// Copyright 2017 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fxcrt/fx_system.h" #include #include #include "build/build_config.h" #include "core/fxcrt/fx_extension.h" namespace { #if !defined(OS_WIN) uint32_t g_last_error = 0; #endif template IntType FXSYS_StrToInt(const CharType* str) { if (!str) return 0; // Process the sign. bool neg = *str == '-'; if (neg || *str == '+') str++; IntType num = 0; while (*str && FXSYS_IsDecimalDigit(*str)) { IntType val = FXSYS_DecimalCharToInt(*str); if (num > (std::numeric_limits::max() - val) / 10) { if (neg && std::numeric_limits::is_signed) { // Return MIN when the represented number is signed type and is smaller // than the min value. return std::numeric_limits::min(); } else { // Return MAX when the represented number is signed type and is larger // than the max value, or the number is unsigned type and out of range. return std::numeric_limits::max(); } } num = num * 10 + val; str++; } // When it is a negative value, -num should be returned. Since num may be of // unsigned type, use ~num + 1 to avoid the warning of applying unary minus // operator to unsigned type. return neg ? ~num + 1 : num; } template STR_T FXSYS_IntToStr(T value, STR_T str, int radix) { if (radix < 2 || radix > 16) { str[0] = 0; return str; } if (value == 0) { str[0] = '0'; str[1] = 0; return str; } int i = 0; UT uvalue; if (value < 0) { str[i++] = '-'; // Standard trick to avoid undefined behaviour when negating INT_MIN. uvalue = static_cast(-(value + 1)) + 1; } else { uvalue = value; } int digits = 1; T order = uvalue / radix; while (order > 0) { digits++; order = order / radix; } for (int d = digits - 1; d > -1; d--) { str[d + i] = "0123456789abcdef"[uvalue % radix]; uvalue /= radix; } str[digits + i] = 0; return str; } } // namespace int FXSYS_roundf(float f) { if (std::isnan(f)) return 0; if (f < static_cast(std::numeric_limits::min())) return std::numeric_limits::min(); if (f >= static_cast(std::numeric_limits::max())) return std::numeric_limits::max(); return static_cast(round(f)); } int FXSYS_round(double d) { if (std::isnan(d)) return 0; if (d < static_cast(std::numeric_limits::min())) return std::numeric_limits::min(); if (d >= static_cast(std::numeric_limits::max())) return std::numeric_limits::max(); return static_cast(round(d)); } int32_t FXSYS_atoi(const char* str) { return FXSYS_StrToInt(str); } uint32_t FXSYS_atoui(const char* str) { return FXSYS_StrToInt(str); } int32_t FXSYS_wtoi(const wchar_t* str) { return FXSYS_StrToInt(str); } int64_t FXSYS_atoi64(const char* str) { return FXSYS_StrToInt(str); } const char* FXSYS_i64toa(int64_t value, char* str, int radix) { return FXSYS_IntToStr(value, str, radix); } #if defined(OS_WIN) size_t FXSYS_wcsftime(wchar_t* strDest, size_t maxsize, const wchar_t* format, const struct tm* timeptr) { // Avoid tripping an invalid parameter handler and crashing process. // Note: leap seconds may cause tm_sec == 60. if (timeptr->tm_year < -1900 || timeptr->tm_year > 8099 || timeptr->tm_mon < 0 || timeptr->tm_mon > 11 || timeptr->tm_mday < 1 || timeptr->tm_mday > 31 || timeptr->tm_hour < 0 || timeptr->tm_hour > 23 || timeptr->tm_min < 0 || timeptr->tm_min > 59 || timeptr->tm_sec < 0 || timeptr->tm_sec > 60 || timeptr->tm_wday < 0 || timeptr->tm_wday > 6 || timeptr->tm_yday < 0 || timeptr->tm_yday > 365) { strDest[0] = L'\0'; return 0; } return wcsftime(strDest, maxsize, format, timeptr); } #else // defined(OS_WIN) int FXSYS_GetACP() { return 0; } char* FXSYS_strlwr(char* str) { if (!str) { return nullptr; } char* s = str; while (*str) { *str = tolower(*str); str++; } return s; } char* FXSYS_strupr(char* str) { if (!str) { return nullptr; } char* s = str; while (*str) { *str = toupper(*str); str++; } return s; } wchar_t* FXSYS_wcslwr(wchar_t* str) { if (!str) { return nullptr; } wchar_t* s = str; while (*str) { *str = FXSYS_towlower(*str); str++; } return s; } wchar_t* FXSYS_wcsupr(wchar_t* str) { if (!str) { return nullptr; } wchar_t* s = str; while (*str) { *str = FXSYS_towupper(*str); str++; } return s; } int FXSYS_stricmp(const char* str1, const char* str2) { int f; int l; do { f = toupper(*str1); l = toupper(*str2); ++str1; ++str2; } while (f && f == l); return f - l; } int FXSYS_wcsicmp(const wchar_t* str1, const wchar_t* str2) { wchar_t f; wchar_t l; do { f = FXSYS_towupper(*str1); l = FXSYS_towupper(*str2); ++str1; ++str2; } while (f && f == l); return f - l; } char* FXSYS_itoa(int value, char* str, int radix) { return FXSYS_IntToStr(value, str, radix); } int FXSYS_WideCharToMultiByte(uint32_t codepage, uint32_t dwFlags, const wchar_t* wstr, int wlen, char* buf, int buflen, const char* default_str, int* pUseDefault) { int len = 0; for (int i = 0; i < wlen; i++) { if (wstr[i] < 0x100) { if (buf && len < buflen) buf[len] = static_cast(wstr[i]); len++; } } return len; } int FXSYS_MultiByteToWideChar(uint32_t codepage, uint32_t dwFlags, const char* bstr, int blen, wchar_t* buf, int buflen) { int wlen = 0; for (int i = 0; i < blen; i++) { if (buf && wlen < buflen) buf[wlen] = reinterpret_cast(bstr)[i]; wlen++; } return wlen; } void FXSYS_SetLastError(uint32_t err) { g_last_error = err; } uint32_t FXSYS_GetLastError() { return g_last_error; } #endif // defined(OS_WIN)