/* Author(s): * Connor Abbott * Alyssa Rosenzweig * * Copyright (c) 2013 Connor Abbott (connor@abbott.cx) * Copyright (c) 2018 Alyssa Rosenzweig (alyssa@rosenzweig.io) * Copyright (C) 2019-2020 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include "midgard.h" #include "midgard_ops.h" #include "midgard_quirks.h" #include "disassemble.h" #include "helpers.h" #include "util/bitscan.h" #include "util/half_float.h" #include "util/u_math.h" #define DEFINE_CASE(define, str) case define: { fprintf(fp, str); break; } static unsigned *midg_tags; static bool is_instruction_int = false; /* Stats */ static struct midgard_disasm_stats midg_stats; /* Transform an expanded writemask (duplicated 8-bit format) into its condensed * form (one bit per component) */ static inline unsigned condense_writemask(unsigned expanded_mask, unsigned bits_per_component) { if (bits_per_component == 8) { /* Duplicate every bit to go from 8 to 16-channel wrmask */ unsigned omask = 0; for (unsigned i = 0; i < 8; ++i) { if (expanded_mask & (1 << i)) omask |= (3 << (2 * i)); } return omask; } unsigned slots_per_component = bits_per_component / 16; unsigned max_comp = (16 * 8) / bits_per_component; unsigned condensed_mask = 0; for (unsigned i = 0; i < max_comp; i++) { if (expanded_mask & (1 << (i * slots_per_component))) condensed_mask |= (1 << i); } return condensed_mask; } static void print_alu_opcode(FILE *fp, midgard_alu_op op) { bool int_op = false; if (alu_opcode_props[op].name) { fprintf(fp, "%s", alu_opcode_props[op].name); int_op = midgard_is_integer_op(op); } else fprintf(fp, "alu_op_%02X", op); /* For constant analysis */ is_instruction_int = int_op; } static void print_ld_st_opcode(FILE *fp, midgard_load_store_op op) { if (load_store_opcode_props[op].name) fprintf(fp, "%s", load_store_opcode_props[op].name); else fprintf(fp, "ldst_op_%02X", op); } static bool is_embedded_constant_half = false; static bool is_embedded_constant_int = false; static char prefix_for_bits(unsigned bits) { switch (bits) { case 8: return 'q'; case 16: return 'h'; case 64: return 'd'; default: return 0; } } /* For static analysis to ensure all registers are written at least once before * use along the source code path (TODO: does this break done for complex CF?) */ uint16_t midg_ever_written = 0; static void print_reg(FILE *fp, unsigned reg, unsigned bits) { /* Perform basic static analysis for expanding constants correctly */ if (reg == 26) { is_embedded_constant_int = is_instruction_int; is_embedded_constant_half = (bits < 32); } unsigned uniform_reg = 23 - reg; bool is_uniform = false; /* For r8-r15, it could be a work or uniform. We distinguish based on * the fact work registers are ALWAYS written before use, but uniform * registers are NEVER written before use. */ if ((reg >= 8 && reg < 16) && !(midg_ever_written & (1 << reg))) is_uniform = true; /* r16-r23 are always uniform */ if (reg >= 16 && reg <= 23) is_uniform = true; /* Update the uniform count appropriately */ if (is_uniform) midg_stats.uniform_count = MAX2(uniform_reg + 1, midg_stats.uniform_count); char prefix = prefix_for_bits(bits); if (prefix) fputc(prefix, fp); fprintf(fp, "r%u", reg); } static char *outmod_names_float[4] = { "", ".pos", ".sat_signed", ".sat" }; static char *outmod_names_int[4] = { ".isat", ".usat", "", ".hi" }; static char *srcmod_names_int[4] = { "sext(", "zext(", "", "(" }; static void print_outmod(FILE *fp, unsigned outmod, bool is_int) { fprintf(fp, "%s", is_int ? outmod_names_int[outmod] : outmod_names_float[outmod]); } static void print_quad_word(FILE *fp, uint32_t *words, unsigned tabs) { unsigned i; for (i = 0; i < 4; i++) fprintf(fp, "0x%08X%s ", words[i], i == 3 ? "" : ","); fprintf(fp, "\n"); } static const char components[16] = "xyzwefghijklmnop"; /* Helper to print 4 chars of a swizzle */ static void print_swizzle_helper(FILE *fp, unsigned swizzle, unsigned offset) { for (unsigned i = 0; i < 4; ++i) { unsigned c = (swizzle >> (i * 2)) & 3; c += offset; fprintf(fp, "%c", components[c]); } } /* Helper to print 8 chars of a swizzle, duplicating over */ static void print_swizzle_helper_8(FILE *fp, unsigned swizzle, bool upper) { for (unsigned i = 0; i < 4; ++i) { unsigned c = (swizzle >> (i * 2)) & 3; c *= 2; c += upper*8; fprintf(fp, "%c%c", components[c], components[c+1]); } } static void print_swizzle_vec16(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, midgard_dest_override override) { fprintf(fp, "."); if (override == midgard_dest_override_upper) { if (rep_high) fprintf(fp, " /* rep_high */ "); if (rep_low) fprintf(fp, " /* rep_low */ "); if (!rep_high && rep_low) print_swizzle_helper_8(fp, swizzle, true); else print_swizzle_helper_8(fp, swizzle, false); } else { print_swizzle_helper_8(fp, swizzle, rep_high & 1); print_swizzle_helper_8(fp, swizzle, !(rep_low & 1)); } } static void print_swizzle_vec8(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half) { fprintf(fp, "."); /* TODO: Is it possible to unify half/full? */ if (half) { print_swizzle_helper(fp, swizzle, (rep_low * 8)); print_swizzle_helper(fp, swizzle, (rep_low * 8) + !rep_high * 4); } else { print_swizzle_helper(fp, swizzle, rep_high * 4); print_swizzle_helper(fp, swizzle, !rep_low * 4); } } static void print_swizzle_vec4(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half) { if (rep_high) fprintf(fp, " /* rep_high */ "); if (!half && rep_low) fprintf(fp, " /* rep_low */ "); if (swizzle == 0xE4 && !half) return; /* xyzw */ fprintf(fp, "."); print_swizzle_helper(fp, swizzle, rep_low * 4); } static void print_swizzle_vec2(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half) { char *alphabet = "XY"; if (half) { alphabet = rep_low ? "zw" : "xy"; } else if (rep_low) fprintf(fp, " /* rep_low */ "); if (rep_high) fprintf(fp, " /* rep_high */ "); if (swizzle == 0xE4 && !half) return; /* XY */ fprintf(fp, "."); for (unsigned i = 0; i < 4; i += 2) { unsigned a = (swizzle >> (i * 2)) & 3; unsigned b = (swizzle >> ((i+1) * 2)) & 3; /* Normally we're adjacent, but if there's an issue, don't make * it ambiguous */ if (b == (a + 1)) fprintf(fp, "%c", alphabet[a >> 1]); else fprintf(fp, "[%c%c]", components[a], components[b]); } } static int bits_for_mode(midgard_reg_mode mode) { switch (mode) { case midgard_reg_mode_8: return 8; case midgard_reg_mode_16: return 16; case midgard_reg_mode_32: return 32; case midgard_reg_mode_64: return 64; default: unreachable("Invalid reg mode"); return 0; } } static int bits_for_mode_halved(midgard_reg_mode mode, bool half) { unsigned bits = bits_for_mode(mode); if (half) bits >>= 1; return bits; } static void print_scalar_constant(FILE *fp, unsigned src_binary, const midgard_constants *consts, midgard_scalar_alu *alu) { midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary; assert(consts != NULL); fprintf(fp, "#"); mir_print_constant_component(fp, consts, src->component, src->full ? midgard_reg_mode_32 : midgard_reg_mode_16, false, src->mod, alu->op); } static void print_vector_constants(FILE *fp, unsigned src_binary, const midgard_constants *consts, midgard_vector_alu *alu) { midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary; unsigned bits = bits_for_mode_halved(alu->reg_mode, src->half); unsigned max_comp = (sizeof(*consts) * 8) / bits; unsigned comp_mask, num_comp = 0; assert(consts); assert(max_comp <= 16); comp_mask = effective_writemask(alu->op, condense_writemask(alu->mask, bits)); num_comp = util_bitcount(comp_mask); fprintf(fp, "<"); bool first = true; for (unsigned i = 0; i < max_comp; ++i) { if (!(comp_mask & (1 << i))) continue; unsigned c = (src->swizzle >> (i * 2)) & 3; if (bits == 16 && !src->half) { if (i < 4) c += (src->rep_high * 4); else c += (!src->rep_low * 4); } else if (bits == 32 && !src->half) { /* Implicitly ok */ } else if (bits == 8) { assert (!src->half); unsigned index = (i >> 1) & 3; unsigned base = (src->swizzle >> (index * 2)) & 3; c = base * 2; if (i < 8) c += (src->rep_high) * 8; else c += (!src->rep_low) * 8; /* We work on twos, actually */ if (i & 1) c++; } else { printf(" (%d%d%d)", src->rep_low, src->rep_high, src->half); } if (first) first = false; else fprintf(fp, ", "); mir_print_constant_component(fp, consts, c, alu->reg_mode, src->half, src->mod, alu->op); } if (num_comp > 1) fprintf(fp, ">"); } static void print_srcmod(FILE *fp, bool is_int, unsigned mod, bool scalar) { /* Modifiers change meaning depending on the op's context */ midgard_int_mod int_mod = mod; if (is_int) { if (scalar && mod == 2) { fprintf(fp, "unk2"); } fprintf(fp, "%s", srcmod_names_int[int_mod]); } else { if (mod & MIDGARD_FLOAT_MOD_NEG) fprintf(fp, "-"); if (mod & MIDGARD_FLOAT_MOD_ABS) fprintf(fp, "abs("); } } static void print_srcmod_end(FILE *fp, bool is_int, unsigned mod, unsigned bits) { /* Since we wrapped with a function-looking thing */ if (is_int && mod == midgard_int_shift) fprintf(fp, ") << %u", bits); else if ((is_int && (mod != midgard_int_normal)) || (!is_int && mod & MIDGARD_FLOAT_MOD_ABS)) fprintf(fp, ")"); } static void print_vector_src(FILE *fp, unsigned src_binary, midgard_reg_mode mode, unsigned reg, midgard_dest_override override, bool is_int) { midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary; print_srcmod(fp, is_int, src->mod, false); //register unsigned bits = bits_for_mode_halved(mode, src->half); print_reg(fp, reg, bits); /* When the source was stepped down via `half`, rep_low means "higher * half" and rep_high is never seen. When it's not native, * rep_low/rep_high are for, well, replication */ if (mode == midgard_reg_mode_8) { assert(!src->half); print_swizzle_vec16(fp, src->swizzle, src->rep_high, src->rep_low, override); } else if (mode == midgard_reg_mode_16) { print_swizzle_vec8(fp, src->swizzle, src->rep_high, src->rep_low, src->half); } else if (mode == midgard_reg_mode_32) { print_swizzle_vec4(fp, src->swizzle, src->rep_high, src->rep_low, src->half); } else if (mode == midgard_reg_mode_64) { print_swizzle_vec2(fp, src->swizzle, src->rep_high, src->rep_low, src->half); } print_srcmod_end(fp, is_int, src->mod, bits); } static uint16_t decode_vector_imm(unsigned src2_reg, unsigned imm) { uint16_t ret; ret = src2_reg << 11; ret |= (imm & 0x7) << 8; ret |= (imm >> 3) & 0xFF; return ret; } static void print_immediate(FILE *fp, uint16_t imm) { if (is_instruction_int) fprintf(fp, "#%u", imm); else fprintf(fp, "#%g", _mesa_half_to_float(imm)); } static void update_dest(unsigned reg) { /* We should record writes as marking this as a work register. Store * the max register in work_count; we'll add one at the end */ if (reg < 16) { midg_stats.work_count = MAX2(reg, midg_stats.work_count); midg_ever_written |= (1 << reg); } } static void print_dest(FILE *fp, unsigned reg, midgard_reg_mode mode, midgard_dest_override override) { /* Depending on the mode and override, we determine the type of * destination addressed. Absent an override, we address just the * type of the operation itself */ unsigned bits = bits_for_mode(mode); if (override != midgard_dest_override_none) bits /= 2; update_dest(reg); print_reg(fp, reg, bits); } static void print_mask_vec16(FILE *fp, uint8_t mask, midgard_dest_override override) { fprintf(fp, "."); for (unsigned i = 0; i < 8; i++) { if (mask & (1 << i)) fprintf(fp, "%c%c", components[i*2 + 0], components[i*2 + 1]); } } /* For 16-bit+ masks, we read off from the 8-bit mask field. For 16-bit (vec8), * it's just one bit per channel, easy peasy. For 32-bit (vec4), it's one bit * per channel with one duplicate bit in the middle. For 64-bit (vec2), it's * one-bit per channel with _3_ duplicate bits in the middle. Basically, just * subdividing the 128-bit word in 16-bit increments. For 64-bit, we uppercase * the mask to make it obvious what happened */ static void print_mask(FILE *fp, uint8_t mask, unsigned bits, midgard_dest_override override) { if (bits == 8) { print_mask_vec16(fp, mask, override); return; } /* Skip 'complete' masks */ if (override == midgard_dest_override_none) if (bits >= 32 && mask == 0xFF) return; fprintf(fp, "."); unsigned skip = (bits / 16); bool uppercase = bits > 32; bool tripped = false; /* To apply an upper destination override, we "shift" the alphabet. * E.g. with an upper override on 32-bit, instead of xyzw, print efgh. * For upper 16-bit, instead of xyzwefgh, print ijklmnop */ const char *alphabet = components; if (override == midgard_dest_override_upper) alphabet += (128 / bits); for (unsigned i = 0; i < 8; i += skip) { bool a = (mask & (1 << i)) != 0; for (unsigned j = 1; j < skip; ++j) { bool dupe = (mask & (1 << (i + j))) != 0; tripped |= (dupe != a); } if (a) { char c = alphabet[i / skip]; if (uppercase) c = toupper(c); fprintf(fp, "%c", c); } } if (tripped) fprintf(fp, " /* %X */", mask); } /* Prints the 4-bit masks found in texture and load/store ops, as opposed to * the 8-bit masks found in (vector) ALU ops. Supports texture-style 16-bit * mode as well, but not load/store-style 16-bit mode. */ static void print_mask_4(FILE *fp, unsigned mask, bool upper) { if (mask == 0xF) { if (upper) fprintf(fp, "'"); return; } fprintf(fp, "."); for (unsigned i = 0; i < 4; ++i) { bool a = (mask & (1 << i)) != 0; if (a) fprintf(fp, "%c", components[i + (upper ? 4 : 0)]); } } static void print_vector_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word, const midgard_constants *consts, unsigned tabs) { midgard_reg_info *reg_info = (midgard_reg_info *)®_word; midgard_vector_alu *alu_field = (midgard_vector_alu *) words; midgard_reg_mode mode = alu_field->reg_mode; unsigned override = alu_field->dest_override; /* For now, prefix instruction names with their unit, until we * understand how this works on a deeper level */ fprintf(fp, "%s.", name); print_alu_opcode(fp, alu_field->op); /* Postfix with the size to disambiguate if necessary */ char postfix = prefix_for_bits(bits_for_mode(mode)); bool size_ambiguous = override != midgard_dest_override_none; if (size_ambiguous) fprintf(fp, "%c", postfix ? postfix : 'r'); /* Print the outmod, if there is one */ print_outmod(fp, alu_field->outmod, midgard_is_integer_out_op(alu_field->op)); fprintf(fp, " "); /* Mask denoting status of 8-lanes */ uint8_t mask = alu_field->mask; /* First, print the destination */ print_dest(fp, reg_info->out_reg, mode, alu_field->dest_override); if (override != midgard_dest_override_none) { bool modeable = (mode != midgard_reg_mode_8); bool known = override != 0x3; /* Unused value */ if (!(modeable && known)) fprintf(fp, "/* do%u */ ", override); } /* Instructions like fdot4 do *not* replicate, ensure the * mask is of only a single component */ unsigned rep = GET_CHANNEL_COUNT(alu_opcode_props[alu_field->op].props); if (rep) { unsigned comp_mask = condense_writemask(mask, bits_for_mode(mode)); unsigned num_comp = util_bitcount(comp_mask); if (num_comp != 1) fprintf(fp, "/* err too many components */"); } print_mask(fp, mask, bits_for_mode(mode), override); fprintf(fp, ", "); bool is_int = midgard_is_integer_op(alu_field->op); if (reg_info->src1_reg == 26) print_vector_constants(fp, alu_field->src1, consts, alu_field); else print_vector_src(fp, alu_field->src1, mode, reg_info->src1_reg, override, is_int); fprintf(fp, ", "); if (reg_info->src2_imm) { uint16_t imm = decode_vector_imm(reg_info->src2_reg, alu_field->src2 >> 2); print_immediate(fp, imm); } else if (reg_info->src2_reg == 26) { print_vector_constants(fp, alu_field->src2, consts, alu_field); } else { print_vector_src(fp, alu_field->src2, mode, reg_info->src2_reg, override, is_int); } midg_stats.instruction_count++; fprintf(fp, "\n"); } static void print_scalar_src(FILE *fp, bool is_int, unsigned src_binary, unsigned reg) { midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary; print_srcmod(fp, is_int, src->mod, true); print_reg(fp, reg, src->full ? 32 : 16); unsigned c = src->component; if (src->full) { assert((c & 1) == 0); c >>= 1; } fprintf(fp, ".%c", components[c]); print_srcmod_end(fp, is_int, src->mod, src->full ? 32 : 16); } static uint16_t decode_scalar_imm(unsigned src2_reg, unsigned imm) { uint16_t ret; ret = src2_reg << 11; ret |= (imm & 3) << 9; ret |= (imm & 4) << 6; ret |= (imm & 0x38) << 2; ret |= imm >> 6; return ret; } static void print_scalar_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word, const midgard_constants *consts, unsigned tabs) { midgard_reg_info *reg_info = (midgard_reg_info *)®_word; midgard_scalar_alu *alu_field = (midgard_scalar_alu *) words; if (alu_field->unknown) fprintf(fp, "scalar ALU unknown bit set\n"); fprintf(fp, "%s.", name); print_alu_opcode(fp, alu_field->op); print_outmod(fp, alu_field->outmod, midgard_is_integer_out_op(alu_field->op)); fprintf(fp, " "); bool full = alu_field->output_full; update_dest(reg_info->out_reg); print_reg(fp, reg_info->out_reg, full ? 32 : 16); unsigned c = alu_field->output_component; bool is_int = midgard_is_integer_op(alu_field->op); if (full) { assert((c & 1) == 0); c >>= 1; } fprintf(fp, ".%c, ", components[c]); if (reg_info->src1_reg == 26) print_scalar_constant(fp, alu_field->src1, consts, alu_field); else print_scalar_src(fp, is_int, alu_field->src1, reg_info->src1_reg); fprintf(fp, ", "); if (reg_info->src2_imm) { uint16_t imm = decode_scalar_imm(reg_info->src2_reg, alu_field->src2); print_immediate(fp, imm); } else if (reg_info->src2_reg == 26) { print_scalar_constant(fp, alu_field->src2, consts, alu_field); } else print_scalar_src(fp, is_int, alu_field->src2, reg_info->src2_reg); midg_stats.instruction_count++; fprintf(fp, "\n"); } static void print_branch_op(FILE *fp, unsigned op) { switch (op) { case midgard_jmp_writeout_op_branch_uncond: fprintf(fp, "uncond."); break; case midgard_jmp_writeout_op_branch_cond: fprintf(fp, "cond."); break; case midgard_jmp_writeout_op_writeout: fprintf(fp, "write."); break; case midgard_jmp_writeout_op_tilebuffer_pending: fprintf(fp, "tilebuffer."); break; case midgard_jmp_writeout_op_discard: fprintf(fp, "discard."); break; default: fprintf(fp, "unk%u.", op); break; } } static void print_branch_cond(FILE *fp, int cond) { switch (cond) { case midgard_condition_write0: fprintf(fp, "write0"); break; case midgard_condition_false: fprintf(fp, "false"); break; case midgard_condition_true: fprintf(fp, "true"); break; case midgard_condition_always: fprintf(fp, "always"); break; default: fprintf(fp, "unk%X", cond); break; } } static bool print_compact_branch_writeout_field(FILE *fp, uint16_t word) { midgard_jmp_writeout_op op = word & 0x7; midg_stats.instruction_count++; switch (op) { case midgard_jmp_writeout_op_branch_uncond: { midgard_branch_uncond br_uncond; memcpy((char *) &br_uncond, (char *) &word, sizeof(br_uncond)); fprintf(fp, "br.uncond "); if (br_uncond.unknown != 1) fprintf(fp, "unknown:%u, ", br_uncond.unknown); if (br_uncond.offset >= 0) fprintf(fp, "+"); fprintf(fp, "%d -> %s", br_uncond.offset, midgard_tag_props[br_uncond.dest_tag].name); fprintf(fp, "\n"); return br_uncond.offset >= 0; } case midgard_jmp_writeout_op_branch_cond: case midgard_jmp_writeout_op_writeout: case midgard_jmp_writeout_op_discard: default: { midgard_branch_cond br_cond; memcpy((char *) &br_cond, (char *) &word, sizeof(br_cond)); fprintf(fp, "br."); print_branch_op(fp, br_cond.op); print_branch_cond(fp, br_cond.cond); fprintf(fp, " "); if (br_cond.offset >= 0) fprintf(fp, "+"); fprintf(fp, "%d -> %s", br_cond.offset, midgard_tag_props[br_cond.dest_tag].name); fprintf(fp, "\n"); return br_cond.offset >= 0; } } return false; } static bool print_extended_branch_writeout_field(FILE *fp, uint8_t *words, unsigned next) { midgard_branch_extended br; memcpy((char *) &br, (char *) words, sizeof(br)); fprintf(fp, "brx."); print_branch_op(fp, br.op); /* Condition codes are a LUT in the general case, but simply repeated 8 times for single-channel conditions.. Check this. */ bool single_channel = true; for (unsigned i = 0; i < 16; i += 2) { single_channel &= (((br.cond >> i) & 0x3) == (br.cond & 0x3)); } if (single_channel) print_branch_cond(fp, br.cond & 0x3); else fprintf(fp, "lut%X", br.cond); if (br.unknown) fprintf(fp, ".unknown%u", br.unknown); fprintf(fp, " "); if (br.offset >= 0) fprintf(fp, "+"); fprintf(fp, "%d -> %s\n", br.offset, midgard_tag_props[br.dest_tag].name); unsigned I = next + br.offset * 4; if (midg_tags[I] && midg_tags[I] != br.dest_tag) { fprintf(fp, "\t/* XXX TAG ERROR: jumping to %s but tagged %s \n", midgard_tag_props[br.dest_tag].name, midgard_tag_props[midg_tags[I]].name); } midg_tags[I] = br.dest_tag; midg_stats.instruction_count++; return br.offset >= 0; } static unsigned num_alu_fields_enabled(uint32_t control_word) { unsigned ret = 0; if ((control_word >> 17) & 1) ret++; if ((control_word >> 19) & 1) ret++; if ((control_word >> 21) & 1) ret++; if ((control_word >> 23) & 1) ret++; if ((control_word >> 25) & 1) ret++; return ret; } static bool print_alu_word(FILE *fp, uint32_t *words, unsigned num_quad_words, unsigned tabs, unsigned next) { uint32_t control_word = words[0]; uint16_t *beginning_ptr = (uint16_t *)(words + 1); unsigned num_fields = num_alu_fields_enabled(control_word); uint16_t *word_ptr = beginning_ptr + num_fields; unsigned num_words = 2 + num_fields; const midgard_constants *consts = NULL; bool branch_forward = false; if ((control_word >> 17) & 1) num_words += 3; if ((control_word >> 19) & 1) num_words += 2; if ((control_word >> 21) & 1) num_words += 3; if ((control_word >> 23) & 1) num_words += 2; if ((control_word >> 25) & 1) num_words += 3; if ((control_word >> 26) & 1) num_words += 1; if ((control_word >> 27) & 1) num_words += 3; if (num_quad_words > (num_words + 7) / 8) { assert(num_quad_words == (num_words + 15) / 8); //Assume that the extra quadword is constants consts = (midgard_constants *)(words + (4 * num_quad_words - 4)); } if ((control_word >> 16) & 1) fprintf(fp, "unknown bit 16 enabled\n"); if ((control_word >> 17) & 1) { print_vector_field(fp, "vmul", word_ptr, *beginning_ptr, consts, tabs); beginning_ptr += 1; word_ptr += 3; } if ((control_word >> 18) & 1) fprintf(fp, "unknown bit 18 enabled\n"); if ((control_word >> 19) & 1) { print_scalar_field(fp, "sadd", word_ptr, *beginning_ptr, consts, tabs); beginning_ptr += 1; word_ptr += 2; } if ((control_word >> 20) & 1) fprintf(fp, "unknown bit 20 enabled\n"); if ((control_word >> 21) & 1) { print_vector_field(fp, "vadd", word_ptr, *beginning_ptr, consts, tabs); beginning_ptr += 1; word_ptr += 3; } if ((control_word >> 22) & 1) fprintf(fp, "unknown bit 22 enabled\n"); if ((control_word >> 23) & 1) { print_scalar_field(fp, "smul", word_ptr, *beginning_ptr, consts, tabs); beginning_ptr += 1; word_ptr += 2; } if ((control_word >> 24) & 1) fprintf(fp, "unknown bit 24 enabled\n"); if ((control_word >> 25) & 1) { print_vector_field(fp, "lut", word_ptr, *beginning_ptr, consts, tabs); word_ptr += 3; } if ((control_word >> 26) & 1) { branch_forward |= print_compact_branch_writeout_field(fp, *word_ptr); word_ptr += 1; } if ((control_word >> 27) & 1) { branch_forward |= print_extended_branch_writeout_field(fp, (uint8_t *) word_ptr, next); word_ptr += 3; } if (consts) fprintf(fp, "uconstants 0x%X, 0x%X, 0x%X, 0x%X\n", consts->u32[0], consts->u32[1], consts->u32[2], consts->u32[3]); return branch_forward; } static void print_varying_parameters(FILE *fp, midgard_load_store_word *word) { midgard_varying_parameter param; unsigned v = word->varying_parameters; memcpy(¶m, &v, sizeof(param)); if (param.is_varying) { /* If a varying, there are qualifiers */ if (param.flat) fprintf(fp, ".flat"); if (param.interpolation != midgard_interp_default) { if (param.interpolation == midgard_interp_centroid) fprintf(fp, ".centroid"); else if (param.interpolation == midgard_interp_sample) fprintf(fp, ".sample"); else fprintf(fp, ".interp%d", param.interpolation); } if (param.modifier != midgard_varying_mod_none) { if (param.modifier == midgard_varying_mod_perspective_w) fprintf(fp, ".perspectivew"); else if (param.modifier == midgard_varying_mod_perspective_z) fprintf(fp, ".perspectivez"); else fprintf(fp, ".mod%d", param.modifier); } } else if (param.flat || param.interpolation || param.modifier) { fprintf(fp, " /* is_varying not set but varying metadata attached */"); } if (param.zero0 || param.zero1 || param.zero2) fprintf(fp, " /* zero tripped, %u %u %u */ ", param.zero0, param.zero1, param.zero2); } static bool is_op_varying(unsigned op) { switch (op) { case midgard_op_st_vary_16: case midgard_op_st_vary_32: case midgard_op_st_vary_32i: case midgard_op_st_vary_32u: case midgard_op_ld_vary_16: case midgard_op_ld_vary_32: case midgard_op_ld_vary_32i: case midgard_op_ld_vary_32u: return true; } return false; } static bool is_op_attribute(unsigned op) { switch (op) { case midgard_op_ld_attr_16: case midgard_op_ld_attr_32: case midgard_op_ld_attr_32i: case midgard_op_ld_attr_32u: return true; } return false; } static void print_load_store_arg(FILE *fp, uint8_t arg, unsigned index) { /* Try to interpret as a register */ midgard_ldst_register_select sel; memcpy(&sel, &arg, sizeof(arg)); /* If unknown is set, we're not sure what this is or how to * interpret it. But if it's zero, we get it. */ if (sel.unknown) { fprintf(fp, "0x%02X", arg); return; } unsigned reg = REGISTER_LDST_BASE + sel.select; char comp = components[sel.component]; fprintf(fp, "r%u.