''' /************************************************************************** * * Copyright 2009-2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Pixel format packing and unpacking functions. * * @author Jose Fonseca */ ''' from __future__ import division, print_function import sys from u_format_parse import * if sys.version_info < (3, 0): integer_types = (int, long) else: integer_types = (int, ) def inv_swizzles(swizzles): '''Return an array[4] of inverse swizzle terms''' '''Only pick the first matching value to avoid l8 getting blue and i8 getting alpha''' inv_swizzle = [None]*4 for i in range(4): swizzle = swizzles[i] if swizzle < 4 and inv_swizzle[swizzle] == None: inv_swizzle[swizzle] = i return inv_swizzle def print_channels(format, func): if format.nr_channels() <= 1: func(format.le_channels, format.le_swizzles) else: if (format.le_channels == format.be_channels and [c.shift for c in format.le_channels] == [c.shift for c in format.be_channels] and format.le_swizzles == format.be_swizzles): func(format.le_channels, format.le_swizzles) else: print('#if UTIL_ARCH_BIG_ENDIAN') func(format.be_channels, format.be_swizzles) print('#else') func(format.le_channels, format.le_swizzles) print('#endif') def generate_format_type(format): '''Generate a structure that describes the format.''' assert format.layout == PLAIN def generate_bitfields(channels, swizzles): for channel in channels: if channel.type == VOID: if channel.size: print(' unsigned %s:%u;' % (channel.name, channel.size)) elif channel.type == UNSIGNED: print(' unsigned %s:%u;' % (channel.name, channel.size)) elif channel.type in (SIGNED, FIXED): print(' int %s:%u;' % (channel.name, channel.size)) elif channel.type == FLOAT: if channel.size == 64: print(' double %s;' % (channel.name)) elif channel.size == 32: print(' float %s;' % (channel.name)) else: print(' unsigned %s:%u;' % (channel.name, channel.size)) else: assert 0 def generate_full_fields(channels, swizzles): for channel in channels: assert channel.size % 8 == 0 and is_pot(channel.size) if channel.type == VOID: if channel.size: print(' uint%u_t %s;' % (channel.size, channel.name)) elif channel.type == UNSIGNED: print(' uint%u_t %s;' % (channel.size, channel.name)) elif channel.type in (SIGNED, FIXED): print(' int%u_t %s;' % (channel.size, channel.name)) elif channel.type == FLOAT: if channel.size == 64: print(' double %s;' % (channel.name)) elif channel.size == 32: print(' float %s;' % (channel.name)) elif channel.size == 16: print(' uint16_t %s;' % (channel.name)) else: assert 0 else: assert 0 use_bitfields = False for channel in format.le_channels: if channel.size % 8 or not is_pot(channel.size): use_bitfields = True print('struct util_format_%s {' % format.short_name()) if use_bitfields: print_channels(format, generate_bitfields) else: print_channels(format, generate_full_fields) print('};') print() def is_format_supported(format): '''Determines whether we actually have the plumbing necessary to generate the to read/write to/from this format.''' # FIXME: Ideally we would support any format combination here. if format.layout != PLAIN: return False for i in range(4): channel = format.le_channels[i] if channel.type not in (VOID, UNSIGNED, SIGNED, FLOAT, FIXED): return False if channel.type == FLOAT and channel.size not in (16, 32, 64): return False return True def native_type(format): '''Get the native appropriate for a format.''' if format.name == 'PIPE_FORMAT_R11G11B10_FLOAT': return 'uint32_t' if format.name == 'PIPE_FORMAT_R9G9B9E5_FLOAT': return 'uint32_t' if format.layout == PLAIN: if not format.is_array(): # For arithmetic pixel formats return the integer type that matches the whole pixel return 'uint%u_t' % format.block_size() else: # For array pixel formats return the integer type that matches the color channel channel = format.array_element() if channel.type in (UNSIGNED, VOID): return 'uint%u_t' % channel.size elif channel.type in (SIGNED, FIXED): return 'int%u_t' % channel.size elif channel.type == FLOAT: if channel.size == 