = 0; struct anv_address buffers[4] = {}; if (anv_pipeline_has_stage(pipeline, stage)) { const struct anv_pipeline_bind_map *bind_map = &pipeline->shaders[stage]->bind_map; /* We have to gather buffer addresses as a second step because the * loop above puts data into the push constant area and the call to * get_push_range_address is what locks our push constants and copies * them into the actual GPU buffer. If we did the two loops at the * same time, we'd risk only having some of the sizes in the push * constant buffer when we did the copy. */ for (unsigned i = 0; i < 4; i++) { const struct anv_push_range *range = &bind_map->push_ranges[i]; if (range->length == 0) break; buffers[i] = get_push_range_address(cmd_buffer, stage, range); max_push_range = MAX2(max_push_range, range->length); buffer_count++; } /* We have at most 4 buffers but they should be tightly packed */ for (unsigned i = buffer_count; i < 4; i++) assert(bind_map->push_ranges[i].length == 0); } #if GEN_GEN >= 12 /* If this stage doesn't have any push constants, emit it later in a * single CONSTANT_ALL packet. */ if (buffer_count == 0) { nobuffer_stages |= 1 << stage; continue; } /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL * contains only 5 bits, so we can only use it for buffers smaller than * 32. */ if (max_push_range < 32) { cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage, buffers, buffer_count); continue; } #endif cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count); } #if GEN_GEN >= 12 if (nobuffer_stages) cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, NULL, 0); #endif cmd_buffer->state.push_constants_dirty &= ~flushed; } static void cmd_buffer_emit_clip(struct anv_cmd_buffer *cmd_buffer) { const uint32_t clip_states = #if GEN_GEN <= 7 ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE | ANV_CMD_DIRTY_DYNAMIC_CULL_MODE | #endif ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | ANV_CMD_DIRTY_PIPELINE; if ((cmd_buffer->state.gfx.dirty & clip_states) == 0) return; #if GEN_GEN <= 7 const struct anv_dynamic_state *d = &cmd_buffer->state.gfx.dynamic; #endif struct GENX(3DSTATE_CLIP) clip = { GENX(3DSTATE_CLIP_header), #if GEN_GEN <= 7 .FrontWinding = genX(vk_to_gen_front_face)[d->front_face], .CullMode = genX(vk_to_gen_cullmode)[d->cull_mode], #endif }; uint32_t dwords[GENX(3DSTATE_CLIP_length)]; struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vue_prog_data *last = anv_pipeline_get_last_vue_prog_data(pipeline); if (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT) { clip.MaximumVPIndex = cmd_buffer->state.gfx.dynamic.viewport.count > 0 ? cmd_buffer->state.gfx.dynamic.viewport.count - 1 : 0; } GENX(3DSTATE_CLIP_pack)(NULL, dwords, &clip); anv_batch_emit_merge(&cmd_buffer->batch, dwords, pipeline->gen7.clip); } void genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; uint32_t *p; assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config); genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1); genX(flush_pipeline_select_3d)(cmd_buffer); /* Apply any pending pipeline flushes we may have. We want to apply them * now because, if any of those flushes are for things like push constants, * the GPU will read the state at weird times. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used; if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) vb_emit |= pipeline->vb_used; if (vb_emit) { const uint32_t num_buffers = __builtin_popcount(vb_emit); const uint32_t num_dwords = 1 + num_buffers * 4; p = anv_batch_emitn(&cmd_buffer->batch, num_dwords, GENX(3DSTATE_VERTEX_BUFFERS)); uint32_t vb, i = 0; for_each_bit(vb, vb_emit) { struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer; uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset; /* If dynamic, use stride/size from vertex binding, otherwise use * stride/size that was setup in the pipeline object. */ bool dynamic_stride = cmd_buffer->state.gfx.dynamic.dyn_vbo_stride; bool dynamic_size = cmd_buffer->state.gfx.dynamic.dyn_vbo_size; struct GENX(VERTEX_BUFFER_STATE) state; if (buffer) { uint32_t stride = dynamic_stride ? cmd_buffer->state.vertex_bindings[vb].stride : pipeline->vb[vb].stride; /* From the Vulkan spec (vkCmdBindVertexBuffers2EXT): * * "If pname:pSizes is not NULL then pname:pSizes[i] specifies * the bound size of the vertex buffer starting from the corresponding * elements of pname:pBuffers[i] plus pname:pOffsets[i]." */ UNUSED uint32_t size = dynamic_size ? cmd_buffer->state.vertex_bindings[vb].size : buffer->size - offset; state = (struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = vb, .MOCS = anv_mocs(cmd_buffer->device, buffer->address.bo, ISL_SURF_USAGE_VERTEX_BUFFER_BIT), #if GEN_GEN <= 7 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA, .InstanceDataStepRate = pipeline->vb[vb].instance_divisor, #endif .AddressModifyEnable = true, .BufferPitch = stride, .BufferStartingAddress = anv_address_add(buffer->address, offset), .NullVertexBuffer = offset >= buffer->size, #if GEN_GEN >= 8 .BufferSize = size, #else /* XXX: to handle dynamic offset for older gens we might want * to modify Endaddress, but there are issues when doing so: * * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7439 */ .EndAddress = anv_address_add(buffer->address, buffer->size - 1), #endif }; } else { state = (struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = vb, .NullVertexBuffer = true, }; } #if GEN_GEN >= 8 && GEN_GEN <= 9 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb, state.BufferStartingAddress, state.BufferSize); #endif GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state); i++; } } cmd_buffer->state.gfx.vb_dirty &= ~vb_emit; if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) || (GEN_GEN == 7 && (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE))) { /* We don't need any per-buffer dirty tracking because you're not * allowed to bind different XFB buffers while XFB is enabled. */ for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) { struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx]; anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) { #if GEN_GEN < 12 sob.SOBufferIndex = idx; #else sob._3DCommandOpcode = 0; sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx; #endif if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) { sob.MOCS = isl_mocs(&cmd_buffer->device->isl_dev, 0); sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address, xfb->offset); #if GEN_GEN >= 8 sob.SOBufferEnable = true; sob.StreamOffsetWriteEnable = false; /* Size is in DWords - 1 */ sob.SurfaceSize = DIV_ROUND_UP(xfb->size, 4) - 1; #else /* We don't have SOBufferEnable in 3DSTATE_SO_BUFFER on Gen7 so * we trust in SurfaceEndAddress = SurfaceBaseAddress = 0 (the * default for an empty SO_BUFFER packet) to disable them. */ sob.SurfacePitch = pipeline->gen7.xfb_bo_pitch[idx]; sob.SurfaceEndAddress = anv_address_add(xfb->buffer->address, xfb->offset + xfb->size); #endif } } } /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */ if (GEN_GEN >= 10) cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; } if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) { anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch); /* If the pipeline changed, we may need to re-allocate push constant * space in the URB. */ cmd_buffer_alloc_push_constants(cmd_buffer); } if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) cmd_buffer->state.gfx.primitive_topology = pipeline->topology; #if GEN_GEN <= 7 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT || cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) { /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1: * * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth * stall needs to be sent just prior to any 3DSTATE_VS, * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS, * 3DSTATE_BINDING_TABLE_POINTER_VS, * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one * PIPE_CONTROL needs to be sent before any combination of VS * associated 3DSTATE." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.DepthStallEnable = true; pc.PostSyncOperation = WriteImmediateData; pc.Address = cmd_buffer->device->workaround_address; } } #endif /* Render targets live in the same binding table as fragment descriptors */ if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS) cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT; /* We emit the binding tables and sampler tables first, then emit push * constants and then finally emit binding table and sampler table * pointers. It has to happen in this order, since emitting the binding * tables may change the push constants (in case of storage images). After * emitting push constants, on SKL+ we have to emit the corresponding * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect. */ uint32_t dirty = 0; if (cmd_buffer->state.descriptors_dirty) { dirty = flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.gfx.base, pipeline->shaders, ARRAY_SIZE(pipeline->shaders)); } if (dirty || cmd_buffer->state.push_constants_dirty) { /* Because we're pushing UBOs, we have to push whenever either * descriptors or push constants is dirty. */ dirty |= cmd_buffer->state.push_constants_dirty; dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS; cmd_buffer_flush_push_constants(cmd_buffer, dirty); } if (dirty) cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty); cmd_buffer_emit_clip(cmd_buffer); if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) gen8_cmd_buffer_emit_viewport(cmd_buffer); if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | ANV_CMD_DIRTY_PIPELINE)) { gen8_cmd_buffer_emit_depth_viewport(cmd_buffer, pipeline->depth_clamp_enable); } if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR | ANV_CMD_DIRTY_RENDER_TARGETS)) gen7_cmd_buffer_emit_scissor(cmd_buffer); genX(cmd_buffer_flush_dynamic_state)(cmd_buffer); } static void emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, uint32_t size, uint32_t index) { uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(3DSTATE_VERTEX_BUFFERS)); GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1, &(struct GENX(VERTEX_BUFFER_STATE)) { .VertexBufferIndex = index, .AddressModifyEnable = true, .BufferPitch = 0, .MOCS = addr.bo ? anv_mocs(cmd_buffer->device, addr.bo, ISL_SURF_USAGE_VERTEX_BUFFER_BIT) : 0, .NullVertexBuffer = size == 0, #if (GEN_GEN >= 8) .BufferStartingAddress = addr, .BufferSize = size #else .BufferStartingAddress = addr, .EndAddress = anv_address_add(addr, size), #endif }); genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, index, addr, size); } static void emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr) { emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX); } static void emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer, uint32_t base_vertex, uint32_t base_instance) { if (base_vertex == 0 && base_instance == 0) { emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS); } else { struct anv_state id_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4); ((uint32_t *)id_state.map)[0] = base_vertex; ((uint32_t *)id_state.map)[1] = base_instance; struct anv_address addr = { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = id_state.offset, }; emit_base_vertex_instance_bo(cmd_buffer, addr); } } static void emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4); ((uint32_t *)state.map)[0] = draw_index; struct anv_address addr = { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX); } static void update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer, uint32_t access_type) { struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); uint64_t vb_used = pipeline->vb_used; if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) vb_used |= 1ull << ANV_SVGS_VB_INDEX; if (vs_prog_data->uses_drawid) vb_used |= 1ull << ANV_DRAWID_VB_INDEX; genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer, access_type == RANDOM, vb_used); } void genX(CmdDraw)( VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. We need to multiply instanceCount by the view count. */ if (!pipeline->use_primitive_replication) instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = vertexCount; prim.StartVertexLocation = firstVertex; prim.InstanceCount = instanceCount; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = 0; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL); } void genX(CmdDrawIndexed)( VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. We need to multiply instanceCount by the view count. */ if (!pipeline->use_primitive_replication) instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; prim.VertexCountPerInstance = indexCount; prim.StartVertexLocation = firstIndex; prim.InstanceCount = instanceCount; prim.StartInstanceLocation = firstInstance; prim.BaseVertexLocation = vertexOffset; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM); } /* Auto-Draw / Indirect Registers */ #define GEN7_3DPRIM_END_OFFSET 0x2420 #define GEN7_3DPRIM_START_VERTEX 0x2430 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438 #define GEN7_3DPRIM_START_INSTANCE 0x243C #define GEN7_3DPRIM_BASE_VERTEX 0x2440 void genX(CmdDrawIndirectByteCountEXT)( VkCommandBuffer commandBuffer, uint32_t instanceCount, uint32_t firstInstance, VkBuffer counterBuffer, VkDeviceSize counterBufferOffset, uint32_t counterOffset, uint32_t vertexStride) { #if GEN_IS_HASWELL || GEN_GEN >= 8 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); /* firstVertex is always zero for this draw function */ const uint32_t firstVertex = 0; if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, 0); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. We need to multiply instanceCount by the view count. */ if (!pipeline->use_primitive_replication) instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); struct gen_mi_value count = gen_mi_mem32(anv_address_add(counter_buffer->address, counterBufferOffset)); if (counterOffset) count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset)); count = gen_mi_udiv32_imm(&b, count, vertexStride); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX), gen_mi_imm(firstVertex)); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), gen_mi_imm(instanceCount)); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), gen_mi_imm(firstInstance)); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL); #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */ } static void load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer, struct anv_address addr, bool indexed) { struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), gen_mi_mem32(anv_address_add(addr, 0))); struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4)); unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass); if (view_count > 1) { #if GEN_IS_HASWELL || GEN_GEN >= 8 instance_count = gen_mi_imul_imm(&b, instance_count, view_count); #else anv_finishme("Multiview + indirect draw requires MI_MATH; " "MI_MATH is not supported on Ivy Bridge"); #endif } gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX), gen_mi_mem32(anv_address_add(addr, 8))); if (indexed) { gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_mem32(anv_address_add(addr, 12))); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), gen_mi_mem32(anv_address_add(addr, 16))); } else { gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE), gen_mi_mem32(anv_address_add(addr, 12))); gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0)); } } void genX(CmdDrawIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, false); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL); offset += stride; } } void genX(CmdDrawIndexedIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); for (uint32_t i = 0; i < drawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); /* TODO: We need to stomp base vertex to 0 somehow */ if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM); offset += stride; } } static struct gen_mi_value prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, struct gen_mi_builder *b, struct anv_address count_address, const bool conditional_render_enabled) { struct gen_mi_value ret = gen_mi_imm(0); if (conditional_render_enabled) { #if GEN_GEN >= 8 || GEN_IS_HASWELL ret = gen_mi_new_gpr(b); gen_mi_store(b, gen_mi_value_ref(b, ret), gen_mi_mem32(count_address)); #endif } else { /* Upload the current draw count from the draw parameters buffer to * MI_PREDICATE_SRC0. */ gen_mi_store(b, gen_mi_reg64(MI_PREDICATE_SRC0), gen_mi_mem32(count_address)); gen_mi_store(b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0)); } return ret; } static void emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer, struct gen_mi_builder *b, uint32_t draw_index) { /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */ gen_mi_store(b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index)); if (draw_index == 0) { anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } else { /* While draw_index < draw_count the predicate's result will be * (draw_index == draw_count) ^ TRUE = TRUE * When draw_index == draw_count the result is * (TRUE) ^ TRUE = FALSE * After this all results will be: * (FALSE) ^ FALSE = FALSE */ anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_XOR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } } #if GEN_GEN >= 8 || GEN_IS_HASWELL static void emit_draw_count_predicate_with_conditional_render( struct anv_cmd_buffer *cmd_buffer, struct gen_mi_builder *b, uint32_t draw_index, struct gen_mi_value max) { struct gen_mi_value pred = gen_mi_ult(b, gen_mi_imm(draw_index), max); pred = gen_mi_iand(b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG)); #if GEN_GEN >= 8 gen_mi_store(b, gen_mi_reg64(MI_PREDICATE_RESULT), pred); #else /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser * so we emit MI_PREDICATE to set it. */ gen_mi_store(b, gen_mi_reg64(MI_PREDICATE_SRC0), pred); gen_mi_store(b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } #endif } #endif void genX(CmdDrawIndirectCount)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); struct anv_address count_address = anv_address_add(count_buffer->address, countBufferOffset); struct gen_mi_value max = prepare_for_draw_count_predicate(cmd_buffer, &b, count_address, cmd_state->conditional_render_enabled); for (uint32_t i = 0; i < maxDrawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); #if GEN_GEN >= 8 || GEN_IS_HASWELL if (cmd_state->conditional_render_enabled) { emit_draw_count_predicate_with_conditional_render( cmd_buffer, &b, i, gen_mi_value_ref(&b, max)); } else { emit_draw_count_predicate(cmd_buffer, &b, i); } #else emit_draw_count_predicate(cmd_buffer, &b, i); #endif if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, false); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = true; prim.VertexAccessType = SEQUENTIAL; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL); offset += stride; } gen_mi_value_unref(&b, max); } void genX(CmdDrawIndexedIndirectCount)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, VkBuffer _countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline; const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline); if (anv_batch_has_error(&cmd_buffer->batch)) return; genX(cmd_buffer_flush_state)(cmd_buffer); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); struct anv_address count_address = anv_address_add(count_buffer->address, countBufferOffset); struct gen_mi_value max = prepare_for_draw_count_predicate(cmd_buffer, &b, count_address, cmd_state->conditional_render_enabled); for (uint32_t i = 0; i < maxDrawCount; i++) { struct anv_address draw = anv_address_add(buffer->address, offset); #if GEN_GEN >= 8 || GEN_IS_HASWELL if (cmd_state->conditional_render_enabled) { emit_draw_count_predicate_with_conditional_render( cmd_buffer, &b, i, gen_mi_value_ref(&b, max)); } else { emit_draw_count_predicate(cmd_buffer, &b, i); } #else emit_draw_count_predicate(cmd_buffer, &b, i); #endif /* TODO: We need to stomp base vertex to 0 somehow */ if (vs_prog_data->uses_firstvertex || vs_prog_data->uses_baseinstance) emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12)); if (vs_prog_data->uses_drawid) emit_draw_index(cmd_buffer, i); /* Emitting draw index or vertex index BOs may result in needing * additional VF cache flushes. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); load_indirect_parameters(cmd_buffer, draw, true); anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) { prim.IndirectParameterEnable = true; prim.PredicateEnable = true; prim.VertexAccessType = RANDOM; prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology; } update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM); offset += stride; } gen_mi_value_unref(&b, max); } void genX(CmdBeginTransformFeedbackEXT)( VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount, const VkBuffer* pCounterBuffers, const VkDeviceSize* pCounterBufferOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); assert(firstCounterBuffer < MAX_XFB_BUFFERS); assert(counterBufferCount <= MAX_XFB_BUFFERS); assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: * * "Ssoftware must ensure that no HW stream output operations can be in * process or otherwise pending at the point that the MI_LOAD/STORE * commands are processed. This will likely require a pipeline flush." */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) { /* If we have a counter buffer, this is a resume so we need to load the * value into the streamout offset register. Otherwise, this is a begin * and we need to reset it to zero. */ if (pCounterBuffers && idx >= firstCounterBuffer && idx - firstCounterBuffer < counterBufferCount && pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) { uint32_t cb_idx = idx - firstCounterBuffer; ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); uint64_t offset = pCounterBufferOffsets ? pCounterBufferOffsets[cb_idx] : 0; anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) { lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; lrm.MemoryAddress = anv_address_add(counter_buffer->address, offset); } } else { anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) { lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4; lri.DataDWord = 0; } } } cmd_buffer->state.xfb_enabled = true; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; } void genX(CmdEndTransformFeedbackEXT)( VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer, uint32_t counterBufferCount, const VkBuffer* pCounterBuffers, const VkDeviceSize* pCounterBufferOffsets) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); assert(firstCounterBuffer < MAX_XFB_BUFFERS); assert(counterBufferCount <= MAX_XFB_BUFFERS); assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS); /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET: * * "Ssoftware must ensure that no HW stream output operations can be in * process or otherwise pending at the point that the MI_LOAD/STORE * commands are processed. This will likely require a pipeline flush." */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) { unsigned idx = firstCounterBuffer + cb_idx; /* If we have a counter buffer, this is a resume so we need to load the * value into the streamout offset register. Otherwise, this is a begin * and we need to reset it to zero. */ if (pCounterBuffers && cb_idx < counterBufferCount && pCounterBuffers[cb_idx] != VK_NULL_HANDLE) { ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]); uint64_t offset = pCounterBufferOffsets ? pCounterBufferOffsets[cb_idx] : 0; anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) { srm.MemoryAddress = anv_address_add(counter_buffer->address, offset); srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4; } } } cmd_buffer->state.xfb_enabled = false; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE; } void genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer) { struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline; assert(pipeline->cs); genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config); genX(flush_pipeline_select_gpgpu)(cmd_buffer); /* Apply any pending pipeline flushes we may have. We want to apply them * now because, if any of those flushes are for things like push constants, * the GPU will read the state at weird times. */ genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); if (cmd_buffer->state.compute.pipeline_dirty) { /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE: * * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless * the only bits that are changed are scoreboard related: Scoreboard * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For * these scoreboard related states, a MEDIA_STATE_FLUSH is * sufficient." */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch); /* The workgroup size of the pipeline affects our push constant layout * so flag push constants as dirty if we change the pipeline. */ cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) || cmd_buffer->state.compute.pipeline_dirty) { flush_descriptor_sets(cmd_buffer, &cmd_buffer->state.compute.base, &pipeline->cs, 1); uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)]; struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = { .BindingTablePointer = cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset, .SamplerStatePointer = cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset, }; GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc); struct anv_state state = anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw, pipeline->interface_descriptor_data, GENX(INTERFACE_DESCRIPTOR_DATA_length), 64); uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) { mid.InterfaceDescriptorTotalLength = size; mid.InterfaceDescriptorDataStartAddress = state.offset; } } if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) { struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer); if (push_state.alloc_size) { anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) { curbe.CURBETotalDataLength = push_state.alloc_size; curbe.CURBEDataStartAddress = push_state.offset; } } cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT; } cmd_buffer->state.compute.pipeline_dirty = false; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } #if GEN_GEN == 7 static VkResult verify_cmd_parser(const struct anv_device *device, int required_version, const char *function) { if (device->physical->cmd_parser_version < required_version) { return vk_errorf(device, device->physical, VK_ERROR_FEATURE_NOT_PRESENT, "cmd parser version %d is required for %s", required_version, function); } else { return VK_SUCCESS; } } #endif static void anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ) { if (anv_batch_has_error(&cmd_buffer->batch)) return; struct anv_push_constants *push = &cmd_buffer->state.compute.base.push_constants; if (push->cs.base_work_group_id[0] != baseGroupX || push->cs.base_work_group_id[1] != baseGroupY || push->cs.base_work_group_id[2] != baseGroupZ) { push->cs.base_work_group_id[0] = baseGroupX; push->cs.base_work_group_id[1] = baseGroupY; push->cs.base_work_group_id[2] = baseGroupZ; cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } } void genX(CmdDispatch)( VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) { genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z); } static inline void emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer, const struct anv_compute_pipeline *pipeline, bool indirect, const struct brw_cs_prog_data *prog_data, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { bool predicate = (GEN_GEN <= 7 && indirect) || cmd_buffer->state.conditional_render_enabled; const struct anv_cs_parameters cs_params = anv_cs_parameters(pipeline); anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) { ggw.IndirectParameterEnable = indirect; ggw.PredicateEnable = predicate; ggw.SIMDSize = cs_params.simd_size / 16; ggw.ThreadDepthCounterMaximum = 0; ggw.ThreadHeightCounterMaximum = 0; ggw.ThreadWidthCounterMaximum = cs_params.threads - 1; ggw.ThreadGroupIDXDimension = groupCountX; ggw.ThreadGroupIDYDimension = groupCountY; ggw.ThreadGroupIDZDimension = groupCountZ; ggw.RightExecutionMask = pipeline->cs_right_mask; ggw.BottomExecutionMask = 0xffffffff; } anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf); } void genX(CmdDispatchBase)( VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX, baseGroupY, baseGroupZ); if (anv_batch_has_error(&cmd_buffer->batch)) return; if (prog_data->uses_num_work_groups) { struct anv_state state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4); uint32_t *sizes = state.map; sizes[0] = groupCountX; sizes[1] = groupCountY; sizes[2] = groupCountZ; cmd_buffer->state.compute.num_workgroups = (struct anv_address) { .