//--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2017 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- // #include "lcms2_internal.h" // Link several profiles to obtain a single LUT modelling the whole color transform. Intents, Black point // compensation and Adaptation parameters may vary across profiles. BPC and Adaptation refers to the PCS // after the profile. I.e, BPC[0] refers to connexion between profile(0) and profile(1) cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number Intents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags); //--------------------------------------------------------------------------------- // This is the default routine for ICC-style intents. A user may decide to override it by using a plugin. // Supported intents are perceptual, relative colorimetric, saturation and ICC-absolute colorimetric static cmsPipeline* DefaultICCintents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number Intents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags); //--------------------------------------------------------------------------------- // This is the entry for black-preserving K-only intents, which are non-ICC. Last profile have to be a output profile // to do the trick (no devicelinks allowed at that position) static cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number Intents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags); //--------------------------------------------------------------------------------- // This is the entry for black-plane preserving, which are non-ICC. Again, Last profile have to be a output profile // to do the trick (no devicelinks allowed at that position) static cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number Intents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags); //--------------------------------------------------------------------------------- // This is a structure holding implementations for all supported intents. typedef struct _cms_intents_list { cmsUInt32Number Intent; char Description[256]; cmsIntentFn Link; struct _cms_intents_list* Next; } cmsIntentsList; // Built-in intents static cmsIntentsList DefaultIntents[] = { { INTENT_PERCEPTUAL, "Perceptual", DefaultICCintents, &DefaultIntents[1] }, { INTENT_RELATIVE_COLORIMETRIC, "Relative colorimetric", DefaultICCintents, &DefaultIntents[2] }, { INTENT_SATURATION, "Saturation", DefaultICCintents, &DefaultIntents[3] }, { INTENT_ABSOLUTE_COLORIMETRIC, "Absolute colorimetric", DefaultICCintents, &DefaultIntents[4] }, { INTENT_PRESERVE_K_ONLY_PERCEPTUAL, "Perceptual preserving black ink", BlackPreservingKOnlyIntents, &DefaultIntents[5] }, { INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC, "Relative colorimetric preserving black ink", BlackPreservingKOnlyIntents, &DefaultIntents[6] }, { INTENT_PRESERVE_K_ONLY_SATURATION, "Saturation preserving black ink", BlackPreservingKOnlyIntents, &DefaultIntents[7] }, { INTENT_PRESERVE_K_PLANE_PERCEPTUAL, "Perceptual preserving black plane", BlackPreservingKPlaneIntents, &DefaultIntents[8] }, { INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC,"Relative colorimetric preserving black plane", BlackPreservingKPlaneIntents, &DefaultIntents[9] }, { INTENT_PRESERVE_K_PLANE_SATURATION, "Saturation preserving black plane", BlackPreservingKPlaneIntents, NULL } }; // A pointer to the beginning of the list _cmsIntentsPluginChunkType _cmsIntentsPluginChunk = { NULL }; // Duplicates the zone of memory used by the plug-in in the new context static void DupPluginIntentsList(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { _cmsIntentsPluginChunkType newHead = { NULL }; cmsIntentsList* entry; cmsIntentsList* Anterior = NULL; _cmsIntentsPluginChunkType* head = (_cmsIntentsPluginChunkType*) src->chunks[IntentPlugin]; // Walk the list copying all nodes for (entry = head->Intents; entry != NULL; entry = entry ->Next) { cmsIntentsList *newEntry = ( cmsIntentsList *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(cmsIntentsList)); if (newEntry == NULL) return; // We want to keep the linked list order, so this is a little bit tricky newEntry -> Next = NULL; if (Anterior) Anterior -> Next = newEntry; Anterior = newEntry; if (newHead.Intents == NULL) newHead.Intents = newEntry; } ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsIntentsPluginChunkType)); } void _cmsAllocIntentsPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { if (src != NULL) { // Copy all linked list DupPluginIntentsList(ctx, src); } else { static _cmsIntentsPluginChunkType IntentsPluginChunkType = { NULL }; ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx ->MemPool, &IntentsPluginChunkType, sizeof(_cmsIntentsPluginChunkType)); } } // Search the list for a suitable intent. Returns NULL if not found static cmsIntentsList* SearchIntent(cmsContext ContextID, cmsUInt32Number Intent) { _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); cmsIntentsList* pt; for (pt = ctx -> Intents; pt != NULL; pt = pt -> Next) if (pt ->Intent == Intent) return pt; for (pt = DefaultIntents; pt != NULL; pt = pt -> Next) if (pt ->Intent == Intent) return pt; return NULL; } // Black point compensation. Implemented as a linear scaling in XYZ. Black points // should come relative to the white point. Fills an matrix/offset element m // which is organized as a 4x4 matrix. static void ComputeBlackPointCompensation(const cmsCIEXYZ* BlackPointIn, const cmsCIEXYZ* BlackPointOut, cmsMAT3* m, cmsVEC3* off) { cmsFloat64Number ax, ay, az, bx, by, bz, tx, ty, tz; // Now we need to compute a matrix plus an offset m and of such of // [m]*bpin + off = bpout // [m]*D50 + off = D50 // // This is a linear scaling in the form ax+b, where // a = (bpout - D50) / (bpin - D50) // b = - D50* (bpout - bpin) / (bpin - D50) tx = BlackPointIn->X - cmsD50_XYZ()->X; ty = BlackPointIn->Y - cmsD50_XYZ()->Y; tz = BlackPointIn->Z - cmsD50_XYZ()->Z; ax = (BlackPointOut->X - cmsD50_XYZ()->X) / tx; ay = (BlackPointOut->Y - cmsD50_XYZ()->Y) / ty; az = (BlackPointOut->Z - cmsD50_XYZ()->Z) / tz; bx = - cmsD50_XYZ()-> X * (BlackPointOut->X - BlackPointIn->X) / tx; by = - cmsD50_XYZ()-> Y * (BlackPointOut->Y - BlackPointIn->Y) / ty; bz = - cmsD50_XYZ()-> Z * (BlackPointOut->Z - BlackPointIn->Z) / tz; _cmsVEC3init(&m ->v[0], ax, 0, 0); _cmsVEC3init(&m ->v[1], 0, ay, 0); _cmsVEC3init(&m ->v[2], 0, 0, az); _cmsVEC3init(off, bx, by, bz); } // Approximate a blackbody illuminant based on CHAD information static cmsFloat64Number CHAD2Temp(const cmsMAT3* Chad) { // Convert D50 across inverse CHAD to get the absolute white point cmsVEC3 d, s; cmsCIEXYZ Dest; cmsCIExyY DestChromaticity; cmsFloat64Number TempK; cmsMAT3 m1, m2; m1 = *Chad; if (!_cmsMAT3inverse(&m1, &m2)) return FALSE; s.n[VX] = cmsD50_XYZ() -> X; s.n[VY] = cmsD50_XYZ() -> Y; s.n[VZ] = cmsD50_XYZ() -> Z; _cmsMAT3eval(&d, &m2, &s); Dest.X = d.n[VX]; Dest.Y = d.n[VY]; Dest.Z = d.n[VZ]; cmsXYZ2xyY(&DestChromaticity, &Dest); if (!cmsTempFromWhitePoint(&TempK, &DestChromaticity)) return -1.0; return TempK; } // Compute a CHAD based on a given temperature static void Temp2CHAD(cmsMAT3* Chad, cmsFloat64Number Temp) { cmsCIEXYZ White; cmsCIExyY ChromaticityOfWhite; cmsWhitePointFromTemp(&ChromaticityOfWhite, Temp); cmsxyY2XYZ(&White, &ChromaticityOfWhite); _cmsAdaptationMatrix(Chad, NULL, &White, cmsD50_XYZ()); } // Join scalings to obtain relative input to absolute and then to relative output. // Result is stored in a 3x3 matrix static cmsBool ComputeAbsoluteIntent(cmsFloat64Number AdaptationState, const cmsCIEXYZ* WhitePointIn, const cmsMAT3* ChromaticAdaptationMatrixIn, const cmsCIEXYZ* WhitePointOut, const cmsMAT3* ChromaticAdaptationMatrixOut, cmsMAT3* m) { cmsMAT3 Scale, m1, m2, m3, m4; // TODO: Follow