16: return 'uint16_t' elif channel.size == 32: return 'float' elif channel.size == 64: return 'double' else: assert False else: assert False else: assert False def intermediate_native_type(bits, sign): '''Find a native type adequate to hold intermediate results of the request bit size.''' bytes = 4 # don't use anything smaller than 32bits while bytes * 8 < bits: bytes *= 2 bits = bytes*8 if sign: return 'int%u_t' % bits else: return 'uint%u_t' % bits def get_one_shift(type): '''Get the number of the bit that matches unity for this type.''' if type.type == 'FLOAT': assert False if not type.norm: return 0 if type.type == UNSIGNED: return type.size if type.type == SIGNED: return type.size - 1 if type.type == FIXED: return type.size / 2 assert False def truncate_mantissa(x, bits): '''Truncate an integer so it can be represented exactly with a floating point mantissa''' assert isinstance(x, integer_types) s = 1 if x < 0: s = -1 x = -x # We can represent integers up to mantissa + 1 bits exactly mask = (1 << (bits + 1)) - 1 # Slide the mask until the MSB matches shift = 0 while (x >> shift) & ~mask: shift += 1 x &= mask << shift x *= s return x def value_to_native(type, value): '''Get the value of unity for this type.''' if type.type == FLOAT: if type.size <= 32 \ and isinstance(value, integer_types): return truncate_mantissa(value, 23) return value if type.type == FIXED: return int(value * (1 << (type.size // 2))) if not type.norm: return int(value) if type.type == UNSIGNED: return int(value * ((1 << type.size) - 1)) if type.type == SIGNED: return int(value * ((1 << (type.size - 1)) - 1)) assert False def native_to_constant(type, value): '''Get the value of unity for this type.''' if type.type == FLOAT: if type.size <= 32: return "%.1ff" % float(value) else: return "%.1f" % float(value) else: return str(int(value)) def get_one(type): '''Get the value of unity for this type.''' return value_to_native(type, 1) def clamp_expr(src_channel, dst_channel, dst_native_type, value): '''Generate the expression to clamp the value in the source type to the destination type range.''' if src_channel == dst_channel: return value src_min = src_channel.min() src_max = src_channel.max() dst_min = dst_channel.min() dst_max = dst_channel.max() # Translate the destination range to the src native value dst_min_native = native_to_constant(src_channel, value_to_native(src_channel, dst_min)) dst_max_native = native_to_constant(src_channel, value_to_native(src_channel, dst_max)) if src_min < dst_min and src_max > dst_max: return 'CLAMP(%s, %s, %s)' % (value, dst_min_native, dst_max_native) if src_max > dst_max: return 'MIN2(%s, %s)' % (value, dst_max_native) if src_min < dst_min: return 'MAX2(%s, %s)' % (value, dst_min_native) return value def conversion_expr(src_channel, dst_channel, dst_native_type, value, clamp=True, src_colorspace = RGB, dst_colorspace = RGB): '''Generate the expression to convert a value between two types.''' if src_colorspace != dst_colorspace: if src_colorspace == SRGB: assert src_channel.type == UNSIGNED assert src_channel.norm assert src_channel.size <= 8 assert src_channel.size >= 4 assert dst_colorspace == RGB if src_channel.size < 8: value = '%s << %x | %s >> %x' % (value, 8 - src_channel.size, value, 2 * src_channel.size - 8) if dst_channel.type == FLOAT: return 'util_format_srgb_8unorm_to_linear_float(%s)' % value else: assert dst_channel.type == UNSIGNED assert dst_channel.norm assert dst_channel.size == 8 return 'util_format_srgb_to_linear_8unorm(%s)' % value elif dst_colorspace == SRGB: assert dst_channel.type == UNSIGNED assert dst_channel.norm assert dst_channel.size <= 8 assert src_colorspace == RGB if src_channel.type == FLOAT: value = 'util_format_linear_float_to_srgb_8unorm(%s)' % value else: assert src_channel.type == UNSIGNED assert src_channel.norm assert src_channel.size == 8 value = 'util_format_linear_to_srgb_8unorm(%s)' % value # XXX rounding is all wrong. if dst_channel.size < 8: return '%s >> %x' % (value, 8 - dst_channel.size) else: return