%c", reg, comp); /* Only print a shift if it's non-zero. Shifts only make sense for the * second index. For the first, we're not sure what it means yet */ if (index == 1) { if (sel.shift) fprintf(fp, " << %u", sel.shift); } else { fprintf(fp, " /* %X */", sel.shift); } } static void update_stats(signed *stat, unsigned address) { if (*stat >= 0) *stat = MAX2(*stat, address + 1); } static void print_load_store_instr(FILE *fp, uint64_t data, unsigned tabs) { midgard_load_store_word *word = (midgard_load_store_word *) &data; print_ld_st_opcode(fp, word->op); unsigned address = word->address; if (is_op_varying(word->op)) { print_varying_parameters(fp, word); /* Do some analysis: check if direct cacess */ if ((word->arg_2 == 0x1E) && midg_stats.varying_count >= 0) update_stats(&midg_stats.varying_count, address); else midg_stats.varying_count = -16; } else if (is_op_attribute(word->op)) { if ((word->arg_2 == 0x1E) && midg_stats.attribute_count >= 0) update_stats(&midg_stats.attribute_count, address); else midg_stats.attribute_count = -16; } fprintf(fp, " r%u", word->reg + (OP_IS_STORE(word->op) ? 26 : 0)); print_mask_4(fp, word->mask, false); if (!OP_IS_STORE(word->op)) update_dest(word->reg); bool is_ubo = OP_IS_UBO_READ(word->op); if (is_ubo) { /* UBOs use their own addressing scheme */ int lo = word->varying_parameters >> 7; int hi = word->address; /* TODO: Combine fields logically */ address = (hi << 3) | lo; } fprintf(fp, ", %u", address); print_swizzle_vec4(fp, word->swizzle, false, false, false); fprintf(fp, ", "); if (is_ubo) { fprintf(fp, "ubo%u", word->arg_1); update_stats(&midg_stats.uniform_buffer_count, word->arg_1); } else print_load_store_arg(fp, word->arg_1, 0); fprintf(fp, ", "); print_load_store_arg(fp, word->arg_2, 1); fprintf(fp, " /* %X */\n", word->varying_parameters); midg_stats.instruction_count++; } static void print_load_store_word(FILE *fp, uint32_t *word, unsigned tabs) { midgard_load_store *load_store = (midgard_load_store *) word; if (load_store->word1 != 3) { print_load_store_instr(fp, load_store->word1, tabs); } if (load_store->word2 != 3) { print_load_store_instr(fp, load_store->word2, tabs); } } static void print_texture_reg_select(FILE *fp, uint8_t u, unsigned base) { midgard_tex_register_select sel; memcpy(&sel, &u, sizeof(u)); if (!sel.full) fprintf(fp, "h"); fprintf(fp, "r%u", base + sel.select); unsigned component = sel.component; /* Use the upper half in half-reg mode */ if (sel.upper) { assert(!sel.full); component += 4; } fprintf(fp, ".%c", components[component]); assert(sel.zero == 0); } static void print_texture_format(FILE *fp, int format) { /* Act like a modifier */ fprintf(fp, "."); switch (format) { DEFINE_CASE(1, "1d"); DEFINE_CASE(2, "2d"); DEFINE_CASE(3, "3d"); DEFINE_CASE(0, "cube"); default: unreachable("Bad format"); } } static bool midgard_op_has_helpers(unsigned op) { switch (op) { case TEXTURE_OP_NORMAL: case TEXTURE_OP_DERIVATIVE: return true; default: return false; } } static void print_texture_op(FILE *fp, unsigned op) { switch (op) { DEFINE_CASE(TEXTURE_OP_NORMAL, "texture"); DEFINE_CASE(TEXTURE_OP_LOD, "textureLod"); DEFINE_CASE(TEXTURE_OP_TEXEL_FETCH, "texelFetch"); DEFINE_CASE(TEXTURE_OP_BARRIER, "barrier"); DEFINE_CASE(TEXTURE_OP_DERIVATIVE, "derivative"); default: fprintf(fp, "tex_%X", op); break; } } static bool texture_op_takes_bias(unsigned op) { return op == TEXTURE_OP_NORMAL; } static char sampler_type_name(enum mali_sampler_type t) { switch (t) { case MALI_SAMPLER_FLOAT: return 'f'; case MALI_SAMPLER_UNSIGNED: return 'u'; case MALI_SAMPLER_SIGNED: return 'i'; default: return '?'; } } static void print_texture_barrier(FILE *fp, uint32_t *word) { midgard_texture_barrier_word *barrier = (midgard_texture_barrier_word *) word; if (barrier->type != TAG_TEXTURE_4_BARRIER) fprintf(fp, "/* barrier tag %X != tex/bar */ ", barrier->type); if (!barrier->cont) fprintf(fp, "/* cont missing? */"); if (!barrier->last) fprintf(fp, "/* last missing? */"); if (barrier->zero1) fprintf(fp, "/* zero1 = 0x%X */ ", barrier->zero1); if (barrier->zero2) fprintf(fp, "/* zero2 = 0x%X */ ", barrier->zero2); if (barrier->zero3) fprintf(fp, "/* zero3 = 0x%X */ ", barrier->zero3); if (barrier->zero4) fprintf(fp, "/* zero4 = 0x%X */ ", barrier->zero4); if (barrier->zero5) fprintf(fp, "/* zero4 = 0x%" PRIx64 " */ ", barrier->zero5); if (barrier->out_of_order) fprintf(fp, ".ooo%u", barrier->out_of_order); fprintf(fp, "\n"); } #undef DEFINE_CASE static const char * texture_mode(enum mali_texture_mode mode) { switch (mode) { case TEXTURE_NORMAL: return ""; case TEXTURE_SHADOW: return ".shadow"; case TEXTURE_GATHER_SHADOW: return ".gather.shadow"; case