// Copyright 2017 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fxge/dib/cfx_imagetransformer.h" #include #include #include #include "core/fxge/dib/cfx_dibitmap.h" #include "core/fxge/dib/cfx_imagestretcher.h" #include "core/fxge/fx_dib.h" #include "third_party/base/compiler_specific.h" #include "third_party/base/numerics/safe_conversions.h" #include "third_party/base/ptr_util.h" #include "third_party/base/stl_util.h" namespace { constexpr int kBase = 256; constexpr float kFix16 = 0.05f; constexpr uint8_t kOpaqueAlpha = 0xff; uint8_t bilinear_interpol(const uint8_t* buf, int row_offset_l, int row_offset_r, int src_col_l, int src_col_r, int res_x, int res_y, int bpp, int c_offset) { int i_resx = 255 - res_x; int col_bpp_l = src_col_l * bpp; int col_bpp_r = src_col_r * bpp; const uint8_t* buf_u = buf + row_offset_l + c_offset; const uint8_t* buf_d = buf + row_offset_r + c_offset; const uint8_t* src_pos0 = buf_u + col_bpp_l; const uint8_t* src_pos1 = buf_u + col_bpp_r; const uint8_t* src_pos2 = buf_d + col_bpp_l; const uint8_t* src_pos3 = buf_d + col_bpp_r; uint8_t r_pos_0 = (*src_pos0 * i_resx + *src_pos1 * res_x) >> 8; uint8_t r_pos_1 = (*src_pos2 * i_resx + *src_pos3 * res_x) >> 8; return (r_pos_0 * (255 - res_y) + r_pos_1 * res_y) >> 8; } uint8_t bicubic_interpol(const uint8_t* buf, uint32_t pitch, const int pos_pixel[], const int u_w[], const int v_w[], int res_x, int res_y, int bpp, int c_offset) { int s_result = 0; for (int i = 0; i < 4; i++) { int a_result = 0; for (int j = 0; j < 4; j++) { uint8_t val = *(buf + pos_pixel[i + 4] * pitch + pos_pixel[j] * bpp + c_offset); a_result += u_w[j] * val; } s_result += a_result * v_w[i]; } s_result >>= 16; return static_cast(pdfium::clamp(s_result, 0, 255)); } void bicubic_get_pos_weight(int pos_pixel[], int u_w[], int v_w[], int src_col_l, int src_row_l, int res_x, int res_y, int stretch_width, int stretch_height) { pos_pixel[0] = src_col_l - 1; pos_pixel[1] = src_col_l; pos_pixel[2] = src_col_l + 1; pos_pixel[3] = src_col_l + 2; pos_pixel[4] = src_row_l - 1; pos_pixel[5] = src_row_l; pos_pixel[6] = src_row_l + 1; pos_pixel[7] = src_row_l + 2; for (int i = 0; i < 4; i++) { pos_pixel[i] = pdfium::clamp(pos_pixel[i], 0, stretch_width - 1); pos_pixel[i + 4] = pdfium::clamp(pos_pixel[i + 4], 0, stretch_height - 1); } u_w[0] = SDP_Table[256 + res_x]; u_w[1] = SDP_Table[res_x]; u_w[2] = SDP_Table[256 - res_x]; u_w[3] = SDP_Table[512 - res_x]; v_w[0] = SDP_Table[256 + res_y]; v_w[1] = SDP_Table[res_y]; v_w[2] = SDP_Table[256 - res_y]; v_w[3] = SDP_Table[512 - res_y]; } FXDIB_Format GetTransformedFormat(const RetainPtr& pDrc) { if (pDrc->IsAlphaMask()) return FXDIB_8bppMask; FXDIB_Format format = pDrc->GetFormat(); if (format >= 1025) return FXDIB_Cmyka; if (format <= 32 || format == FXDIB_Argb) return FXDIB_Argb; return FXDIB_Rgba; } void WriteMonoResult(uint32_t r_bgra_cmyk, FXDIB_Format format, uint8_t* dest) { if (format == FXDIB_Rgba) { dest[0] = static_cast(r_bgra_cmyk >> 24); dest[1] = static_cast(r_bgra_cmyk >> 16); dest[2] = static_cast(r_bgra_cmyk >> 8); } else { *reinterpret_cast(dest) = r_bgra_cmyk; } } // Let the compiler deduce the type for |func|, which cheaper than specifying it // with std::function. template void WriteColorResult(const F& func, bool bHasAlpha, FXDIB_Format format, uint8_t* dest) { uint8_t blue_c = func(0); uint8_t green_m = func(1); uint8_t red_y = func(2); uint32_t* dest32 = reinterpret_cast(dest); if (bHasAlpha) { if (format == FXDIB_Argb) { *dest32 = FXARGB_TODIB(ArgbEncode(func(3), red_y, green_m, blue_c)); } else if (format == FXDIB_Rgba) { dest[0] = blue_c; dest[1] = green_m; dest[2] = red_y; } else { *dest32 = FXCMYK_TODIB(CmykEncode(blue_c, green_m, red_y, func(3))); } return; } if (format == FXDIB_Cmyka) { *dest32 = FXCMYK_TODIB(CmykEncode(blue_c, green_m, red_y, func(3))); } else { *dest32 = FXARGB_TODIB(ArgbEncode(kOpaqueAlpha, red_y, green_m, blue_c)); } } class CPDF_FixedMatrix { public: explicit CPDF_FixedMatrix(const CFX_Matrix& src) : a(FXSYS_roundf(src.a * kBase)), b(FXSYS_roundf(src.b * kBase)), c(FXSYS_roundf(src.c * kBase)), d(FXSYS_roundf(src.d * kBase)), e(FXSYS_roundf(src.e * kBase)), f(FXSYS_roundf(src.f * kBase)) {} void Transform(int x, int y, int* x1, int* y1) const { std::pair val = TransformInternal(x, y); *x1 = pdfium::base::saturated_cast(val.first / kBase); *y1 = pdfium::base::saturated_cast(val.second / kBase); } protected: std::pair TransformInternal(float x, float y) const { return std::make_pair(a * x + c * y + e + kBase / 2, b * x + d * y + f + kBase / 2); } const int a; const int b; const int c; const int d; const int e; const int f; }; class CFX_BilinearMatrix final : public CPDF_FixedMatrix { public: explicit CFX_BilinearMatrix(const CFX_Matrix& src) : CPDF_FixedMatrix(src) {} void Transform(int x, int y, int* x1, int* y1, int* res_x, int* res_y) const { std::pair val = TransformInternal(x, y); *x1 = pdfium::base::saturated_cast(val.first / kBase); *y1 = pdfium::base::saturated_cast(val.second / kBase); *res_x = static_cast(val.first) % kBase; *res_y = static_cast(val.second) % kBase; if (*res_x < 0 && *res_x > -kBase) *res_x = kBase + *res_x; if (*res_y < 0 && *res_y > -kBase) *res_y = kBase + *res_y; } }; bool InStretchBounds(const FX_RECT& clip_rect, int col, int row) { return col >= 0 && col <= clip_rect.Width() && row >= 0 && row <= clip_rect.Height(); } void AdjustCoords(const FX_RECT& clip_rect, int* col, int* row) { int& src_col = *col; int& src_row = *row; if (src_col == clip_rect.Width()) src_col--; if (src_row == clip_rect.Height()) src_row--; } // Let the compiler deduce the type for |func|, which cheaper than specifying it // with std::function. template void DoBilinearLoop(const CFX_ImageTransformer::CalcData& cdata, const FX_RECT& result_rect, const FX_RECT& clip_rect, int increment, const F& func) { CFX_BilinearMatrix matrix_fix(cdata.matrix); for (int row = 0; row < result_rect.Height(); row++) { uint8_t* dest = cdata.bitmap->GetWritableScanline(row); for (int col = 0; col < result_rect.Width(); col++) { CFX_ImageTransformer::BilinearData d; d.res_x = 0; d.res_y = 0; d.src_col_l = 0; d.src_row_l = 0; matrix_fix.Transform(col, row, &d.src_col_l, &d.src_row_l, &d.res_x, &d.res_y); if (LIKELY(InStretchBounds(clip_rect, d.src_col_l, d.src_row_l))) { AdjustCoords(clip_rect, &d.src_col_l, &d.src_row_l); d.src_col_r = d.src_col_l + 1; d.src_row_r = d.src_row_l + 1; AdjustCoords(clip_rect, &d.src_col_r, &d.src_row_r); d.row_offset_l = d.src_row_l * cdata.pitch; d.row_offset_r = d.src_row_r * cdata.pitch; func(d, dest); } dest += increment; } } } // Let the compiler deduce the type for |func|, which cheaper than specifying it // with std::function. template void DoBicubicLoop(const CFX_ImageTransformer::CalcData& cdata, const FX_RECT& result_rect, const FX_RECT& clip_rect, int increment, const F& func) { CFX_BilinearMatrix matrix_fix(cdata.matrix); for (int row = 0; row < result_rect.Height(); row++) { uint8_t* dest = cdata.bitmap->GetWritableScanline(row); for (int col = 0; col < result_rect.Width(); col++) { CFX_ImageTransformer::BicubicData d; d.res_x = 0; d.res_y = 0; d.src_col_l = 0; d.src_row_l = 0; matrix_fix.Transform(col, row, &d.src_col_l, &d.src_row_l, &d.res_x, &d.res_y); if (LIKELY(InStretchBounds(clip_rect, d.src_col_l, d.src_row_l))) { AdjustCoords(clip_rect, &d.src_col_l, &d.src_row_l); bicubic_get_pos_weight(d.pos_pixel, d.u_w, d.v_w, d.src_col_l, d.src_row_l, d.res_x, d.res_y, clip_rect.Width(), clip_rect.Height()); func(d, dest); } dest += increment; } } } // Let the compiler deduce the type for |func|, which cheaper than specifying it // with std::function. template void DoDownSampleLoop(const CFX_ImageTransformer::CalcData& cdata, const FX_RECT& result_rect, const FX_RECT& clip_rect, int increment, const F& func) { CPDF_FixedMatrix matrix_fix(cdata.matrix); for (int row = 0; row < result_rect.Height(); row++) { uint8_t* dest = cdata.bitmap->GetWritableScanline(row); for (int col = 0; col < result_rect.Width(); col++) { CFX_ImageTransformer::DownSampleData d; d.src_col = 0; d.src_row = 0; matrix_fix.Transform(col, row, &d.src_col, &d.src_row); if (LIKELY(InStretchBounds(clip_rect, d.src_col, d.src_row))) { AdjustCoords(clip_rect, &d.src_col, &d.src_row); func(d, dest); } dest += increment; } } } } // namespace CFX_ImageTransformer::CFX_ImageTransformer(const RetainPtr& pSrc, const CFX_Matrix& matrix, const FXDIB_ResampleOptions& options, const FX_RECT* pClip) : m_pSrc(pSrc), m_matrix(matrix), m_ResampleOptions(options) { FX_RECT result_rect = m_matrix.GetUnitRect().GetClosestRect(); FX_RECT result_clip = result_rect; if (pClip) result_clip.Intersect(*pClip); if (result_clip.IsEmpty()) return; m_result = result_clip; if (fabs(m_matrix.a) < fabs(m_matrix.b) / 20 && fabs(m_matrix.d) < fabs(m_matrix.c) / 20 && fabs(m_matrix.a) < 0.5f && fabs(m_matrix.d) < 0.5f) { int dest_width = result_rect.Width(); int dest_height = result_rect.Height(); result_clip.Offset(-result_rect.left, -result_rect.top); result_clip = FXDIB_SwapClipBox(result_clip, dest_width, dest_height, m_matrix.c > 0, m_matrix.b < 0); m_Stretcher = pdfium::MakeUnique( &m_Storer, m_pSrc, dest_height, dest_width, result_clip, m_ResampleOptions); m_Stretcher->Start(); m_type = kRotate; return; } if (fabs(m_matrix.b) < kFix16 && fabs(m_matrix.c) < kFix16) { int dest_width = static_cast(m_matrix.a > 0 ? ceil(m_matrix.a) : floor(m_matrix.a)); int dest_height = static_cast(m_matrix.d > 0 ? -ceil(m_matrix.d) : -floor(m_matrix.d)); result_clip.Offset(-result_rect.left, -result_rect.top); m_Stretcher = pdfium::MakeUnique( &m_Storer, m_pSrc, dest_width, dest_height, result_clip, m_ResampleOptions); m_Stretcher->Start(); m_type = kNormal; return; } int stretch_width = static_cast(ceil(FXSYS_sqrt2(m_matrix.a, m_matrix.b))); int stretch_height = static_cast(ceil(FXSYS_sqrt2(m_matrix.c, m_matrix.d))); CFX_Matrix stretch_to_dest(1.0f, 0.0f, 0.0f, -1.0f, 0.0f, stretch_height); stretch_to_dest.Concat( CFX_Matrix(m_matrix.a / stretch_width, m_matrix.b / stretch_width, m_matrix.c / stretch_height, m_matrix.d / stretch_height, m_matrix.e, m_matrix.f)); CFX_Matrix dest_to_strech = stretch_to_dest.GetInverse(); FX_RECT stretch_clip = dest_to_strech.TransformRect(CFX_FloatRect(result_clip)).GetOuterRect(); if (!stretch_clip.Valid()) return; stretch_clip.Intersect(0, 0, stretch_width, stretch_height); if (!stretch_clip.Valid()) return; m_dest2stretch = dest_to_strech; m_StretchClip = stretch_clip; m_Stretcher = pdfium::MakeUnique( &m_Storer, m_pSrc, stretch_width, stretch_height, m_StretchClip, m_ResampleOptions); m_Stretcher->Start(); m_type = kOther; } CFX_ImageTransformer::~CFX_ImageTransformer() = default; bool CFX_ImageTransformer::Continue(PauseIndicatorIface* pPause) { if (m_type == kNone) return false; if (m_Stretcher->Continue(pPause)) return true; switch (m_type) { case kNormal: break; case kRotate: ContinueRotate(pPause); break; case kOther: ContinueOther(pPause); break; default: NOTREACHED(); break; } return false; } void CFX_ImageTransformer::ContinueRotate(PauseIndicatorIface* pPause) { if (m_Storer.GetBitmap()) { m_Storer.Replace( m_Storer.GetBitmap()->SwapXY(m_matrix.c > 0, m_matrix.b < 0)); } } void CFX_ImageTransformer::ContinueOther(PauseIndicatorIface* pPause) { if (!m_Storer.GetBitmap()) return; auto pTransformed = pdfium::MakeRetain(); FXDIB_Format format = GetTransformedFormat(m_Stretcher->source()); if (!pTransformed->Create(m_result.Width(), m_result.Height(), format)) return; const auto& pSrcMask = m_Storer.GetBitmap()->m_pAlphaMask; const uint8_t* pSrcMaskBuf = pSrcMask ? pSrcMask->GetBuffer() : nullptr; pTransformed->Clear(0); auto& pDestMask = pTransformed->m_pAlphaMask; if (pDestMask) pDestMask->Clear(0); CFX_Matrix result2stretch(1.0f, 0.0f, 0.0f, 1.0f, m_result.left, m_result.top); result2stretch.Concat(m_dest2stretch); result2stretch.Translate(-m_StretchClip.left, -m_StretchClip.top); if (!pSrcMaskBuf && pDestMask) { pDestMask->Clear(0xff000000); } else if (pDestMask) { CalcData cdata = { pDestMask.Get(), result2stretch, pSrcMaskBuf, m_Storer.GetBitmap()->m_pAlphaMask->GetPitch(), }; CalcMask(cdata); } CalcData cdata = {pTransformed.Get(), result2stretch, m_Storer.GetBitmap()->GetBuffer(), m_Storer.GetBitmap()->GetPitch()}; if (m_Storer.GetBitmap()->IsAlphaMask()) { CalcAlpha(cdata); } else { int Bpp = m_Storer.GetBitmap()->GetBPP() / 8; if (Bpp == 1) CalcMono(cdata, format); else CalcColor(cdata, format, Bpp); } m_Storer.Replace(std::move(pTransformed)); } RetainPtr CFX_ImageTransformer::DetachBitmap() { return m_Storer.Detach(); } void CFX_ImageTransformer::CalcMask(const CalcData& cdata) { if (IsBilinear()) { auto func = [&cdata](const BilinearData& data, uint8_t* dest) { *dest = bilinear_interpol(cdata.buf, data.row_offset_l, data.row_offset_r, data.src_col_l, data.src_col_r, data.res_x, data.res_y, 1, 0); }; DoBilinearLoop(cdata, m_result, m_StretchClip, 1, func); } else if (IsBiCubic()) { auto func = [&cdata](const BicubicData& data, uint8_t* dest) { *dest = bicubic_interpol(cdata.buf, cdata.pitch, data.pos_pixel, data.u_w, data.v_w, data.res_x, data.res_y, 1, 0); }; DoBicubicLoop(cdata, m_result, m_StretchClip, 1, func); } else { auto func = [&cdata](const DownSampleData& data, uint8_t* dest) { *dest = cdata.buf[data.src_row * cdata.pitch + data.src_col]; }; DoDownSampleLoop(cdata, m_result, m_StretchClip, 1, func); } } void CFX_ImageTransformer::CalcAlpha(const CalcData& cdata) { if (IsBilinear()) { auto func = [&cdata](const BilinearData& data, uint8_t* dest) { *dest = bilinear_interpol(cdata.buf, data.row_offset_l, data.row_offset_r, data.src_col_l, data.src_col_r, data.res_x, data.res_y, 1, 0); }; DoBilinearLoop(cdata, m_result, m_StretchClip, 1, func); } else if (IsBiCubic()) { auto func = [&cdata](const BicubicData& data, uint8_t* dest) { *dest = bicubic_interpol(cdata.buf, cdata.pitch, data.pos_pixel, data.u_w, data.v_w, data.res_x, data.res_y, 