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo, .offset = state.offset, }; /* The num_workgroups buffer goes in the binding table */ cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } genX(cmd_buffer_flush_compute_state)(cmd_buffer); if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); emit_gpgpu_walker(cmd_buffer, pipeline, false, prog_data, groupCountX, groupCountY, groupCountZ); } #define GPGPU_DISPATCHDIMX 0x2500 #define GPGPU_DISPATCHDIMY 0x2504 #define GPGPU_DISPATCHDIMZ 0x2508 void genX(CmdDispatchIndirect)( VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, _buffer); struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline; const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline); struct anv_address addr = anv_address_add(buffer->address, offset); UNUSED struct anv_batch *batch = &cmd_buffer->batch; anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0); #if GEN_GEN == 7 /* Linux 4.4 added command parser version 5 which allows the GPGPU * indirect dispatch registers to be written. */ if (verify_cmd_parser(cmd_buffer->device, 5, "vkCmdDispatchIndirect") != VK_SUCCESS) return; #endif if (prog_data->uses_num_work_groups) { cmd_buffer->state.compute.num_workgroups = addr; /* The num_workgroups buffer goes in the binding table */ cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT; } genX(cmd_buffer_flush_compute_state)(cmd_buffer); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0)); struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4)); struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8)); gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x); gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y); gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z); #if GEN_GEN <= 7 /* predicate = (compute_dispatch_indirect_x_size == 0); */ gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate |= (compute_dispatch_indirect_y_size == 0); */ gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate |= (compute_dispatch_indirect_z_size == 0); */ gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOAD; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_SRCS_EQUAL; } /* predicate = !predicate; */ anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_OR; mip.CompareOperation = COMPARE_FALSE; } #if GEN_IS_HASWELL if (cmd_buffer->state.conditional_render_enabled) { /* predicate &= !(conditional_rendering_predicate == 0); */ gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), gen_mi_reg32(ANV_PREDICATE_RESULT_REG)); anv_batch_emit(batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_AND; mip.CompareOperation = COMPARE_SRCS_EQUAL; } } #endif #else /* GEN_GEN > 7 */ if (cmd_buffer->state.conditional_render_enabled) genX(cmd_emit_conditional_render_predicate)(cmd_buffer); #endif emit_gpgpu_walker(cmd_buffer, pipeline, true, prog_data, 0, 0, 0); } static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer, uint32_t pipeline) { UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info; if (cmd_buffer->state.current_pipeline == pipeline) return; #if GEN_GEN >= 8 && GEN_GEN < 10 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT: * * Software must clear the COLOR_CALC_STATE Valid field in * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT * with Pipeline Select set to GPGPU. * * The internal hardware docs recommend the same workaround for Gen9 * hardware too. */ if (pipeline == GPGPU) anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t); #endif #if GEN_GEN == 9 if (pipeline == _3D) { /* There is a mid-object preemption workaround which requires you to * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However, * even without preemption, we have issues with geometry flickering when * GPGPU and 3D are back-to-back and this seems to fix it. We don't * really know why. */ const uint32_t subslices = MAX2(cmd_buffer->device->physical->subslice_total, 1); anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) { vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1; vfe.NumberofURBEntries = 2; vfe.URBEntryAllocationSize = 2; } /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is * invalid. Set the compute pipeline to dirty to force a re-emit of the * pipeline in case we get back-to-back dispatch calls with the same * pipeline and a PIPELINE_SELECT in between. */ cmd_buffer->state.compute.pipeline_dirty = true; } #endif /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction] * PIPELINE_SELECT [DevBWR+]": * * Project: DEVSNB+ * * Software must ensure all the write caches are flushed through a * stalling PIPE_CONTROL command followed by another PIPE_CONTROL * command to invalidate read only caches prior to programming * MI_PIPELINE_SELECT command to change the Pipeline Select Mode. */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.RenderTargetCacheFlushEnable = true; pc.DepthCacheFlushEnable = true; pc.DCFlushEnable = true; pc.PostSyncOperation = NoWrite; pc.CommandStreamerStallEnable = true; #if GEN_GEN >= 12 pc.TileCacheFlushEnable = true; /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be * set with any PIPE_CONTROL with Depth Flush Enable bit set. */ pc.DepthStallEnable = true; #endif } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.TextureCacheInvalidationEnable = true; pc.ConstantCacheInvalidationEnable = true; pc.StateCacheInvalidationEnable = true; pc.InstructionCacheInvalidateEnable = true; pc.PostSyncOperation = NoWrite; #if GEN_GEN >= 12 pc.TileCacheFlushEnable = true; #endif } anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) { #if GEN_GEN >= 9 ps.MaskBits = GEN_GEN >= 12 ? 0x13 : 3; ps.MediaSamplerDOPClockGateEnable = GEN_GEN >= 12; #endif ps.PipelineSelection = pipeline; } #if GEN_GEN == 9 if (devinfo->is_geminilake) { /* Project: DevGLK * * "This chicken bit works around a hardware issue with barrier logic * encountered when switching between GPGPU and 3D pipelines. To * workaround the issue, this mode bit should be set after a pipeline * is selected." */ uint32_t scec; anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1), .GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU : GLK_BARRIER_MODE_3D_HULL, .GLKBarrierModeMask = 1); emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec); } #endif cmd_buffer->state.current_pipeline = pipeline; } void genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, _3D); } void genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer) { genX(flush_pipeline_select)(cmd_buffer, GPGPU); } void genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer) { if (GEN_GEN >= 8) return; /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER: * * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS, * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit * set), followed by a pipelined depth cache flush (PIPE_CONTROL with * Depth Flush Bit set, followed by another pipelined depth stall * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise * guarantee that the pipeline from WM onwards is already flushed (e.g., * via a preceding MI_FLUSH)." */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthCacheFlushEnable = true; #if GEN_GEN >= 12 pipe.TileCacheFlushEnable = true; #endif } anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) { pipe.DepthStallEnable = true; } } /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS: * * "The VF cache needs to be invalidated before binding and then using * Vertex Buffers that overlap with any previously bound Vertex Buffer * (at a 64B granularity) since the last invalidation. A VF cache * invalidate is performed by setting the "VF Cache Invalidation Enable" * bit in PIPE_CONTROL." * * This is implemented by carefully tracking all vertex and index buffer * bindings and flushing if the cache ever ends up with a range in the cache * that would exceed 4 GiB. This is implemented in three parts: * * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the * tracking code of the new binding. If this new binding would cause * the cache to have a too-large range on the next draw call, a pipeline * stall and VF cache invalidate are added to pending_pipeline_bits. * * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to * empty whenever we emit a VF invalidate. * * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called * after every 3DPRIMITIVE and copies the bound range into the dirty * range for each used buffer. This has to be a separate step because * we don't always re-bind all buffers and so 1. can't know which * buffers are actually bound. */ void genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer, int vb_index, struct anv_address vb_address, uint32_t vb_size) { if (GEN_GEN < 8 || GEN_GEN > 9 || !cmd_buffer->device->physical->use_softpin) return; struct anv_vb_cache_range *bound, *dirty; if (vb_index == -1) { bound = &cmd_buffer->state.gfx.ib_bound_range; dirty = &cmd_buffer->state.gfx.ib_dirty_range; } else { assert(vb_index >= 0); assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges)); assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges)); bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index]; dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index]; } if (vb_size == 0) { bound->start = 0; bound->end = 0; return; } assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED)); bound->start = gen_48b_address(anv_address_physical(vb_address)); bound->end = bound->start + vb_size; assert(bound->end > bound->start); /* No overflow */ /* Align everything to a cache line */ bound->start &= ~(64ull - 1ull); bound->end = align_u64(bound->end, 64); /* Compute the dirty range */ dirty->start = MIN2(dirty->start, bound->start); dirty->end = MAX2(dirty->end, bound->end); /* If our range is larger than 32 bits, we have to flush */ assert(bound->end - bound->start <= (1ull << 32)); if (dirty->end - dirty->start > (1ull << 32)) { cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT; } } void genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer, uint32_t access_type, uint64_t vb_used) { if (GEN_GEN < 8 || GEN_GEN > 9 || !cmd_buffer->device->physical->use_softpin) return; if (access_type == RANDOM) { /* We have an index buffer */ struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range; struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range; if (bound->end > bound->start) { dirty->start = MIN2(dirty->start, bound->start); dirty->end = MAX2(dirty->end, bound->end); } } uint64_t mask = vb_used; while (mask) { int i = u_bit_scan64(&mask); assert(i >= 0); assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges)); assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges)); struct anv_vb_cache_range *bound, *dirty; bound = &cmd_buffer->state.gfx.vb_bound_ranges[i]; dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i]; if (bound->end > bound->start) { dirty->start = MIN2(dirty->start, bound->start); dirty->end = MAX2(dirty->end, bound->end); } } } /** * Update the pixel hashing modes that determine the balancing of PS threads * across subslices and slices. * * \param width Width bound of the rendering area (already scaled down if \p * scale is greater than 1). * \param height Height bound of the rendering area (already scaled down if \p * scale is greater than 1). * \param scale The number of framebuffer samples that could potentially be * affected by an individual channel of the PS thread. This is * typically one for single-sampled rendering, but for operations * like CCS resolves and fast clears a single PS invocation may * update a huge number of pixels, in which case a finer * balancing is desirable in order to maximally utilize the * bandwidth available. UINT_MAX can be used as shorthand for * "finest hashing mode available". */ void genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer, unsigned width, unsigned height, unsigned scale) { #if GEN_GEN == 9 const struct gen_device_info *devinfo = &cmd_buffer->device->info; const unsigned slice_hashing[] = { /* Because all Gen9 platforms with more than one slice require * three-way subslice hashing, a single "normal" 16x16 slice hashing * block is guaranteed to suffer from substantial imbalance, with one * subslice receiving twice as much work as the other two in the * slice. * * The performance impact of that would be particularly severe when * three-way hashing is also in use for slice balancing (which is the * case for all Gen9 GT4 platforms), because one of the slices * receives one every three 16x16 blocks in either direction, which * is roughly the periodicity of the underlying subslice imbalance * pattern ("roughly" because in reality the hardware's * implementation of three-way hashing doesn't do exact modulo 3 * arithmetic, which somewhat decreases the magnitude of this effect * in practice). This leads to a systematic subslice imbalance * within that slice regardless of the size of the primitive. The * 32x32 hashing mode guarantees that the subslice imbalance within a * single slice hashing block is minimal, largely eliminating this * effect. */ _32x32, /* Finest slice hashing mode available. */ NORMAL }; const unsigned subslice_hashing[] = { /* 16x16 would provide a slight cache locality benefit especially * visible in the sampler L1 cache efficiency of low-bandwidth * non-LLC platforms, but it comes at the cost of greater subslice * imbalance for primitives of dimensions approximately intermediate * between 16x4 and 16x16. */ _16x4, /* Finest subslice hashing mode available. */ _8x4 }; /* Dimensions of the smallest hashing block of a given hashing mode. If * the rendering area is smaller than this there can't possibly be any * benefit from switching to this mode, so we optimize out the * transition. */ const unsigned min_size[][2] = { { 16, 4 }, { 8, 4 } }; const unsigned idx = scale > 1; if (cmd_buffer->state.current_hash_scale != scale && (width > min_size[idx][0] || height > min_size[idx][1])) { uint32_t gt_mode; anv_pack_struct(>_mode, GENX(GT_MODE), .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0), .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0), .SubsliceHashing = subslice_hashing[idx], .SubsliceHashingMask = -1); cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode); cmd_buffer->state.current_hash_scale = scale; } #endif } static void cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer) { struct anv_device *device = cmd_buffer->device; const struct anv_image_view *iview = anv_cmd_buffer_get_depth_stencil_view(cmd_buffer); const struct anv_image *image = iview ? iview->image : NULL; /* FIXME: Width and Height are wrong */ genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer); uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch, device->isl_dev.ds.size / 4); if (dw == NULL) return; struct isl_depth_stencil_hiz_emit_info info = { }; if (iview) info.view = &iview->planes[0].isl; if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { uint32_t depth_plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT); const struct anv_surface *surface = &image->planes[depth_plane].surface; info.depth_surf = &surface->isl; info.depth_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.depth_offset / 4, image->planes[depth_plane].address.bo, image->planes[depth_plane].address.offset + surface->offset); info.mocs = anv_mocs(device, image->planes[depth_plane].address.bo, ISL_SURF_USAGE_DEPTH_BIT); const uint32_t ds = cmd_buffer->state.subpass->depth_stencil_attachment->attachment; info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage; if (info.hiz_usage != ISL_AUX_USAGE_NONE) { assert(isl_aux_usage_has_hiz(info.hiz_usage)); info.hiz_surf = &image->planes[depth_plane].aux_surface.isl; info.hiz_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.hiz_offset / 4, image->planes[depth_plane].address.bo, image->planes[depth_plane].address.offset + image->planes[depth_plane].aux_surface.offset); info.depth_clear_value = ANV_HZ_FC_VAL; } } if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) { uint32_t stencil_plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); const struct anv_surface *surface = &image->planes[stencil_plane].surface; info.stencil_surf = &surface->isl; info.stencil_aux_usage = image->planes[stencil_plane].aux_usage; info.stencil_address = anv_batch_emit_reloc(&cmd_buffer->batch, dw + device->isl_dev.ds.stencil_offset / 4, image->planes[stencil_plane].address.bo, image->planes[stencil_plane].address.offset + surface->offset); info.mocs = anv_mocs(device, image->planes[stencil_plane].address.bo, ISL_SURF_USAGE_STENCIL_BIT); } isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info); if (GEN_GEN >= 12) { cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); /* GEN:BUG:1408224581 * * Workaround: Gen12LP Astep only An additional pipe control with * post-sync = store dword operation would be required.( w/a is to * have an additional pipe control after the stencil state whenever * the surface state bits of this state is changing). */ anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { pc.PostSyncOperation = WriteImmediateData; pc.Address = cmd_buffer->device->workaround_address; } } cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage); } /** * This ANDs the view mask of the current subpass with the pending clear * views in the attachment to get the mask of views active in the subpass * that still need to be cleared. */ static inline uint32_t get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state, const struct anv_attachment_state *att_state) { return cmd_state->subpass->view_mask & att_state->pending_clear_views; } static inline bool do_first_layer_clear(const struct anv_cmd_state *cmd_state, const struct anv_attachment_state *att_state) { if (!cmd_state->subpass->view_mask) return true; uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); return pending_clear_mask & 1; } static inline bool current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state, uint32_t att_idx) { const uint32_t last_subpass_idx = cmd_state->pass->attachments[att_idx].last_subpass_idx; const struct anv_subpass *last_subpass = &cmd_state->pass->subpasses[last_subpass_idx]; return last_subpass == cmd_state->subpass; } static void cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, uint32_t subpass_id) { struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_render_pass *pass = cmd_state->pass; struct anv_subpass *subpass = &pass->subpasses[subpass_id]; cmd_state->subpass = subpass; cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS; /* Our implementation of VK_KHR_multiview uses instancing to draw the * different views. If the client asks for instancing, we need to use the * Instance Data Step Rate to ensure that we repeat the client's * per-instance data once for each view. Since this bit is in * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top * of each subpass. */ if (GEN_GEN == 7) cmd_buffer->state.gfx.vb_dirty |= ~0; /* It is possible to start a render pass with an old pipeline. Because the * render pass and subpass index are both baked into the pipeline, this is * highly unlikely. In order to do so, it requires that you have a render * pass with a single subpass and that you use that render pass twice * back-to-back and use the same pipeline at the start of the second render * pass as at the end of the first. In order to avoid unpredictable issues * with this edge case, we just dirty the pipeline at the start of every * subpass. */ cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE; /* Accumulate any subpass flushes that need to happen before the subpass */ cmd_buffer->state.pending_pipe_bits |= cmd_buffer->state.pass->subpass_flushes[subpass_id]; VkRect2D render_area = cmd_buffer->state.render_area; struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; bool is_multiview = subpass->view_mask != 0; for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t a = subpass->attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; assert(a < cmd_state->pass->attachment_count); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = cmd_state->attachments[a].image_view; const struct anv_image *image = iview->image; VkImageLayout target_layout = subpass->attachments[i].layout; VkImageLayout target_stencil_layout = subpass->attachments[i].stencil_layout; uint32_t level = iview->planes[0].isl.base_level; uint32_t width = anv_minify(iview->image->extent.width, level); uint32_t height = anv_minify(iview->image->extent.height, level); bool full_surface_draw = render_area.offset.x == 0 && render_area.offset.y == 0 && render_area.extent.width == width && render_area.extent.height == height; uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(iview->image->extent.depth, level); } else { base_layer = iview->planes[0].isl.base_array_layer; layer_count = fb->layers; } if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { bool will_full_fast_clear = (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) && att_state->fast_clear && full_surface_draw; assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, level, 1, base_layer, layer_count, att_state->current_layout, target_layout, will_full_fast_clear); att_state->aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, target_layout); } if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { bool will_full_fast_clear = (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && att_state->fast_clear && full_surface_draw; transition_depth_buffer(cmd_buffer, image, base_layer, layer_count, att_state->current_layout, target_layout, will_full_fast_clear); att_state->aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, target_layout); } if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { bool will_full_fast_clear = (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && att_state->fast_clear && full_surface_draw; transition_stencil_buffer(cmd_buffer, image, level, 1, base_layer, layer_count, att_state->current_stencil_layout, target_stencil_layout, will_full_fast_clear); } att_state->current_layout = target_layout; att_state->current_stencil_layout = target_stencil_layout; if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) { assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT); /* Multi-planar images are not supported as attachments */ assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); assert(image->n_planes == 1); uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer; uint32_t clear_layer_count = fb->layers; if (att_state->fast_clear && do_first_layer_clear(cmd_state, att_state)) { /* We only support fast-clears on the first layer */ assert(level == 0 && base_layer == 0); union isl_color_value clear_color = {}; anv_clear_color_from_att_state(&clear_color, att_state, iview); if (iview->image->samples == 1) { anv_image_ccs_op(cmd_buffer, image, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, &clear_color, false); } else { anv_image_mcs_op(cmd_buffer, image, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, ISL_AUX_OP_FAST_CLEAR, &clear_color, false); } base_clear_layer++; clear_layer_count--; if (is_multiview) att_state->pending_clear_views &= ~1; if (isl_color_value_is_zero(clear_color, iview->planes[0].isl.format)) { /* This image has the auxiliary buffer enabled. We can mark the * subresource as not needing a resolve because the clear color * will match what's in every RENDER_SURFACE_STATE object when * it's being used for sampling. */ set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_DEFAULT_VALUE); } else { set_image_fast_clear_state(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, ANV_FAST_CLEAR_ANY); } } /* From the VkFramebufferCreateInfo spec: * * "If the render pass uses multiview, then layers must be one and each * attachment requires a number of layers that is greater than the * maximum bit index set in the view mask in the subpasses in which it * is used." * * So if multiview is active we ignore the number of layers in the * framebuffer and instead we honor the view mask from the subpass. */ if (is_multiview) { assert(image->n_planes == 1); uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); uint32_t layer_idx; for_each_bit(layer_idx, pending_clear_mask) { uint32_t layer = iview->planes[0].isl.base_array_layer + layer_idx; anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, level, layer, 1, render_area, vk_to_isl_color(att_state->clear_value.color)); } att_state->pending_clear_views &= ~pending_clear_mask; } else if (clear_layer_count > 0) { assert(image->n_planes == 1); anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.format, iview->planes[0].isl.swizzle, level, base_clear_layer, clear_layer_count, render_area, vk_to_isl_color(att_state->clear_value.color)); } } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { if (att_state->fast_clear && (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) { /* We currently only support HiZ for single-LOD images */ assert(isl_aux_usage_has_hiz(iview->image->planes[0].aux_usage)); assert(iview->planes[0].isl.base_level == 0); assert(iview->planes[0].isl.levels == 1); } if (is_multiview) { uint32_t pending_clear_mask = get_multiview_subpass_clear_mask(cmd_state, att_state); uint32_t layer_idx; for_each_bit(layer_idx, pending_clear_mask) { uint32_t layer = iview->planes[0].isl.base_array_layer + layer_idx; if (att_state->fast_clear) { anv_image_hiz_clear(cmd_buffer, image, att_state->pending_clear_aspects, level, layer, 1, render_area, att_state->clear_value.depthStencil.stencil); } else { anv_image_clear_depth_stencil(cmd_buffer, image, att_state->pending_clear_aspects, att_state->aux_usage, level, layer, 1, render_area, att_state->clear_value.depthStencil.depth, att_state->clear_value.depthStencil.stencil); } } att_state->pending_clear_views &= ~pending_clear_mask; } else { if (att_state->fast_clear) { anv_image_hiz_clear(cmd_buffer, image, att_state->pending_clear_aspects, level, base_layer, layer_count, render_area, att_state->clear_value.depthStencil.stencil); } else { anv_image_clear_depth_stencil(cmd_buffer, image, att_state->pending_clear_aspects, att_state->aux_usage, level, base_layer, layer_count, render_area, att_state->clear_value.depthStencil.depth, att_state->clear_value.depthStencil.stencil); } } } else { assert(att_state->pending_clear_aspects == 0); } /* If multiview is enabled, then we are only done clearing when we no * longer have pending layers to clear, or when we have processed the * last subpass that uses this attachment. */ if (!is_multiview || att_state->pending_clear_views == 0 || current_subpass_is_last_for_attachment(cmd_state, a)) { att_state->pending_clear_aspects = 0; } att_state->pending_load_aspects = 0; } /* We've transitioned all our images possibly fast clearing them. Now we * can fill out the surface states that we will use as render targets * during actual subpass rendering. */ VkResult result = genX(cmd_buffer_alloc_att_surf_states)(cmd_buffer, pass, subpass); if (result != VK_SUCCESS) return; isl_null_fill_state(&cmd_buffer->device->isl_dev, cmd_state->null_surface_state.map, isl_extent3d(fb->width, fb->height, fb->layers)); for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t att = subpass->attachments[i].attachment; if (att == VK_ATTACHMENT_UNUSED) continue; assert(att < cmd_state->pass->attachment_count); struct anv_render_pass_attachment *pass_att = &pass->attachments[att]; struct anv_attachment_state *att_state = &cmd_state->attachments[att]; struct anv_image_view *iview = att_state->image_view; if (!vk_format_is_color(pass_att->format)) continue; const VkImageUsageFlagBits att_usage = subpass->attachments[i].usage; assert(util_bitcount(att_usage) == 1); struct anv_surface_state *surface_state; isl_surf_usage_flags_t isl_surf_usage; enum isl_aux_usage isl_aux_usage; if (att_usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { surface_state = &att_state->color; isl_surf_usage = ISL_SURF_USAGE_RENDER_TARGET_BIT; isl_aux_usage = att_state->aux_usage; } else if (att_usage == VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) { surface_state = &att_state->input; isl_surf_usage = ISL_SURF_USAGE_TEXTURE_BIT; isl_aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT, att_state->current_layout); } else { continue; } /* We had better have a surface state when we get here */ assert(surface_state->state.map); union isl_color_value clear_color = { .u32 = { 0, } }; if (pass_att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR && att_state->fast_clear) anv_clear_color_from_att_state(&clear_color, att_state, iview); anv_image_fill_surface_state(cmd_buffer->device, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, &iview->planes[0].isl, isl_surf_usage, isl_aux_usage, &clear_color, 0, surface_state, NULL); add_surface_state_relocs(cmd_buffer, *surface_state); if (GEN_GEN < 10 && pass_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD && iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE && iview->planes[0].isl.base_level == 0 && iview->planes[0].isl.base_array_layer == 0) { genX(copy_fast_clear_dwords)(cmd_buffer, surface_state->state, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, false /* copy to ss */); } } #if GEN_GEN >= 11 /* The PIPE_CONTROL command description says: * * "Whenever a Binding Table Index (BTI) used by a Render Taget Message * points to a different RENDER_SURFACE_STATE, SW must issue a Render * Target Cache Flush by enabling this bit. When render target flush * is set due to new association of BTI, PS Scoreboard Stall bit must * be set in this packet." */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT; #endif #if GEN_GEN == 12 /* GEN:BUG:14010455700 * * ISL will change some CHICKEN registers depending on the depth surface * format, along with emitting the depth and stencil packets. In that case, * we want to do a depth flush and stall, so the pipeline is not using these * settings while we change the registers. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | ANV_PIPE_DEPTH_STALL_BIT | ANV_PIPE_END_OF_PIPE_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); #endif cmd_buffer_emit_depth_stencil(cmd_buffer); } static enum blorp_filter vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode) { switch (vk_mode) { case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR: return BLORP_FILTER_SAMPLE_0; case VK_RESOLVE_MODE_AVERAGE_BIT_KHR: return BLORP_FILTER_AVERAGE; case VK_RESOLVE_MODE_MIN_BIT_KHR: return BLORP_FILTER_MIN_SAMPLE; case VK_RESOLVE_MODE_MAX_BIT_KHR: return BLORP_FILTER_MAX_SAMPLE; default: return BLORP_FILTER_NONE; } } static void cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer) { struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_subpass *subpass = cmd_state->subpass; uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state); struct anv_framebuffer *fb = cmd_buffer->state.framebuffer; /* We are done with the previous subpass and all rendering directly to that * subpass is now complete. Zero out all the surface states so we don't * accidentally use them between now and the next subpass. */ for (uint32_t i = 0; i < cmd_state->pass->attachment_count; ++i) { memset(&cmd_state->attachments[i].color, 0, sizeof(cmd_state->attachments[i].color)); memset(&cmd_state->attachments[i].input, 0, sizeof(cmd_state->attachments[i].input)); } cmd_state->null_surface_state = ANV_STATE_NULL; cmd_state->attachment_states = ANV_STATE_NULL; for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t a = subpass->attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; assert(a < cmd_state->pass->attachment_count); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = att_state->image_view; assert(util_bitcount(subpass->attachments[i].usage) == 1); if (subpass->attachments[i].usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { /* We assume that if we're ending a subpass, we did do some rendering * so we may end up with compressed data. */ genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, VK_IMAGE_ASPECT_COLOR_BIT, att_state->aux_usage, iview->planes[0].isl.base_level, iview->planes[0].isl.base_array_layer, fb->layers); } else if (subpass->attachments[i].usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { /* We may be writing depth or stencil so we need to mark the surface. * Unfortunately, there's no way to know at this point whether the * depth or stencil tests used will actually write to the surface. * * Even though stencil may be plane 1, it always shares a base_level * with depth. */ const struct isl_view *ds_view = &iview->planes[0].isl; if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) { genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, att_state->aux_usage, ds_view->base_level, ds_view->base_array_layer, fb->layers); } if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) { /* Even though stencil may be plane 1, it always shares a * base_level with depth. */ genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image, VK_IMAGE_ASPECT_STENCIL_BIT, ISL_AUX_USAGE_NONE, ds_view->base_level, ds_view->base_array_layer, fb->layers); } } } if (subpass->has_color_resolve) { /* We are about to do some MSAA resolves. We need to flush so that the * result of writes to the MSAA color attachments show up in the sampler * when we blit to the single-sampled resolve target. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT; for (uint32_t i = 0; i < subpass->color_count; ++i) { uint32_t src_att = subpass->color_attachments[i].attachment; uint32_t dst_att = subpass->resolve_attachments[i].attachment; if (dst_att == VK_ATTACHMENT_UNUSED) continue; assert(src_att < cmd_buffer->state.pass->attachment_count); assert(dst_att < cmd_buffer->state.pass->attachment_count); if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) { /* From the Vulkan 1.0 spec: * * If the first use of an attachment in a render pass is as a * resolve attachment, then the loadOp is effectively ignored * as the resolve is guaranteed to overwrite all pixels in the * render area. */ cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0; } struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view; struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view; const VkRect2D render_area = cmd_buffer->state.render_area; enum isl_aux_usage src_aux_usage = cmd_buffer->state.attachments[src_att].aux_usage; enum isl_aux_usage dst_aux_usage = cmd_buffer->state.attachments[dst_att].aux_usage; assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT && dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT); anv_image_msaa_resolve(cmd_buffer, src_iview->image, src_aux_usage, src_iview->planes[0].isl.base_level, src_iview->planes[0].isl.base_array_layer, dst_iview->image, dst_aux_usage, dst_iview->planes[0].isl.base_level, dst_iview->planes[0].isl.base_array_layer, VK_IMAGE_ASPECT_COLOR_BIT, render_area.offset.x, render_area.offset.y, render_area.offset.x, render_area.offset.y, render_area.extent.width, render_area.extent.height, fb->layers, BLORP_FILTER_NONE); } } if (subpass->ds_resolve_attachment) { /* We are about to do some MSAA resolves. We need to flush so that the * result of writes to the MSAA depth attachments show up in the sampler * when we blit to the single-sampled resolve target. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | ANV_PIPE_DEPTH_CACHE_FLUSH_BIT; uint32_t src_att = subpass->depth_stencil_attachment->attachment; uint32_t dst_att = subpass->ds_resolve_attachment->attachment; assert(src_att < cmd_buffer->state.pass->attachment_count); assert(dst_att < cmd_buffer->state.pass->attachment_count); if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) { /* From the Vulkan 1.0 spec: * * If the first use of an attachment in a render pass is as a * resolve attachment, then the loadOp is effectively ignored * as the resolve is guaranteed to overwrite all pixels in the * render area. */ cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0; } struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view; struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view; const VkRect2D render_area = cmd_buffer->state.render_area; struct anv_attachment_state *src_state = &cmd_state->attachments[src_att]; struct anv_attachment_state *dst_state = &cmd_state->attachments[dst_att]; if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { /* MSAA resolves sample from the source attachment. Transition the * depth attachment first to get rid of any HiZ that we may not be * able to handle. */ transition_depth_buffer(cmd_buffer, src_iview->image, src_iview->planes[0].isl.base_array_layer, fb->layers, src_state->current_layout, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, false /* will_full_fast_clear */); src_state->aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; /* MSAA resolves write to the resolve attachment as if it were any * other transfer op. Transition the resolve attachment accordingly. */ VkImageLayout dst_initial_layout = dst_state->current_layout; /* If our render area is the entire size of the image, we're going to * blow it all away so we can claim the initial layout is UNDEFINED * and we'll get a HiZ ambiguate instead of a resolve. */ if (dst_iview->image->type != VK_IMAGE_TYPE_3D && render_area.offset.x == 0 && render_area.offset.y == 0 && render_area.extent.width == dst_iview->extent.width && render_area.extent.height == dst_iview->extent.height) dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED; transition_depth_buffer(cmd_buffer, dst_iview->image, dst_iview->planes[0].isl.base_array_layer, fb->layers, dst_initial_layout, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, false /* will_full_fast_clear */); dst_state->aux_usage = anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; enum blorp_filter filter = vk_to_blorp_resolve_mode(subpass->depth_resolve_mode); anv_image_msaa_resolve(cmd_buffer, src_iview->image, src_state->aux_usage, src_iview->planes[0].isl.base_level, src_iview->planes[0].isl.base_array_layer, dst_iview->image, dst_state->aux_usage, dst_iview->planes[0].isl.base_level, dst_iview->planes[0].isl.base_array_layer, VK_IMAGE_ASPECT_DEPTH_BIT, render_area.offset.x, render_area.offset.y, render_area.offset.x, render_area.offset.y, render_area.extent.width, render_area.extent.height, fb->layers, filter); } if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE; uint32_t plane = anv_image_aspect_to_plane(dst_iview->image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); enum isl_aux_usage dst_aux_usage = dst_iview->image->planes[plane].aux_usage; enum blorp_filter filter = vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode); anv_image_msaa_resolve(cmd_buffer, src_iview->image, src_aux_usage, src_iview->planes[0].isl.base_level, src_iview->planes[0].isl.base_array_layer, dst_iview->image, dst_aux_usage, dst_iview->planes[0].isl.base_level, dst_iview->planes[0].isl.base_array_layer, VK_IMAGE_ASPECT_STENCIL_BIT, render_area.offset.x, render_area.offset.y, render_area.offset.x, render_area.offset.y, render_area.extent.width, render_area.extent.height, fb->layers, filter); } } #if GEN_GEN == 7 /* On gen7, we have to store a texturable version of the stencil buffer in * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and * forth at strategic points. Stencil writes are only allowed in following * layouts: * * - VK_IMAGE_LAYOUT_GENERAL * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR * * For general, we have no nice opportunity to transition so we do the copy * to the shadow unconditionally at the end of the subpass. For transfer * destinations, we can update it as part of the transfer op. For the other * layouts, we delay the copy until a transition into some other layout. */ if (subpass->depth_stencil_attachment) { uint32_t a = subpass->depth_stencil_attachment->attachment; assert(a != VK_ATTACHMENT_UNUSED); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = cmd_state->attachments[a].image_view;; const struct anv_image *image = iview->image; if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { uint32_t plane = anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT); if (image->planes[plane].shadow_surface.isl.size_B > 0 && att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) { assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT); anv_image_copy_to_shadow(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, iview->planes[plane].isl.base_level, 1, iview->planes[plane].isl.base_array_layer, fb->layers); } } } #endif /* GEN_GEN == 7 */ for (uint32_t i = 0; i < subpass->attachment_count; ++i) { const uint32_t a = subpass->attachments[i].