Marc Mahy's recommendation to check if CHAD is same by using M1*M2 == M2*M1. If so, do nothing. // TODO: Add support for ArgyllArts tag // Adaptation state if (AdaptationState == 1.0) { // Observer is fully adapted. Keep chromatic adaptation. // That is the standard V4 behaviour _cmsVEC3init(&m->v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); _cmsVEC3init(&m->v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); _cmsVEC3init(&m->v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); } else { // Incomplete adaptation. This is an advanced feature. _cmsVEC3init(&Scale.v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); _cmsVEC3init(&Scale.v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); _cmsVEC3init(&Scale.v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); if (AdaptationState == 0.0) { m1 = *ChromaticAdaptationMatrixOut; _cmsMAT3per(&m2, &m1, &Scale); // m2 holds CHAD from output white to D50 times abs. col. scaling // Observer is not adapted, undo the chromatic adaptation _cmsMAT3per(m, &m2, ChromaticAdaptationMatrixOut); m3 = *ChromaticAdaptationMatrixIn; if (!_cmsMAT3inverse(&m3, &m4)) return FALSE; _cmsMAT3per(m, &m2, &m4); } else { cmsMAT3 MixedCHAD; cmsFloat64Number TempSrc, TempDest, Temp; m1 = *ChromaticAdaptationMatrixIn; if (!_cmsMAT3inverse(&m1, &m2)) return FALSE; _cmsMAT3per(&m3, &m2, &Scale); // m3 holds CHAD from input white to D50 times abs. col. scaling TempSrc = CHAD2Temp(ChromaticAdaptationMatrixIn); TempDest = CHAD2Temp(ChromaticAdaptationMatrixOut); if (TempSrc < 0.0 || TempDest < 0.0) return FALSE; // Something went wrong if (_cmsMAT3isIdentity(&Scale) && fabs(TempSrc - TempDest) < 0.01) { _cmsMAT3identity(m); return TRUE; } Temp = (1.0 - AdaptationState) * TempDest + AdaptationState * TempSrc; // Get a CHAD from whatever output temperature to D50. This replaces output CHAD Temp2CHAD(&MixedCHAD, Temp); _cmsMAT3per(m, &m3, &MixedCHAD); } } return TRUE; } // Just to see if m matrix should be applied static cmsBool IsEmptyLayer(cmsMAT3* m, cmsVEC3* off) { cmsFloat64Number diff = 0; cmsMAT3 Ident; int i; if (m == NULL && off == NULL) return TRUE; // NULL is allowed as an empty layer if (m == NULL && off != NULL) return FALSE; // This is an internal error _cmsMAT3identity(&Ident); for (i=0; i < 3*3; i++) diff += fabs(((cmsFloat64Number*)m)[i] - ((cmsFloat64Number*)&Ident)[i]); for (i=0; i < 3; i++) diff += fabs(((cmsFloat64Number*)off)[i]); return (diff < 0.002); } // Compute the conversion layer static cmsBool ComputeConversion(cmsUInt32Number i, cmsHPROFILE hProfiles[], cmsUInt32Number Intent, cmsBool BPC, cmsFloat64Number AdaptationState, cmsMAT3* m, cmsVEC3* off) { int k; // m and off are set to identity and this is detected latter on _cmsMAT3identity(m); _cmsVEC3init(off, 0, 0, 0); // If intent is abs. colorimetric, if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) { cmsCIEXYZ WhitePointIn, WhitePointOut; cmsMAT3 ChromaticAdaptationMatrixIn, ChromaticAdaptationMatrixOut; _cmsReadMediaWhitePoint(&WhitePointIn, hProfiles[i-1]); _cmsReadCHAD(&ChromaticAdaptationMatrixIn, hProfiles[i-1]); _cmsReadMediaWhitePoint(&WhitePointOut, hProfiles[i]); _cmsReadCHAD(&ChromaticAdaptationMatrixOut, hProfiles[i]); if (!ComputeAbsoluteIntent(AdaptationState, &WhitePointIn, &ChromaticAdaptationMatrixIn, &WhitePointOut, &ChromaticAdaptationMatrixOut, m)) return FALSE; } else { // Rest of intents may apply BPC. if (BPC) { cmsCIEXYZ BlackPointIn, BlackPointOut; cmsDetectBlackPoint(&BlackPointIn, hProfiles[i-1], Intent, 0); cmsDetectDestinationBlackPoint(&BlackPointOut, hProfiles[i], Intent, 0); // If black points are equal, then do nothing if (BlackPointIn.X != BlackPointOut.X || BlackPointIn.Y != BlackPointOut.Y || BlackPointIn.Z != BlackPointOut.Z) ComputeBlackPointCompensation(&BlackPointIn, &BlackPointOut, m, off); } } // Offset should be adjusted because the