value elif src_colorspace == ZS: pass elif dst_colorspace == ZS: pass else: assert 0 if src_channel == dst_channel: return value src_type = src_channel.type src_size = src_channel.size src_norm = src_channel.norm src_pure = src_channel.pure # Promote half to float if src_type == FLOAT and src_size == 16: value = '_mesa_half_to_float(%s)' % value src_size = 32 # Special case for float <-> ubytes for more accurate results # Done before clamping since these functions already take care of that if src_type == UNSIGNED and src_norm and src_size == 8 and dst_channel.type == FLOAT and dst_channel.size == 32: return 'ubyte_to_float(%s)' % value if src_type == FLOAT and src_size == 32 and dst_channel.type == UNSIGNED and dst_channel.norm and dst_channel.size == 8: return 'float_to_ubyte(%s)' % value if clamp: if dst_channel.type != FLOAT or src_type != FLOAT: value = clamp_expr(src_channel, dst_channel, dst_native_type, value) if src_type in (SIGNED, UNSIGNED) and dst_channel.type in (SIGNED, UNSIGNED): if not src_norm and not dst_channel.norm: # neither is normalized -- just cast return '(%s)%s' % (dst_native_type, value) src_one = get_one(src_channel) dst_one = get_one(dst_channel) if src_one > dst_one and src_norm and dst_channel.norm: # We can just bitshift src_shift = get_one_shift(src_channel) dst_shift = get_one_shift(dst_channel) value = '(%s >> %s)' % (value, src_shift - dst_shift) else: # We need to rescale using an intermediate type big enough to hold the multiplication of both tmp_native_type = intermediate_native_type(src_size + dst_channel.size, src_channel.sign and dst_channel.sign) value = '((%s)%s)' % (tmp_native_type, value) value = '(%s * 0x%x / 0x%x)' % (value, dst_one, src_one) value = '(%s)%s' % (dst_native_type, value) return value # Promote to either float or double if src_type != FLOAT: if src_norm or src_type == FIXED: one = get_one(src_channel) if src_size <= 23: value = '(%s * (1.0f/0x%x))' % (value, one) if dst_channel.size <= 32: value = '(float)%s' % value src_size = 32 else: # bigger than single precision mantissa, use double value = '(%s * (1.0/0x%x))' % (value, one) src_size = 64 src_norm = False else: if src_size <= 23 or dst_channel.size <= 32: value = '(float)%s' % value src_size = 32 else: # bigger than single precision mantissa, use double value = '(double)%s' % value src_size = 64 src_type = FLOAT # Convert double or float to non-float if dst_channel.type != FLOAT: if dst_channel.norm or dst_channel.type == FIXED: dst_one = get_one(dst_channel) if dst_channel.size <= 23: value = 'util_iround(%s * 0x%x)' % (value, dst_one) else: # bigger than single precision mantissa, use double value = '(%s * (double)0x%x)' % (value, dst_one) value = '(%s)%s' % (dst_native_type, value) else: # Cast double to float when converting to either half or float if dst_channel.size <= 32 and src_size > 32: value = '(float)%s' % value src_size = 32 if dst_channel.size == 16: value = '_mesa_float_to_float16_rtz(%s)' % value elif dst_channel.size == 64 and src_size < 64: value = '(double)%s' % value return value def generate_unpack_kernel(format, dst_channel, dst_native_type): if not is_format_supported(format): return assert format.layout == PLAIN def unpack_from_bitmask(channels, swizzles): depth = format.block_size() print(' uint%u_t value = *(const uint%u_t *)src;' % (depth, depth)) # Declare the intermediate variables for i in range(format.nr_channels()): src_channel = channels[i] if src_channel.type == UNSIGNED: print(' uint%u_t %s;' % (depth, src_channel.name)) elif src_channel.type == SIGNED: print(' int%u_t %s;' % (depth, src_channel.name)) # Compute the intermediate unshifted values for i in range(format.nr_channels()): src_channel = channels[i] value = 'value' shift = src_channel.shift if src_channel.type == UNSIGNED: if shift: value = '%s >> %u' % (value, shift) if shift + src_channel.size < depth: value = '(%s) & 0x%x' % (value, (1 << src_channel.size) - 1) elif src_channel.type == SIGNED: if shift + src_channel.size < depth: # Align the sign bit