1, 0); }; DoBicubicLoop(cdata, m_result, m_StretchClip, 1, func); } else { auto func = [&cdata](const DownSampleData& data, uint8_t* dest) { const uint8_t* src_pixel = cdata.buf + cdata.pitch * data.src_row + data.src_col; *dest = *src_pixel; }; DoDownSampleLoop(cdata, m_result, m_StretchClip, 1, func); } } void CFX_ImageTransformer::CalcMono(const CalcData& cdata, FXDIB_Format format) { uint32_t argb[256]; FX_ARGB* pPal = m_Storer.GetBitmap()->GetPalette(); if (pPal) { for (size_t i = 0; i < FX_ArraySize(argb); i++) argb[i] = pPal[i]; } else if (m_Storer.GetBitmap()->IsCmykImage()) { for (size_t i = 0; i < FX_ArraySize(argb); i++) argb[i] = 255 - i; } else { for (size_t i = 0; i < FX_ArraySize(argb); i++) argb[i] = 0xff000000 | (i * 0x010101); } int destBpp = cdata.bitmap->GetBPP() / 8; if (IsBilinear()) { auto func = [&cdata, format, &argb](const BilinearData& data, uint8_t* dest) { uint8_t idx = bilinear_interpol( cdata.buf, data.row_offset_l, data.row_offset_r, data.src_col_l, data.src_col_r, data.res_x, data.res_y, 1, 0); uint32_t r_bgra_cmyk = argb[idx]; WriteMonoResult(r_bgra_cmyk, format, dest); }; DoBilinearLoop(cdata, m_result, m_StretchClip, destBpp, func); } else if (IsBiCubic()) { auto func = [&cdata, format, &argb](const BicubicData& data, uint8_t* dest) { uint32_t r_bgra_cmyk = argb[bicubic_interpol( cdata.buf, cdata.pitch, data.pos_pixel, data.u_w, data.v_w, data.res_x, data.res_y, 1, 0)]; WriteMonoResult(r_bgra_cmyk, format, dest); }; DoBicubicLoop(cdata, m_result, m_StretchClip, destBpp, func); } else { auto func = [&cdata, format, &argb](const DownSampleData& data, uint8_t* dest) { uint32_t r_bgra_cmyk = argb[cdata.buf[data.src_row * cdata.pitch + data.src_col]]; WriteMonoResult(r_bgra_cmyk, format, dest); }; DoDownSampleLoop(cdata, m_result, m_StretchClip, destBpp, func); } } void CFX_ImageTransformer::CalcColor(const CalcData& cdata, FXDIB_Format format, int Bpp) { bool bHasAlpha = m_Storer.GetBitmap()->HasAlpha(); int destBpp = cdata.bitmap->GetBPP() / 8; if (IsBilinear()) { auto func = [&cdata, format, Bpp, bHasAlpha](const BilinearData& data, uint8_t* dest) { auto bilinear_interpol_func = [&cdata, &data, Bpp](int offset) { return bilinear_interpol( cdata.buf, data.row_offset_l, data.row_offset_r, data.src_col_l, data.src_col_r, data.res_x, data.res_y, Bpp, offset); }; WriteColorResult(bilinear_interpol_func, bHasAlpha, format, dest); }; DoBilinearLoop(cdata, m_result, m_StretchClip, destBpp, func); } else if (IsBiCubic()) { auto func = [&cdata, format, Bpp, bHasAlpha](const BicubicData& data, uint8_t* dest) { auto bicubic_interpol_func = [&cdata, &data, Bpp](int offset) { return bicubic_interpol(cdata.buf, cdata.pitch, data.pos_pixel, data.u_w, data.v_w, data.res_x, data.res_y, Bpp, offset); }; WriteColorResult(bicubic_interpol_func, bHasAlpha, format, dest); }; DoBicubicLoop(cdata, m_result, m_StretchClip, destBpp, func); } else { auto func = [&cdata, format, bHasAlpha, Bpp](const DownSampleData& data, uint8_t* dest) { const uint8_t* src_pos = cdata.buf + data.src_row * cdata.pitch + data.src_col * Bpp; auto sample_func = [src_pos](int offset) { return src_pos[offset]; }; WriteColorResult(sample_func, bHasAlpha, format, dest); }; DoDownSampleLoop(cdata, m_result, m_StretchClip, destBpp, func); } } bool CFX_ImageTransformer::IsBilinear() const { return !IsBiCubic(); } bool CFX_ImageTransformer::IsBiCubic() const { return m_ResampleOptions.bInterpolateBicubic; }