encoding. We encode XYZ normalized to 0..1.0, // to do that, we divide by MAX_ENCODEABLE_XZY. The conversion stage goes XYZ -> XYZ so // we have first to convert from encoded to XYZ and then convert back to encoded. // y = Mx + Off // x = x'c // y = M x'c + Off // y = y'c; y' = y / c // y' = (Mx'c + Off) /c = Mx' + (Off / c) for (k=0; k < 3; k++) { off ->n[k] /= MAX_ENCODEABLE_XYZ; } return TRUE; } // Add a conversion stage if needed. If a matrix/offset m is given, it applies to XYZ space static cmsBool AddConversion(cmsPipeline* Result, cmsColorSpaceSignature InPCS, cmsColorSpaceSignature OutPCS, cmsMAT3* m, cmsVEC3* off) { cmsFloat64Number* m_as_dbl = (cmsFloat64Number*) m; cmsFloat64Number* off_as_dbl = (cmsFloat64Number*) off; // Handle PCS mismatches. A specialized stage is added to the LUT in such case switch (InPCS) { case cmsSigXYZData: // Input profile operates in XYZ switch (OutPCS) { case cmsSigXYZData: // XYZ -> XYZ if (!IsEmptyLayer(m, off) && !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) return FALSE; break; case cmsSigLabData: // XYZ -> Lab if (!IsEmptyLayer(m, off) && !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) return FALSE; if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocXYZ2Lab(Result ->ContextID))) return FALSE; break; default: return FALSE; // Colorspace mismatch } break; case cmsSigLabData: // Input profile operates in Lab switch (OutPCS) { case cmsSigXYZData: // Lab -> XYZ if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocLab2XYZ(Result ->ContextID))) return FALSE; if (!IsEmptyLayer(m, off) && !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) return FALSE; break; case cmsSigLabData: // Lab -> Lab if (!IsEmptyLayer(m, off)) { if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocLab2XYZ(Result ->ContextID)) || !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl)) || !cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocXYZ2Lab(Result ->ContextID))) return FALSE; } break; default: return FALSE; // Mismatch } break; // On colorspaces other than PCS, check for same space default: if (InPCS != OutPCS) return FALSE; break; } return TRUE; } // Is a given space compatible with another? static cmsBool ColorSpaceIsCompatible(cmsColorSpaceSignature a, cmsColorSpaceSignature b) { // If they are same, they are compatible. if (a == b) return TRUE; // Check for MCH4 substitution of CMYK if ((a == cmsSig4colorData) && (b == cmsSigCmykData)) return TRUE; if ((a == cmsSigCmykData) && (b == cmsSig4colorData)) return TRUE; // Check for XYZ/Lab. Those spaces are interchangeable as they can be computed one from other. if ((a == cmsSigXYZData) && (b == cmsSigLabData)) return TRUE; if ((a == cmsSigLabData) && (b == cmsSigXYZData)) return TRUE; return FALSE; } // Default handler for ICC-style intents static cmsPipeline* DefaultICCintents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsPipeline* Lut = NULL; cmsPipeline* Result; cmsHPROFILE hProfile; cmsMAT3 m; cmsVEC3 off; cmsColorSpaceSignature ColorSpaceIn, ColorSpaceOut = cmsSigLabData, CurrentColorSpace; cmsProfileClassSignature ClassSig; cmsUInt32Number i, Intent; // For safety if (nProfiles == 0) return NULL; // Allocate an empty LUT for holding the result. 0 as channel count means 'undefined' Result = cmsPipelineAlloc(ContextID, 0, 0); if (Result == NULL) return NULL; CurrentColorSpace = cmsGetColorSpace(hProfiles[0]); for (i=0; i < nProfiles; i++) { cmsBool lIsDeviceLink, lIsInput; hProfile = hProfiles[i]; ClassSig = cmsGetDeviceClass(hProfile); lIsDeviceLink = (ClassSig == cmsSigLinkClass || ClassSig == cmsSigAbstractClass ); // First profile is used as input unless devicelink or abstract if ((i == 0) && !lIsDeviceLink) { lIsInput = TRUE; } else { // Else use profile in the input direction if current space is not PCS lIsInput = (CurrentColorSpace != cmsSigXYZData) && (CurrentColorSpace != cmsSigLabData); } Intent = TheIntents[i]; if (lIsInput || lIsDeviceLink) { ColorSpaceIn = cmsGetColorSpace(hProfile); ColorSpaceOut = cmsGetPCS(hProfile); } else { ColorSpaceIn = cmsGetPCS(hProfile); ColorSpaceOut = cmsGetColorSpace(hProfile); } if (!ColorSpaceIsCompatible(ColorSpaceIn, CurrentColorSpace)) { cmsSignalError(ContextID, cmsERROR_COLORSPACE_CHECK, "ColorSpace mismatch"); goto Error; } // If devicelink is found, then no custom intent is allowed and we can // read the LUT to be applied. Settings don't apply here. if (lIsDeviceLink || ((ClassSig == cmsSigNamedColorClass) && (nProfiles == 1))) { // Get the involved LUT from the profile Lut = _cmsReadDevicelinkLUT(hProfile, Intent); if (Lut == NULL) goto Error; // What about abstract profiles? if (ClassSig == cmsSigAbstractClass && i > 0) { if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; } else { _cmsMAT3identity(&m); _cmsVEC3init(&off, 0, 0, 0); } if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; } else { if (lIsInput) { // Input direction means non-pcs connection, so proceed like devicelinks Lut = _cmsReadInputLUT(hProfile, Intent); if (Lut == NULL) goto Error; } else { // Output direction means PCS connection. Intent may apply here Lut = _cmsReadOutputLUT(hProfile, Intent); if (Lut == NULL) goto Error; if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; } } // Concatenate to the output LUT if (!cmsPipelineCat(Result, Lut)) goto Error; cmsPipelineFree(Lut); Lut = NULL; // Update current space CurrentColorSpace = ColorSpaceOut; } // Check for non-negatives clip if (dwFlags & cmsFLAGS_NONEGATIVES) { if (ColorSpaceOut == cmsSigGrayData || ColorSpaceOut == cmsSigRgbData || ColorSpaceOut == cmsSigCmykData) { cmsStage* clip = _cmsStageClipNegatives(Result->ContextID, cmsChannelsOf(ColorSpaceOut)); if (clip == NULL) goto Error; if (!cmsPipelineInsertStage(Result, cmsAT_END, clip)) goto Error; } } return Result; Error: if (Lut != NULL) cmsPipelineFree(Lut); if (Result != NULL) cmsPipelineFree(Result); return NULL; cmsUNUSED_PARAMETER(dwFlags); } // Wrapper for DLL calling convention cmsPipeline* CMSEXPORT _cmsDefaultICCintents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { return DefaultICCintents(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); } // Black preserving intents --------------------------------------------------------------------------------------------- // Translate black-preserving intents to ICC ones static cmsUInt32Number TranslateNonICCIntents(cmsUInt32Number Intent) { switch (Intent) { case INTENT_PRESERVE_K_ONLY_PERCEPTUAL: case INTENT_PRESERVE_K_PLANE_PERCEPTUAL: return INTENT_PERCEPTUAL; case INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC: case INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC: return INTENT_RELATIVE_COLORIMETRIC; case INTENT_PRESERVE_K_ONLY_SATURATION: case INTENT_PRESERVE_K_PLANE_SATURATION: return INTENT_SATURATION; default: return Intent; } } // Sampler for Black-only preserving CMYK->CMYK transforms typedef struct { cmsPipeline* cmyk2cmyk; // The original transform cmsToneCurve* KTone; // Black-to-black tone curve } GrayOnlyParams; // Preserve black only if that is the only ink used static int BlackPreservingGrayOnlySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) { GrayOnlyParams* bp = (GrayOnlyParams*) Cargo; // If going across black only, keep black only if (In[0] == 0 && In[1] == 0 && In[2] == 0) { // TAC does not apply because it is black ink! Out[0] = Out[1] = Out[2] = 0; Out[3] = cmsEvalToneCurve16(bp->KTone, In[3]); return TRUE; } // Keep normal transform for other colors bp ->cmyk2cmyk ->Eval16Fn(In, Out, bp ->cmyk2cmyk->Data); return TRUE; } // This is the entry for black-preserving K-only intents, which are non-ICC static cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { GrayOnlyParams bp; cmsPipeline* Result; cmsUInt32Number