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id) continue; assert(a < cmd_state->pass->attachment_count); struct anv_attachment_state *att_state = &cmd_state->attachments[a]; struct anv_image_view *iview = cmd_state->attachments[a].image_view; const struct anv_image *image = iview->image; /* Transition the image into the final layout for this render pass */ VkImageLayout target_layout = cmd_state->pass->attachments[a].final_layout; VkImageLayout target_stencil_layout = cmd_state->pass->attachments[a].stencil_final_layout; uint32_t base_layer, layer_count; if (image->type == VK_IMAGE_TYPE_3D) { base_layer = 0; layer_count = anv_minify(iview->image->extent.depth, iview->planes[0].isl.base_level); } else { base_layer = iview->planes[0].isl.base_array_layer; layer_count = fb->layers; } if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) { assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT); transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT, iview->planes[0].isl.base_level, 1, base_layer, layer_count, att_state->current_layout, target_layout, false /* will_full_fast_clear */); } if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) { transition_depth_buffer(cmd_buffer, image, base_layer, layer_count, att_state->current_layout, target_layout, false /* will_full_fast_clear */); } if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) { transition_stencil_buffer(cmd_buffer, image, iview->planes[0].isl.base_level, 1, base_layer, layer_count, att_state->current_stencil_layout, target_stencil_layout, false /* will_full_fast_clear */); } } /* Accumulate any subpass flushes that need to happen after the subpass. * Yes, they do get accumulated twice in the NextSubpass case but since * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up * ORing the bits in twice so it's harmless. */ cmd_buffer->state.pending_pipe_bits |= cmd_buffer->state.pass->subpass_flushes[subpass_id + 1]; } void genX(CmdBeginRenderPass)( VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass); ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer); VkResult result; cmd_buffer->state.framebuffer = framebuffer; cmd_buffer->state.pass = pass; cmd_buffer->state.render_area = pRenderPassBegin->renderArea; result = genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, framebuffer, pRenderPassBegin); if (result != VK_SUCCESS) { assert(anv_batch_has_error(&cmd_buffer->batch)); return; } genX(flush_pipeline_select_3d)(cmd_buffer); cmd_buffer_begin_subpass(cmd_buffer, 0); } void genX(CmdBeginRenderPass2)( VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBeginInfo, const VkSubpassBeginInfoKHR* pSubpassBeginInfo) { genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo, pSubpassBeginInfo->contents); } void genX(CmdNextSubpass)( VkCommandBuffer commandBuffer, VkSubpassContents contents) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return; assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state); cmd_buffer_end_subpass(cmd_buffer); cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1); } void genX(CmdNextSubpass2)( VkCommandBuffer commandBuffer, const VkSubpassBeginInfoKHR* pSubpassBeginInfo, const VkSubpassEndInfoKHR* pSubpassEndInfo) { genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents); } void genX(CmdEndRenderPass)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); if (anv_batch_has_error(&cmd_buffer->batch)) return; cmd_buffer_end_subpass(cmd_buffer); cmd_buffer->state.hiz_enabled = false; #ifndef NDEBUG anv_dump_add_attachments(cmd_buffer); #endif /* Remove references to render pass specific state. This enables us to * detect whether or not we're in a renderpass. */ cmd_buffer->state.framebuffer = NULL; cmd_buffer->state.pass = NULL; cmd_buffer->state.subpass = NULL; } void genX(CmdEndRenderPass2)( VkCommandBuffer commandBuffer, const VkSubpassEndInfoKHR* pSubpassEndInfo) { genX(CmdEndRenderPass)(commandBuffer); } void genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer) { #if GEN_GEN >= 8 || GEN_IS_HASWELL struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), gen_mi_reg32(ANV_PREDICATE_RESULT_REG)); gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0)); anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) { mip.LoadOperation = LOAD_LOADINV; mip.CombineOperation = COMBINE_SET; mip.CompareOperation = COMPARE_SRCS_EQUAL; } #endif } #if GEN_GEN >= 8 || GEN_IS_HASWELL void genX(CmdBeginConditionalRenderingEXT)( VkCommandBuffer commandBuffer, const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; struct anv_address value_address = anv_address_add(buffer->address, pConditionalRenderingBegin->offset); const bool isInverted = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT; cmd_state->conditional_render_enabled = true; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); struct gen_mi_builder b; gen_mi_builder_init(&b, &cmd_buffer->batch); /* Section 19.4 of the Vulkan 1.1.85 spec says: * * If the value of the predicate in buffer memory changes * while conditional rendering is active, the rendering commands * may be discarded in an implementation-dependent way. * Some implementations may latch the value of the predicate * upon beginning conditional rendering while others * may read it before every rendering command. * * So it's perfectly fine to read a value from the buffer once. */ struct gen_mi_value value = gen_mi_mem32(value_address); /* Precompute predicate result, it is necessary to support secondary * command buffers since it is unknown if conditional rendering is * inverted when populating them. */ gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG), isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) : gen_mi_ult(&b, gen_mi_imm(0), value)); } void genX(CmdEndConditionalRenderingEXT)( VkCommandBuffer commandBuffer) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); struct anv_cmd_state *cmd_state = &cmd_buffer->state; cmd_state->conditional_render_enabled = false; } #endif /* Set of stage bits for which are pipelined, i.e. they get queued by the * command streamer for later execution. */ #define ANV_PIPELINE_STAGE_PIPELINED_BITS \ (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \ VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \ VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \ VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \ VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \ VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \ VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \ VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \ VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \ VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \ VK_PIPELINE_STAGE_TRANSFER_BIT | \ VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \ VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \ VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) void genX(CmdSetEvent)( VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } pc.DestinationAddressType = DAT_PPGTT, pc.PostSyncOperation = WriteImmediateData, pc.Address = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_SET; } } void genX(CmdResetEvent)( VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_event, event, _event); cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) { if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) { pc.StallAtPixelScoreboard = true; pc.CommandStreamerStallEnable = true; } pc.DestinationAddressType = DAT_PPGTT; pc.PostSyncOperation = WriteImmediateData; pc.Address = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; pc.ImmediateData = VK_EVENT_RESET; } } void genX(CmdWaitEvents)( VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags destStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { #if GEN_GEN >= 8 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); for (uint32_t i = 0; i < eventCount; i++) { ANV_FROM_HANDLE(anv_event, event, pEvents[i]); anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) { sem.WaitMode = PollingMode, sem.CompareOperation = COMPARE_SAD_EQUAL_SDD, sem.SemaphoreDataDword = VK_EVENT_SET, sem.SemaphoreAddress = (struct anv_address) { cmd_buffer->device->dynamic_state_pool.block_pool.bo, event->state.offset }; } } #else anv_finishme("Implement events on gen7"); #endif genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask, false, /* byRegion */ memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } VkResult genX(CmdSetPerformanceOverrideINTEL)( VkCommandBuffer commandBuffer, const VkPerformanceOverrideInfoINTEL* pOverrideInfo) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); switch (pOverrideInfo->type) { case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: { uint32_t dw; #if GEN_GEN >= 9 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2), ._3DRenderingInstructionDisable = pOverrideInfo->enable, .MediaInstructionDisable = pOverrideInfo->enable, ._3DRenderingInstructionDisableMask = true, .MediaInstructionDisableMask = true); emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw); #else anv_pack_struct(&dw, GENX(INSTPM), ._3DRenderingInstructionDisable = pOverrideInfo->enable, .MediaInstructionDisable = pOverrideInfo->enable, ._3DRenderingInstructionDisableMask = true, .MediaInstructionDisableMask = true); emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw); #endif break; } case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL: if (pOverrideInfo->enable) { /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */ cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS; genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer); } break; default: unreachable("Invalid override"); } return VK_SUCCESS; } VkResult genX(CmdSetPerformanceStreamMarkerINTEL)( VkCommandBuffer commandBuffer, const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo) { /* TODO: Waiting on the register to write, might depend on generation. */ return VK_SUCCESS; }