TEXTURE_GATHER_X: return ".gatherX"; case TEXTURE_GATHER_Y: return ".gatherY"; case TEXTURE_GATHER_Z: return ".gatherZ"; case TEXTURE_GATHER_W: return ".gatherW"; default: return "unk"; } } static const char * derivative_mode(enum mali_derivative_mode mode) { switch (mode) { case TEXTURE_DFDX: return ".x"; case TEXTURE_DFDY: return ".y"; default: return "unk"; } } static void print_texture_word(FILE *fp, uint32_t *word, unsigned tabs, unsigned in_reg_base, unsigned out_reg_base) { midgard_texture_word *texture = (midgard_texture_word *) word; midg_stats.helper_invocations |= midgard_op_has_helpers(texture->op); /* Broad category of texture operation in question */ print_texture_op(fp, texture->op); /* Barriers use a dramatically different code path */ if (texture->op == TEXTURE_OP_BARRIER) { print_texture_barrier(fp, word); return; } else if (texture->type == TAG_TEXTURE_4_BARRIER) fprintf (fp, "/* nonbarrier had tex/bar tag */ "); else if (texture->type == TAG_TEXTURE_4_VTX) fprintf (fp, ".vtx"); if (texture->op == TEXTURE_OP_DERIVATIVE) fprintf(fp, "%s", derivative_mode(texture->mode)); else fprintf(fp, "%s", texture_mode(texture->mode)); /* Specific format in question */ print_texture_format(fp, texture->format); /* Instruction "modifiers" parallel the ALU instructions. */ if (texture->cont) fprintf(fp, ".cont"); if (texture->last) fprintf(fp, ".last"); if (texture->out_of_order) fprintf(fp, ".ooo%u", texture->out_of_order); /* Output modifiers are always interpreted floatly */ print_outmod(fp, texture->outmod, false); fprintf(fp, " %sr%u", texture->out_full ? "" : "h", out_reg_base + texture->out_reg_select); print_mask_4(fp, texture->mask, texture->out_upper); assert(!(texture->out_full && texture->out_upper)); fprintf(fp, ", "); /* Depending on whether we read from textures directly or indirectly, * we may be able to update our analysis */ if (texture->texture_register) { fprintf(fp, "texture["); print_texture_reg_select(fp, texture->texture_handle, in_reg_base); fprintf(fp, "], "); /* Indirect, tut tut */ midg_stats.texture_count = -16; } else { fprintf(fp, "texture%u, ", texture->texture_handle); update_stats(&midg_stats.texture_count, texture->texture_handle); } /* Print the type, GL style */ fprintf(fp, "%csampler", sampler_type_name(texture->sampler_type)); if (texture->sampler_register) { fprintf(fp, "["); print_texture_reg_select(fp, texture->sampler_handle, in_reg_base); fprintf(fp, "]"); midg_stats.sampler_count = -16; } else { fprintf(fp, "%u", texture->sampler_handle); update_stats(&midg_stats.sampler_count, texture->sampler_handle); } print_swizzle_vec4(fp, texture->swizzle, false, false, false); fprintf(fp, ", %sr%u", texture->in_reg_full ? "" : "h", in_reg_base + texture->in_reg_select); assert(!(texture->in_reg_full && texture->in_reg_upper)); /* TODO: integrate with swizzle */ if (texture->in_reg_upper) fprintf(fp, "'"); print_swizzle_vec4(fp, texture->in_reg_swizzle, false, false, false); /* There is *always* an offset attached. Of * course, that offset is just immediate #0 for a * GLES call that doesn't take an offset. If there * is a non-negative non-zero offset, this is * specified in immediate offset mode, with the * values in the offset_* fields as immediates. If * this is a negative offset, we instead switch to * a register offset mode, where the offset_* * fields become register triplets */ if (texture->offset_register) { fprintf(fp, " + "); bool full = texture->offset & 1; bool select = texture->offset & 2; bool upper = texture->offset & 4; fprintf(fp, "%sr%u", full ? "" : "h", in_reg_base + select); assert(!(texture->out_full && texture->out_upper)); /* TODO: integrate with swizzle */ if (upper) fprintf(fp, "'"); print_swizzle_vec4(fp, texture->offset >> 3, false, false, false); fprintf(fp, ", "); } else if (texture->offset) { /* Only select ops allow negative immediate offsets, verify */ signed offset_x = (texture->offset & 0xF); signed offset_y = ((texture->offset >> 4) & 0xF); signed offset_z = ((texture->offset >> 8) & 0xF); bool neg_x = offset_x < 0; bool neg_y = offset_y < 0; bool neg_z = offset_z < 0; bool any_neg = neg_x || neg_y || neg_z; if (any_neg && texture->op != TEXTURE_OP_TEXEL_FETCH) fprintf(fp, "/* invalid negative */ "); /* Regardless, just print the immediate offset */ fprintf(fp, " + <%d, %d, %d>, ", offset_x, offset_y, offset_z); } else { fprintf(fp, ", "); } char lod_operand = texture_op_takes_bias(texture->op) ? '+' : '='; if (texture->lod_register) { fprintf(fp, "lod %c ", lod_operand); print_texture_reg_select(fp, texture->bias, in_reg_base); fprintf(fp, ", "); if (texture->bias_int) fprintf(fp, " /* bias_int = 0x%X */", texture->bias_int); } else if (texture->op == TEXTURE_OP_TEXEL_FETCH) { /* For texel fetch, the int LOD is in the fractional place and * there is no fraction. We *always* have an explicit LOD, even * if it's zero. */ if (texture->bias_int) fprintf(fp, " /* bias_int = 0x%X */ ", texture->bias_int); fprintf(fp, "lod = %u, ", texture->bias); } else if (texture->bias || texture->bias_int) { signed bias_int = texture->bias_int; float bias_frac = texture->bias / 256.0f; float bias = bias_int + bias_frac; bool is_bias = texture_op_takes_bias(texture->op); char sign = (bias >= 0.0) ? '+' : '-'; char operand = is_bias ? sign : '='; fprintf(fp, "lod %c %f, ", operand, fabsf(bias)); } fprintf(fp, "\n"); /* While not zero in general, for these simple instructions the * following unknowns are zero, so we don't include them */ if (texture->unknown4 || texture->unknown8) { fprintf(fp, "// unknown4 = 0x%x\n", texture->unknown4); fprintf(fp, "// unknown8 = 0x%x\n", texture->unknown8); } midg_stats.instruction_count++; } struct midgard_disasm_stats disassemble_midgard(FILE *fp, uint8_t *code, size_t size, unsigned gpu_id, gl_shader_stage stage) { uint32_t *words = (uint32_t *) code; unsigned num_words = size / 4; int tabs = 0; bool branch_forward = false; int last_next_tag = -1; unsigned i = 0; midg_tags = calloc(sizeof(midg_tags[0]), num_words); /* Stats for shader-db */ memset(&midg_stats, 0, sizeof(midg_stats)); midg_ever_written = 0; while (i < num_words) { unsigned tag = words[i] & 0xF; unsigned next_tag = (words[i] >> 4) & 0xF; unsigned num_quad_words = midgard_tag_props[tag].size; if (midg_tags[i] && midg_tags[i] != tag) { fprintf(fp, "\t/* XXX: TAG ERROR branch, got %s expected %s */\n", midgard_tag_props[tag].name, midgard_tag_props[midg_tags[i]].name); } midg_tags[i] = tag; /* Check the tag. The idea is to ensure that next_tag is * *always* recoverable from the disassembly, such that we may * safely omit printing next_tag. To show this, we first * consider that next tags are semantically off-byone -- we end * up parsing tag n during step n+1. So, we ensure after we're * done disassembling the next tag of the final bundle is BREAK * and warn otherwise. We also ensure that the next tag is * never INVALID. Beyond that, since the last tag is checked * outside the loop, we can check one tag prior. If equal to * the current tag (which is unique), we're done. Otherwise, we * print if that tag was > TAG_BREAK, which implies the tag was * not TAG_BREAK or TAG_INVALID. But we already checked for * TAG_INVALID, so it's just if the last tag was TAG_BREAK that * we're silent. So we throw in a print for break-next on at * the end of the bundle (if it's not the final bundle, which * we already check for above), disambiguating this case as * well. Hence in all cases we are unambiguous, QED. */ if (next_tag == TAG_INVALID) fprintf(fp, "\t/* XXX: invalid next tag */\n"); if (last_next_tag > TAG_BREAK && last_next_tag != tag) { fprintf(fp, "\t/* XXX: TAG ERROR sequence, got %s expexted %s */\n", midgard_tag_props[tag].name, midgard_tag_props[last_next_tag].name); } last_next_tag = next_tag; /* Tags are unique in the following way: * * INVALID, BREAK, UNKNOWN_*: verbosely printed * TEXTURE_4_BARRIER: verified by barrier/!barrier op * TEXTURE_4_VTX: .vtx tag printed * TEXTURE_4: tetxure lack of barriers or .vtx * TAG_LOAD_STORE_4: only load/store * TAG_ALU_4/8/12/16: by number of instructions/constants * TAG_ALU_4_8/12/16_WRITEOUT: ^^ with .writeout tag */ switch (tag) { case TAG_TEXTURE_4_VTX ... TAG_TEXTURE_4_BARRIER: { bool interpipe_aliasing = midgard_get_quirks(gpu_id) & MIDGARD_INTERPIPE_REG_ALIASING; print_texture_word(fp, &words[i], tabs, interpipe_aliasing ? 0 : REG_TEX_BASE, interpipe_aliasing ? REGISTER_LDST_BASE : REG_TEX_BASE); break; } case TAG_LOAD_STORE_4: print_load_store_word(fp, &words[i], tabs); break; case TAG_ALU_4 ... TAG_ALU_16_WRITEOUT: branch_forward = print_alu_word(fp, &words[i], num_quad_words, tabs, i + 4*num_quad_words); /* Reset word static analysis state */ is_embedded_constant_half = false; is_embedded_constant_int = false; /* TODO: infer/verify me */ if (tag >= TAG_ALU_4_WRITEOUT) fprintf(fp, "writeout\n"); break; default: fprintf(fp, "Unknown word type %u:\n", words[i] & 0xF); num_quad_words = 1; print_quad_word(fp, &words[i], tabs); fprintf(fp, "\n"); break; } /* We are parsing per bundle anyway. Add before we start * breaking out so we don't miss the final bundle. */ midg_stats.bundle_count++; midg_stats.quadword_count += num_quad_words; /* Include a synthetic "break" instruction at the end of the * bundle to signify that if, absent a branch, the shader * execution will stop here. Stop disassembly at such a break * based on a heuristic */ if (next_tag == TAG_BREAK) { if (branch_forward) { fprintf(fp, "break\n"); } else { fprintf(fp, "\n"); break; } } fprintf(fp, "\n"); i += 4 * num_quad_words; } if (last_next_tag != TAG_BREAK) { fprintf(fp, "/* XXX: shader ended with tag %s */\n", midgard_tag_props[last_next_tag].name); } free(midg_tags); /* We computed work_count as max_work_registers, so add one to get the * count. If no work registers are written, you still have one work * reported, which is exactly what the hardware expects */ midg_stats.work_count++; return midg_stats; }