ICCIntents[256]; cmsStage* CLUT; cmsUInt32Number i, nGridPoints; // Sanity check if (nProfiles < 1 || nProfiles > 255) return NULL; // Translate black-preserving intents to ICC ones for (i=0; i < nProfiles; i++) ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); // Check for non-cmyk profiles if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || cmsGetColorSpace(hProfiles[nProfiles-1]) != cmsSigCmykData) return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); memset(&bp, 0, sizeof(bp)); // Allocate an empty LUT for holding the result Result = cmsPipelineAlloc(ContextID, 4, 4); if (Result == NULL) return NULL; // Create a LUT holding normal ICC transform bp.cmyk2cmyk = DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); if (bp.cmyk2cmyk == NULL) goto Error; // Now, compute the tone curve bp.KTone = _cmsBuildKToneCurve(ContextID, 4096, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); if (bp.KTone == NULL) goto Error; // How many gridpoints are we going to use? nGridPoints = _cmsReasonableGridpointsByColorspace(cmsSigCmykData, dwFlags); // Create the CLUT. 16 bits CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); if (CLUT == NULL) goto Error; // This is the one and only MPE in this LUT if (!cmsPipelineInsertStage(Result, cmsAT_BEGIN, CLUT)) goto Error; // Sample it. We cannot afford pre/post linearization this time. if (!cmsStageSampleCLut16bit(CLUT, BlackPreservingGrayOnlySampler, (void*) &bp, 0)) goto Error; // Get rid of xform and tone curve cmsPipelineFree(bp.cmyk2cmyk); cmsFreeToneCurve(bp.KTone); return Result; Error: if (bp.cmyk2cmyk != NULL) cmsPipelineFree(bp.cmyk2cmyk); if (bp.KTone != NULL) cmsFreeToneCurve(bp.KTone); if (Result != NULL) cmsPipelineFree(Result); return NULL; } // K Plane-preserving CMYK to CMYK ------------------------------------------------------------------------------------ typedef struct { cmsPipeline* cmyk2cmyk; // The original transform cmsHTRANSFORM hProofOutput; // Output CMYK to Lab (last profile) cmsHTRANSFORM cmyk2Lab; // The input chain cmsToneCurve* KTone; // Black-to-black tone curve cmsPipeline* LabK2cmyk; // The output profile cmsFloat64Number MaxError; cmsHTRANSFORM hRoundTrip; cmsFloat64Number MaxTAC; } PreserveKPlaneParams; // The CLUT will be stored at 16 bits, but calculations are performed at cmsFloat32Number precision static int BlackPreservingSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) { int i; cmsFloat32Number Inf[4], Outf[4]; cmsFloat32Number LabK[4]; cmsFloat64Number SumCMY, SumCMYK, Error, Ratio; cmsCIELab ColorimetricLab, BlackPreservingLab; PreserveKPlaneParams* bp = (PreserveKPlaneParams*) Cargo; // Convert from 16 bits to floating point for (i=0; i < 4; i++) Inf[i] = (cmsFloat32Number) (In[i] / 65535.0); // Get the K across Tone curve LabK[3] = cmsEvalToneCurveFloat(bp ->KTone, Inf[3]); // If going across black only, keep black only if (In[0] == 0 && In[1] == 0 && In[2] == 0) { Out[0] = Out[1] = Out[2] = 0; Out[3] = _cmsQuickSaturateWord(LabK[3] * 65535.0); return TRUE; } // Try the original transform, cmsPipelineEvalFloat( Inf, Outf, bp ->cmyk2cmyk); // Store a copy of the floating point result into 16-bit for (i=0; i < 4; i++) Out[i] = _cmsQuickSaturateWord(Outf[i] * 65535.0); // Maybe K is already ok (mostly on K=0) if ( fabs(Outf[3] - LabK[3]) < (3.0 / 65535.0) ) { return TRUE; } // K differ, mesure and keep Lab measurement for further usage // this is done in relative colorimetric intent cmsDoTransform(bp->hProofOutput, Out, &ColorimetricLab, 1); // Is not black only and the transform doesn't keep black. // Obtain the Lab of output CMYK. After that we have Lab + K cmsDoTransform(bp ->cmyk2Lab, Outf, LabK, 1); // Obtain the corresponding CMY using reverse interpolation // (K is fixed in LabK[3]) if (!cmsPipelineEvalReverseFloat(LabK, Outf, Outf, bp ->LabK2cmyk)) { // Cannot find a suitable value, so use colorimetric xform // which is already stored in Out[] return TRUE; } // Make sure to pass through K (which now is fixed) Outf[3] = LabK[3]; // Apply TAC if needed SumCMY = Outf[0] + Outf[1] + Outf[2]; SumCMYK = SumCMY + Outf[3]; if (SumCMYK > bp ->MaxTAC) { Ratio = 1 - ((SumCMYK - bp->MaxTAC) / SumCMY); if (Ratio < 0) Ratio = 0; } else Ratio = 1.0; Out[0] = _cmsQuickSaturateWord(Outf[0] * Ratio * 65535.0); // C Out[1] = _cmsQuickSaturateWord(Outf[1] * Ratio * 65535.0); // M Out[2] = _cmsQuickSaturateWord(Outf[2] * Ratio * 65535.0); // Y Out[3] = _cmsQuickSaturateWord(Outf[3] * 65535.0); // Estimate the error (this goes 16 bits to Lab DBL) cmsDoTransform(bp->hProofOutput, Out, &BlackPreservingLab, 1); Error = cmsDeltaE(&ColorimetricLab, &BlackPreservingLab); if (Error > bp -> MaxError) bp->MaxError = Error; return TRUE; } // This is the entry for black-plane preserving, which are non-ICC static cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { PreserveKPlaneParams bp; cmsPipeline* Result = NULL; cmsUInt32Number ICCIntents[256]; cmsStage* CLUT; cmsUInt32Number i, nGridPoints; cmsHPROFILE hLab; // Sanity check if (nProfiles < 1 || nProfiles > 255) return NULL; // Translate black-preserving intents to ICC ones for (i=0; i < nProfiles; i++) ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); // Check for non-cmyk profiles if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || !(cmsGetColorSpace(hProfiles[nProfiles-1]) == cmsSigCmykData || cmsGetDeviceClass(hProfiles[nProfiles-1]) == cmsSigOutputClass)) return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); // Allocate an empty LUT for holding the result Result = cmsPipelineAlloc(ContextID, 4, 4); if (Result == NULL) return NULL; memset(&bp, 0, sizeof(bp)); // We need the input LUT of the last profile, assuming this one is responsible of // black generation. This LUT will be searched in inverse order. bp.LabK2cmyk = _cmsReadInputLUT(hProfiles[nProfiles-1], INTENT_RELATIVE_COLORIMETRIC); if (bp.LabK2cmyk == NULL) goto Cleanup; // Get total area coverage (in 0..1 domain) bp.MaxTAC = cmsDetectTAC(hProfiles[nProfiles-1]) / 100.0; if (bp.MaxTAC <= 0) goto Cleanup; // Create a LUT holding normal ICC transform bp.cmyk2cmyk = DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); if (bp.cmyk2cmyk == NULL) goto Cleanup; // Now the tone curve bp.KTone = _cmsBuildKToneCurve(ContextID, 4096, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); if (bp.KTone == NULL) goto Cleanup; // To measure the output, Last profile to Lab hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); bp.hProofOutput = cmsCreateTransformTHR(ContextID, hProfiles[nProfiles-1], CHANNELS_SH(4)|BYTES_SH(2), hLab, TYPE_Lab_DBL, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); if ( bp.hProofOutput == NULL) goto Cleanup; // Same as anterior, but lab in the 0..1 range bp.cmyk2Lab = cmsCreateTransformTHR(ContextID, hProfiles[nProfiles-1], FLOAT_SH(1)|CHANNELS_SH(4)|BYTES_SH(4), hLab, FLOAT_SH(1)|CHANNELS_SH(3)|BYTES_SH(4), INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); if (bp.cmyk2Lab == NULL) goto Cleanup; cmsCloseProfile(hLab); // Error estimation (for debug only) bp.MaxError = 0; // How many gridpoints are we going to use? nGridPoints = _cmsReasonableGridpointsByColorspace(cmsSigCmykData, dwFlags); CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); if (CLUT == NULL) goto Cleanup; if (!cmsPipelineInsertStage(Result, cmsAT_BEGIN, CLUT)) goto Cleanup; cmsStageSampleCLut16bit(CLUT, BlackPreservingSampler, (void*) &bp, 0); Cleanup: if (bp.cmyk2cmyk) cmsPipelineFree(bp.cmyk2cmyk); if (bp.cmyk2Lab) cmsDeleteTransform(bp.cmyk2Lab); if (bp.hProofOutput) cmsDeleteTransform(bp.hProofOutput); if (bp.KTone) cmsFreeToneCurve(bp.KTone); if (bp.LabK2cmyk) cmsPipelineFree(bp.LabK2cmyk); return Result; } // Link routines ------------------------------------------------------------------------------------------------------ // Chain several profiles into a single LUT. It just checks the parameters and then calls the handler // for the first intent in chain. The handler may be user-defined. Is up to the handler to deal with the // rest of intents in chain. A maximum of 255 profiles at time are supported, which is pretty reasonable. cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsUInt32Number i; cmsIntentsList* Intent; // Make sure a reasonable number of profiles is provided if (nProfiles <= 0 || nProfiles > 255) { cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't link '%d' profiles", nProfiles); return NULL; } for (i=0; i < nProfiles; i++) { // Check if black point is really needed or allowed. Note that // following Adobe's document: // BPC does not apply to devicelink profiles, nor to abs colorimetric, // and applies always on V4 perceptual and saturation. if (TheIntents[i] == INTENT_ABSOLUTE_COLORIMETRIC) BPC[i] = FALSE; if (TheIntents[i] == INTENT_PERCEPTUAL || TheIntents[i] == INTENT_SATURATION) { // Force BPC for V4 profiles in perceptual and saturation if (cmsGetEncodedICCversion(hProfiles[i]) >= 0x4000000) BPC[i] = TRUE; } } // Search for a handler. The first intent in the chain defines the handler. That would // prevent using multiple custom intents in a multiintent chain, but the behaviour of // this case would present some issues if the custom intent tries to do things like // preserve primaries. This solution is not perfect, but works well on most cases. Intent = SearchIntent(ContextID, TheIntents[0]); if (Intent == NULL) { cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported intent '%d'", TheIntents[0]); return NULL; } // Call the handler return Intent ->Link(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); } // ------------------------------------------------------------------------------------------------- // Get information about available intents. nMax is the maximum space for the supplied "Codes" // and "Descriptions" the function returns the total number of intents, which may be greater // than nMax, although the matrices are not populated beyond this level. cmsUInt32Number CMSEXPORT cmsGetSupportedIntentsTHR(cmsContext ContextID, cmsUInt32Number nMax, cmsUInt32Number* Codes, char** Descriptions) { _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); cmsIntentsList* pt; cmsUInt32Number nIntents; for (nIntents=0, pt = ctx->Intents; pt != NULL; pt = pt -> Next) { if (nIntents < nMax) { if (Codes != NULL) Codes[nIntents] = pt ->Intent; if (Descriptions != NULL) Descriptions[nIntents] = pt ->Description; } nIntents++; } for (nIntents=0, pt = DefaultIntents; pt != NULL; pt = pt -> Next) { if (nIntents < nMax) { if (Codes != NULL) Codes[nIntents] = pt ->Intent; if (Descriptions != NULL) Descriptions[nIntents] = pt ->Description; } nIntents++; } return nIntents; } cmsUInt32Number CMSEXPORT cmsGetSupportedIntents(cmsUInt32Number nMax, cmsUInt32Number* Codes, char** Descriptions) { return cmsGetSupportedIntentsTHR(NULL, nMax, Codes, Descriptions); } // The plug-in registration. User can add new intents or override default routines cmsBool _cmsRegisterRenderingIntentPlugin(cmsContext id, cmsPluginBase* Data) { _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(id, IntentPlugin); cmsPluginRenderingIntent* Plugin = (cmsPluginRenderingIntent*) Data; cmsIntentsList* fl; // Do we have to reset the custom intents? if (Data == NULL) { ctx->Intents = NULL; return TRUE; } fl = (cmsIntentsList*) _cmsPluginMalloc(id, sizeof(cmsIntentsList)); if (fl == NULL) return FALSE; fl ->Intent = Plugin ->Intent; strncpy(fl ->Description, Plugin ->Description, sizeof(fl ->Description)-1); fl ->Description[sizeof(fl ->Description)-1] = 0; fl ->Link = Plugin ->Link; fl ->Next = ctx ->Intents; ctx ->Intents = fl; return TRUE; }