lshift = depth - (shift + src_channel.size) value = '%s << %u' % (value, lshift) # Cast to signed value = '(int%u_t)(%s) ' % (depth, value) if src_channel.size < depth: # Align the LSB bit rshift = depth - src_channel.size value = '(%s) >> %u' % (value, rshift) else: value = None if value is not None: print(' %s = %s;' % (src_channel.name, value)) # Convert, swizzle, and store final values for i in range(4): swizzle = swizzles[i] if swizzle < 4: src_channel = channels[swizzle] src_colorspace = format.colorspace if src_colorspace == SRGB and i == 3: # Alpha channel is linear src_colorspace = RGB value = src_channel.name value = conversion_expr(src_channel, dst_channel, dst_native_type, value, src_colorspace = src_colorspace) elif swizzle == SWIZZLE_0: value = '0' elif swizzle == SWIZZLE_1: value = get_one(dst_channel) elif swizzle == SWIZZLE_NONE: value = '0' else: assert False print(' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i])) def unpack_from_struct(channels, swizzles): print(' struct util_format_%s pixel;' % format.short_name()) print(' memcpy(&pixel, src, sizeof pixel);') for i in range(4): swizzle = swizzles[i] if swizzle < 4: src_channel = channels[swizzle] src_colorspace = format.colorspace if src_colorspace == SRGB and i == 3: # Alpha channel is linear src_colorspace = RGB value = 'pixel.%s' % src_channel.name value = conversion_expr(src_channel, dst_channel, dst_native_type, value, src_colorspace = src_colorspace) elif swizzle == SWIZZLE_0: value = '0' elif swizzle == SWIZZLE_1: value = get_one(dst_channel) elif swizzle == SWIZZLE_NONE: value = '0' else: assert False print(' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i])) if format.is_bitmask(): print_channels(format, unpack_from_bitmask) else: print_channels(format, unpack_from_struct) def generate_pack_kernel(format, src_channel, src_native_type): if not is_format_supported(format): return dst_native_type = native_type(format) assert format.layout == PLAIN def pack_into_bitmask(channels, swizzles): inv_swizzle = inv_swizzles(swizzles) depth = format.block_size() print(' uint%u_t value = 0;' % depth) for i in range(4): dst_channel = channels[i] shift = dst_channel.shift if inv_swizzle[i] is not None: value ='src[%u]' % inv_swizzle[i] dst_colorspace = format.colorspace if dst_colorspace == SRGB and inv_swizzle[i] == 3: # Alpha channel is linear dst_colorspace = RGB value = conversion_expr(src_channel, dst_channel, dst_native_type, value, dst_colorspace = dst_colorspace) if dst_channel.type in (UNSIGNED, SIGNED): if shift + dst_channel.size < depth: value = '(%s) & 0x%x' % (value, (1 << dst_channel.size) - 1) if shift: value = '(uint32_t)(%s) << %u' % (value, shift) if dst_channel.type == SIGNED: # Cast to unsigned value = '(uint%u_t)(%s) ' % (depth, value) else: value = None if value is not None: print(' value |= %s;' % (value)) print(' *(uint%u_t *)dst = value;' % depth) def pack_into_struct(channels, swizzles): inv_swizzle = inv_swizzles(swizzles) print(' struct util_format_%s pixel = {0};' % format.short_name()) for i in range(4): dst_channel = channels[i] width = dst_channel.size if inv_swizzle[i] is None: continue dst_colorspace = format.colorspace if dst_colorspace == SRGB and inv_swizzle[i] == 3: # Alpha channel is linear dst_colorspace = RGB value ='src[%u]' % inv_swizzle[i] value = conversion_expr(src_channel, dst_channel, dst_native_type, value, dst_colorspace = dst_colorspace) print(' pixel.