// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code by Matt McCutchen, see the LICENSE file. #ifndef BIGINTEGER_H #define BIGINTEGER_H #include "BigUnsigned.hh" /* A BigInteger object represents a signed integer of size limited only by * available memory. BigUnsigneds support most mathematical operators and can * be converted to and from most primitive integer types. * * A BigInteger is just an aggregate of a BigUnsigned and a sign. (It is no * longer derived from BigUnsigned because that led to harmful implicit * conversions.) */ class BigInteger { public: typedef BigUnsigned::Blk Blk; typedef BigUnsigned::Index Index; typedef BigUnsigned::CmpRes CmpRes; static const CmpRes less = BigUnsigned::less , equal = BigUnsigned::equal , greater = BigUnsigned::greater; // Enumeration for the sign of a BigInteger. enum Sign { negative = -1, zero = 0, positive = 1 }; protected: Sign sign; BigUnsigned mag; public: // Constructs zero. BigInteger() : sign(zero), mag() {} // Copy constructor BigInteger(const BigInteger &x) : sign(x.sign), mag(x.mag) {} // Assignment operator BigInteger& operator=(const BigInteger &x); // Constructor that copies from a given array of blocks with a sign. BigInteger(const Blk *b, Index blen, Sign s); // Nonnegative constructor that copies from a given array of blocks. BigInteger(const Blk *b, Index blen) : mag(b, blen) { sign = mag.isZero() ? zero : positive; } // Constructor from a BigUnsigned and a sign BigInteger(const BigUnsigned &x, Sign s); // Nonnegative constructor from a BigUnsigned BigInteger(const BigUnsigned &x) : mag(x) { sign = mag.isZero() ? zero : positive; } // Constructors from primitive integer types BigInteger(unsigned long x); BigInteger( long x); BigInteger(unsigned int x); BigInteger( int x); BigInteger(unsigned short x); BigInteger( short x); /* Converters to primitive integer types * The implicit conversion operators caused trouble, so these are now * named. */ unsigned long toUnsignedLong () const; long toLong () const; unsigned int toUnsignedInt () const; int toInt () const; unsigned short toUnsignedShort() const; short toShort () const; protected: // Helper template X convertToUnsignedPrimitive() const; template X convertToSignedPrimitive() const; public: // ACCESSORS Sign getSign() const { return sign; } /* The client can't do any harm by holding a read-only reference to the * magnitude. */ const BigUnsigned &getMagnitude() const { return mag; } // Some accessors that go through to the magnitude Index getLength() const { return mag.getLength(); } Index getCapacity() const { return mag.getCapacity(); } Blk getBlock(Index i) const { return mag.getBlock(i); } bool isZero() const { return sign == zero; } // A bit special // COMPARISONS // Compares this to x like Perl's <=> CmpRes compareTo(const BigInteger &x) const; // Ordinary comparison operators bool operator ==(const BigInteger &x) const { return sign == x.sign && mag == x.mag; } bool operator !=(const BigInteger &x) const { return !operator ==(x); } bool operator < (const BigInteger &x) const { return compareTo(x) == less ; } bool operator <=(const BigInteger &x) const { return compareTo(x) != greater; } bool operator >=(const BigInteger &x) const { return compareTo(x) != less ; } bool operator > (const BigInteger &x) const { return compareTo(x) == greater; } // OPERATORS -- See the discussion in BigUnsigned.hh. void add (const BigInteger &a, const BigInteger &b); void subtract(const BigInteger &a, const BigInteger &b); void multiply(const BigInteger &a, const BigInteger &b); /* See the comment on BigUnsigned::divideWithRemainder. Semantics * differ from those of primitive integers when negatives and/or zeros * are involved. */ void divideWithRemainder(const BigInteger &b, BigInteger &q); void negate(const BigInteger &a); /* Bitwise operators are not provided for BigIntegers. Use * getMagnitude to get the magnitude and operate on that instead. */ BigInteger operator +(const BigInteger &x) const; BigInteger operator -(const BigInteger &x) const; BigInteger operator *(const BigInteger &x) const; BigInteger operator /(const BigInteger &x) const; BigInteger operator %(const BigInteger &x) const; BigInteger operator -() const; BigInteger& operator +=(const BigInteger &x); BigInteger& operator -=(const BigInteger &x); BigInteger& operator *=(const BigInteger &x); BigInteger& operator /=(const BigInteger &x); BigInteger& operator %=(const BigInteger &x); void flipSign(); // INCREMENT/DECREMENT OPERATORS BigInteger& operator ++( ); BigInteger operator ++(int); BigInteger& operator --( ); BigInteger operator --(int); }; // NORMAL OPERATORS /* These create an object to hold the result and invoke * the appropriate put-here operation on it, passing * this and x. The new object is then returned. */ inline BigInteger BigInteger::operator +(const BigInteger &x) const { BigInteger ans; ans.add(*this, x); return ans; } inline BigInteger BigInteger::operator -(const BigInteger &x) const { BigInteger ans; ans.subtract(*this, x); return ans; } inline BigInteger BigInteger::operator *(const BigInteger &x) const { BigInteger ans; ans.multiply(*this, x); return ans; } inline BigInteger BigInteger::operator /(const BigInteger &x) const { if (x.isZero()) abort(); BigInteger q, r; r = *this; r.divideWithRemainder(x, q); return q; } inline BigInteger BigInteger::operator %(const BigInteger &x) const { if (x.isZero()) abort(); BigInteger q, r; r = *this; r.divideWithRemainder(x, q); return r; } inline BigInteger BigInteger::operator -() const { BigInteger ans; ans.negate(*this); return ans; } /* * ASSIGNMENT OPERATORS * * Now the responsibility for making a temporary copy if necessary * belongs to the put-here operations. See Assignment Operators in * BigUnsigned.hh. */ inline BigInteger& BigInteger::operator +=(const BigInteger &x) { add(*this, x); return *this; } inline BigInteger& BigInteger::operator -=(const BigInteger &x) { subtract(*this, x); return *this; } inline BigInteger& BigInteger::operator *=(const BigInteger &x) { multiply(*this, x); return *this; } inline BigInteger& BigInteger::operator /=(const BigInteger &x) { if (x.isZero()) abort(); /* The following technique is slightly faster than copying *this first * when x is large. */ BigInteger q; divideWithRemainder(x, q); // *this contains the remainder, but we overwrite it with the quotient. *this = q; return *this; } inline BigInteger& BigInteger::operator %=(const BigInteger &x) { if (x.isZero()) abort(); BigInteger q; // Mods *this by x. Don't care about quotient left in q. divideWithRemainder(x, q); return *this; } // This one is trivial inline void BigInteger::flipSign() { sign = Sign(-sign); } #endif