%s = %s;' % (dst_channel.name, value)) print(' memcpy(dst, &pixel, sizeof pixel);') if format.is_bitmask(): print_channels(format, pack_into_bitmask) else: print_channels(format, pack_into_struct) def generate_format_unpack(format, dst_channel, dst_native_type, dst_suffix): '''Generate the function to unpack pixels from a particular format''' name = format.short_name() if "8unorm" in dst_suffix: dst_proto_type = dst_native_type else: dst_proto_type = 'void' proto = 'util_format_%s_unpack_%s(%s *dst_row, unsigned dst_stride, const uint8_t *src_row, unsigned src_stride, unsigned width, unsigned height)' % (name, dst_suffix, dst_proto_type) print('void %s;' % proto, file=sys.stdout2) print('void') print(proto) print('{') if is_format_supported(format): print(' unsigned x, y;') print(' for(y = 0; y < height; y += %u) {' % (format.block_height,)) print(' %s *dst = dst_row;' % (dst_native_type)) print(' const uint8_t *src = src_row;') print(' for(x = 0; x < width; x += %u) {' % (format.block_width,)) generate_unpack_kernel(format, dst_channel, dst_native_type) print(' src += %u;' % (format.block_size() / 8,)) print(' dst += 4;') print(' }') print(' src_row += src_stride;') print(' dst_row = (uint8_t *)dst_row + dst_stride;') print(' }') print('}') print() def generate_format_pack(format, src_channel, src_native_type, src_suffix): '''Generate the function to pack pixels to a particular format''' name = format.short_name() print('void') print('util_format_%s_pack_%s(uint8_t *dst_row, unsigned dst_stride, const %s *src_row, unsigned src_stride, unsigned width, unsigned height)' % (name, src_suffix, src_native_type)) print('{') print('void util_format_%s_pack_%s(uint8_t *dst_row, unsigned dst_stride, const %s *src_row, unsigned src_stride, unsigned width, unsigned height);' % (name, src_suffix, src_native_type), file=sys.stdout2) if is_format_supported(format): print(' unsigned x, y;') print(' for(y = 0; y < height; y += %u) {' % (format.block_height,)) print(' const %s *src = src_row;' % (src_native_type)) print(' uint8_t *dst = dst_row;') print(' for(x = 0; x < width; x += %u) {' % (format.block_width,)) generate_pack_kernel(format, src_channel, src_native_type) print(' src += 4;') print(' dst += %u;' % (format.block_size() / 8,)) print(' }') print(' dst_row += dst_stride;') print(' src_row += src_stride/sizeof(*src_row);') print(' }') print('}') print() def generate_format_fetch(format, dst_channel, dst_native_type): '''Generate the function to unpack pixels from a particular format''' name = format.short_name() proto = 'util_format_%s_fetch_rgba(void *in_dst, const uint8_t *src, UNUSED unsigned i, UNUSED unsigned j)' % (name) print('void %s;' % proto, file=sys.stdout2) print('void') print(proto) print('{') print(' %s *dst = in_dst;' % dst_native_type) if is_format_supported(format): generate_unpack_kernel(format, dst_channel, dst_native_type) print('}') print() def is_format_hand_written(format): return format.layout != PLAIN or format.colorspace == ZS def generate(formats): print() print('#include "pipe/p_compiler.h"') print('#include "util/u_math.h"') print('#include "util/half_float.h"') print('#include "u_format.h"') print('#include "u_format_other.h"') print('#include "util/format_srgb.h"') print('#include "u_format_yuv.h"') print('#include "u_format_zs.h"') print('#include "u_format_pack.h"') print() for format in formats: if not is_format_hand_written(format): if is_format_supported(format) and not format.is_bitmask(): generate_format_type(format) if format.is_pure_unsigned(): native_type = 'unsigned' suffix = 'unsigned' channel = Channel(UNSIGNED, False, True, 32) generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix) generate_format_fetch(format, channel, native_type) channel = Channel(SIGNED, False, True, 32) native_type = 'int' suffix = 'signed' generate_format_pack(format, channel, native_type, suffix) elif format.is_pure_signed(): native_type = 'int' suffix = 'signed' channel = Channel(SIGNED, False, True, 32) generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix) generate_format_fetch(format, channel, native_type) native_type = 'unsigned' suffix = 'unsigned' channel = Channel(UNSIGNED, False, True, 32) generate_format_pack(format, channel, native_type, suffix) else: channel = Channel(FLOAT, False, False, 32) native_type = 'float' suffix = 'rgba_float' generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix) generate_format_fetch(format, channel, native_type) channel = Channel(UNSIGNED, True, False, 8) native_type = 'uint8_t' suffix = 'rgba_8unorm' generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix)