/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "src/traced/probes/ps/process_stats_data_source.h" #include #include #include #include "perfetto/base/task_runner.h" #include "perfetto/base/time.h" #include "perfetto/ext/base/file_utils.h" #include "perfetto/ext/base/hash.h" #include "perfetto/ext/base/metatrace.h" #include "perfetto/ext/base/scoped_file.h" #include "perfetto/ext/base/string_splitter.h" #include "perfetto/ext/base/string_utils.h" #include "perfetto/tracing/core/data_source_config.h" #include "protos/perfetto/config/process_stats/process_stats_config.pbzero.h" #include "protos/perfetto/trace/ps/process_stats.pbzero.h" #include "protos/perfetto/trace/ps/process_tree.pbzero.h" #include "protos/perfetto/trace/trace_packet.pbzero.h" // TODO(primiano): the code in this file assumes that PIDs are never recycled // and that processes/threads never change names. Neither is always true. // The notion of PID in the Linux kernel is a bit confusing. // - PID: is really the thread id (for the main thread: PID == TID). // - TGID (thread group ID): is the Unix Process ID (the actual PID). // - PID == TGID for the main thread: the TID of the main thread is also the PID // of the process. // So, in this file, |pid| might refer to either a process id or a thread id. namespace perfetto { namespace { // Default upper bound on the number of thread cpu frequency keys, used if none // was provided in the config. The cache is trimmed if it exceeds this size. const size_t kThreadTimeInStateCacheSize = 10000; int32_t ReadNextNumericDir(DIR* dirp) { while (struct dirent* dir_ent = readdir(dirp)) { if (dir_ent->d_type != DT_DIR) continue; auto int_value = base::CStringToInt32(dir_ent->d_name); if (int_value) return *int_value; } return 0; } inline int ToInt(const std::string& str) { return atoi(str.c_str()); } inline uint32_t ToU32(const char* str) { return static_cast(strtol(str, nullptr, 10)); } } // namespace // static const ProbesDataSource::Descriptor ProcessStatsDataSource::descriptor = { /*name*/ "linux.process_stats", /*flags*/ Descriptor::kHandlesIncrementalState, }; ProcessStatsDataSource::ProcessStatsDataSource( base::TaskRunner* task_runner, TracingSessionID session_id, std::unique_ptr writer, const DataSourceConfig& ds_config, std::unique_ptr cpu_freq_info) : ProbesDataSource(session_id, &descriptor), task_runner_(task_runner), writer_(std::move(writer)), cpu_freq_info_(std::move(cpu_freq_info)), weak_factory_(this) { using protos::pbzero::ProcessStatsConfig; ProcessStatsConfig::Decoder cfg(ds_config.process_stats_config_raw()); record_thread_names_ = cfg.record_thread_names(); dump_all_procs_on_start_ = cfg.scan_all_processes_on_start(); enable_on_demand_dumps_ = true; for (auto quirk = cfg.quirks(); quirk; ++quirk) { if (*quirk == ProcessStatsConfig::DISABLE_ON_DEMAND) enable_on_demand_dumps_ = false; } poll_period_ms_ = cfg.proc_stats_poll_ms(); if (poll_period_ms_ > 0 && poll_period_ms_ < 100) { PERFETTO_ILOG("proc_stats_poll_ms %" PRIu32 " is less than minimum of 100ms. Increasing to 100ms.", poll_period_ms_); poll_period_ms_ = 100; } if (poll_period_ms_ > 0) { auto proc_stats_ttl_ms = cfg.proc_stats_cache_ttl_ms(); process_stats_cache_ttl_ticks_ = std::max(proc_stats_ttl_ms / poll_period_ms_, 1u); } record_thread_time_in_state_ = cfg.record_thread_time_in_state(); thread_time_in_state_cache_size_ = cfg.thread_time_in_state_cache_size(); if (thread_time_in_state_cache_size_ == 0) thread_time_in_state_cache_size_ = kThreadTimeInStateCacheSize; thread_time_in_state_cache_.resize(thread_time_in_state_cache_size_); } ProcessStatsDataSource::~ProcessStatsDataSource() = default; void ProcessStatsDataSource::Start() { if (dump_all_procs_on_start_) WriteAllProcesses(); if (poll_period_ms_) { auto weak_this = GetWeakPtr(); task_runner_->PostTask(std::bind(&ProcessStatsDataSource::Tick, weak_this)); } } base::WeakPtr ProcessStatsDataSource::GetWeakPtr() const { return weak_factory_.GetWeakPtr(); } void ProcessStatsDataSource::WriteAllProcesses() { PERFETTO_METATRACE_SCOPED(TAG_PROC_POLLERS, PS_WRITE_ALL_PROCESSES); PERFETTO_DCHECK(!cur_ps_tree_); CacheProcFsScanStartTimestamp(); base::ScopedDir proc_dir = OpenProcDir(); if (!proc_dir) return; while (int32_t pid = ReadNextNumericDir(*proc_dir)) { WriteProcessOrThread(pid); char task_path[255]; sprintf(task_path, "/proc/%d/task", pid); base::ScopedDir task_dir(opendir(task_path)); if (!task_dir) continue; while (int32_t tid = ReadNextNumericDir(*task_dir)) { if (tid == pid) continue; if (record_thread_names_) { WriteProcessOrThread(tid); } else { // If we are not interested in thread names, there is no need to open // a proc file for each thread. We can save time and directly write the // thread record. WriteThread(tid, pid, /*optional_name=*/nullptr); } } } FinalizeCurPacket(); } void ProcessStatsDataSource::OnPids(const base::FlatSet& pids) { if (!enable_on_demand_dumps_) return; WriteProcessTree(pids); } void ProcessStatsDataSource::WriteProcessTree( const base::FlatSet& pids) { PERFETTO_METATRACE_SCOPED(TAG_PROC_POLLERS, PS_ON_PIDS); PERFETTO_DCHECK(!cur_ps_tree_); int pids_scanned = 0; for (int32_t pid : pids) { if (seen_pids_.count(pid) || pid == 0) continue; WriteProcessOrThread(pid); pids_scanned++; } FinalizeCurPacket(); PERFETTO_METATRACE_COUNTER(TAG_PROC_POLLERS, PS_PIDS_SCANNED, pids_scanned); } void ProcessStatsDataSource::OnRenamePids(const base::FlatSet& pids) { PERFETTO_METATRACE_SCOPED(TAG_PROC_POLLERS, PS_ON_RENAME_PIDS); if (!enable_on_demand_dumps_) return; PERFETTO_DCHECK(!cur_ps_tree_); for (int32_t pid : pids) seen_pids_.erase(pid); } void ProcessStatsDataSource::Flush(FlushRequestID, std::function callback) { // We shouldn't get this in the middle of WriteAllProcesses() or OnPids(). PERFETTO_DCHECK(!cur_ps_tree_); PERFETTO_DCHECK(!cur_ps_stats_); PERFETTO_DCHECK(!cur_ps_stats_process_); writer_->Flush(callback); } void ProcessStatsDataSource::WriteProcessOrThread(int32_t pid) { // In case we're called from outside WriteAllProcesses() CacheProcFsScanStartTimestamp(); std::string proc_status = ReadProcPidFile(pid, "status"); if (proc_status.empty()) return; int tgid = ToInt(ReadProcStatusEntry(proc_status, "Tgid:")); if (tgid <= 0) return; if (!seen_pids_.count(tgid)) WriteProcess(tgid, proc_status); if (pid != tgid) { PERFETTO_DCHECK(!seen_pids_.count(pid)); std::string thread_name; if (record_thread_names_) thread_name = ReadProcStatusEntry(proc_status, "Name:"); WriteThread(pid, tgid, thread_name.empty() ? nullptr : thread_name.c_str()); } } void ProcessStatsDataSource::WriteProcess(int32_t pid, const std::string& proc_status) { PERFETTO_DCHECK(ToInt(ReadProcStatusEntry(proc_status, "Tgid:")) == pid); auto* proc = GetOrCreatePsTree()->add_processes(); proc->set_pid(pid); proc->set_ppid(ToInt(ReadProcStatusEntry(proc_status, "PPid:"))); // Uid will have multiple entries, only return first (real uid). proc->set_uid(ToInt(ReadProcStatusEntry(proc_status, "Uid:"))); std::string cmdline = ReadProcPidFile(pid, "cmdline"); if (!cmdline.empty()) { if (cmdline.back() != '\0') { // Some kernels can miss the NUL terminator due to a bug. b/147438623. cmdline.push_back('\0'); } using base::StringSplitter; for (StringSplitter ss(&cmdline[0], cmdline.size(), '\0'); ss.Next();) proc->add_cmdline(ss.cur_token()); } else { // Nothing in cmdline so use the thread name instead (which is == "comm"). proc->add_cmdline(ReadProcStatusEntry(proc_status, "Name:").c_str()); } seen_pids_.insert(pid); } void ProcessStatsDataSource::WriteThread(int32_t tid, int32_t tgid, const char* optional_name) { auto* thread = GetOrCreatePsTree()->add_threads(); thread->set_tid(tid); thread->set_tgid(tgid); if (optional_name) thread->set_name(optional_name); seen_pids_.insert(tid); } base::ScopedDir ProcessStatsDataSource::OpenProcDir() { base::ScopedDir proc_dir(opendir("/proc")); if (!proc_dir) PERFETTO_PLOG("Failed to opendir(/proc)"); return proc_dir; } std::string ProcessStatsDataSource::ReadProcPidFile(int32_t pid, const std::string& file) { std::string contents; contents.reserve(4096); if (!base::ReadFile("/proc/" + std::to_string(pid) + "/" + file, &contents)) return ""; return contents; } base::ScopedDir ProcessStatsDataSource::OpenProcTaskDir(int32_t pid) { char task_path[255]; sprintf(task_path, "/proc/%d/task", pid); return base::ScopedDir(opendir(task_path)); } std::string ProcessStatsDataSource::ReadProcStatusEntry(const std::string& buf, const char* key) { auto begin = buf.find(key); if (begin == std::string::npos) return ""; begin = buf.find_first_not_of(" \t", begin + strlen(key)); if (begin == std::string::npos) return ""; auto end = buf.find('\n', begin); if (end == std::string::npos || end <= begin) return ""; return buf.substr(begin, end - begin); } void ProcessStatsDataSource::StartNewPacketIfNeeded() { if (cur_packet_) return; cur_packet_ = writer_->NewTracePacket(); cur_packet_->set_timestamp(CacheProcFsScanStartTimestamp()); if (did_clear_incremental_state_) { cur_packet_->set_incremental_state_cleared(true); did_clear_incremental_state_ = false; } } protos::pbzero::ProcessTree* ProcessStatsDataSource::GetOrCreatePsTree() { StartNewPacketIfNeeded(); if (!cur_ps_tree_) cur_ps_tree_ = cur_packet_->set_process_tree(); cur_ps_stats_ = nullptr; cur_ps_stats_process_ = nullptr; return cur_ps_tree_; } protos::pbzero::ProcessStats* ProcessStatsDataSource::GetOrCreateStats() { StartNewPacketIfNeeded(); if (!cur_ps_stats_) cur_ps_stats_ = cur_packet_->set_process_stats(); cur_ps_tree_ = nullptr; cur_ps_stats_process_ = nullptr; return cur_ps_stats_; } protos::pbzero::ProcessStats_Process* ProcessStatsDataSource::GetOrCreateStatsProcess(int32_t pid) { if (cur_ps_stats_process_) return cur_ps_stats_process_; cur_ps_stats_process_ = GetOrCreateStats()->add_processes(); cur_ps_stats_process_->set_pid(pid); return cur_ps_stats_process_; } void ProcessStatsDataSource::FinalizeCurPacket() { PERFETTO_DCHECK(!cur_ps_tree_ || cur_packet_); PERFETTO_DCHECK(!cur_ps_stats_ || cur_packet_); uint64_t now = static_cast(base::GetBootTimeNs().count()); if (cur_ps_tree_) { cur_ps_tree_->set_collection_end_timestamp(now); cur_ps_tree_ = nullptr; } if (cur_ps_stats_) { cur_ps_stats_->set_collection_end_timestamp(now); cur_ps_stats_ = nullptr; } cur_ps_stats_process_ = nullptr; cur_procfs_scan_start_timestamp_ = 0; cur_packet_ = TraceWriter::TracePacketHandle{}; } // static void ProcessStatsDataSource::Tick( base::WeakPtr weak_this) { if (!weak_this) return; ProcessStatsDataSource& thiz = *weak_this; uint32_t period_ms = thiz.poll_period_ms_; uint32_t delay_ms = period_ms - static_cast(base::GetWallTimeMs().count() % period_ms); thiz.task_runner_->PostDelayedTask( std::bind(&ProcessStatsDataSource::Tick, weak_this), delay_ms); thiz.WriteAllProcessStats(); // We clear the cache every process_stats_cache_ttl_ticks_ ticks. if (++thiz.cache_ticks_ == thiz.process_stats_cache_ttl_ticks_) { thiz.cache_ticks_ = 0; thiz.process_stats_cache_.clear(); thiz.thread_time_in_state_cache_.clear(); thiz.thread_time_in_state_cache_.resize( thiz.thread_time_in_state_cache_size_); } } void ProcessStatsDataSource::WriteAllProcessStats() { // TODO(primiano): implement filtering of processes by names. // TODO(primiano): Have a pid cache to avoid wasting cycles reading kthreads // proc files over and over. Same for non-filtered processes (see above). CacheProcFsScanStartTimestamp(); PERFETTO_METATRACE_SCOPED(TAG_PROC_POLLERS, PS_WRITE_ALL_PROCESS_STATS); base::ScopedDir proc_dir = OpenProcDir(); if (!proc_dir) return; base::FlatSet pids; while (int32_t pid = ReadNextNumericDir(*proc_dir)) { cur_ps_stats_process_ = nullptr; uint32_t pid_u = static_cast(pid); if (skip_stats_for_pids_.size() > pid_u && skip_stats_for_pids_[pid_u]) continue; std::string proc_status = ReadProcPidFile(pid, "status"); if (proc_status.empty()) continue; if (!WriteMemCounters(pid, proc_status)) { // If WriteMemCounters() fails the pid is very likely a kernel thread // that has a valid /proc/[pid]/status but no memory values. In this // case avoid keep polling it over and over. if (skip_stats_for_pids_.size() <= pid_u) skip_stats_for_pids_.resize(pid_u + 1); skip_stats_for_pids_[pid_u] = true; continue; } std::string oom_score_adj = ReadProcPidFile(pid, "oom_score_adj"); if (!oom_score_adj.empty()) { CachedProcessStats& cached = process_stats_cache_[pid]; auto counter = ToInt(oom_score_adj); if (counter != cached.oom_score_adj) { GetOrCreateStatsProcess(pid)->set_oom_score_adj(counter); cached.oom_score_adj = counter; } } if (record_thread_time_in_state_ && ShouldWriteThreadStats(pid)) { if (auto task_dir = OpenProcTaskDir(pid)) { while (int32_t tid = ReadNextNumericDir(*task_dir)) { WriteThreadStats(pid, tid); pids.insert(tid); } } } pids.insert(pid); } FinalizeCurPacket(); // Ensure that we write once long-term process info (e.g., name) for new pids // that we haven't seen before. WriteProcessTree(pids); } // Returns true if the stats for the given |pid| have been written, false it // it failed (e.g., |pid| was a kernel thread and, as such, didn't report any // memory counters). bool ProcessStatsDataSource::WriteMemCounters(int32_t pid, const std::string& proc_status) { bool proc_status_has_mem_counters = false; CachedProcessStats& cached = process_stats_cache_[pid]; // Parse /proc/[pid]/status, which looks like this: // Name: cat // Umask: 0027 // State: R (running) // FDSize: 256 // Groups: 4 20 24 46 997 // VmPeak: 5992 kB // VmSize: 5992 kB // VmLck: 0 kB // ... std::vector key; std::vector value; enum { kKey, kSeparator, kValue } state = kKey; for (char c : proc_status) { if (c == '\n') { key.push_back('\0'); value.push_back('\0'); // |value| will contain "1234 KB". We rely on strtol() (in ToU32()) to // stop parsing at the first non-numeric character. if (strcmp(key.data(), "VmSize") == 0) { // Assume that if we see VmSize we'll see also the others. proc_status_has_mem_counters = true; auto counter = ToU32(value.data()); if (counter != cached.vm_size_kb) { GetOrCreateStatsProcess(pid)->set_vm_size_kb(counter); cached.vm_size_kb = counter; } } else if (strcmp(key.data(), "VmLck") == 0) { auto counter = ToU32(value.data()); if (counter != cached.vm_locked_kb) { GetOrCreateStatsProcess(pid)->set_vm_locked_kb(counter); cached.vm_locked_kb = counter; } } else if (strcmp(key.data(), "VmHWM") == 0) { auto counter = ToU32(value.data()); if (counter != cached.vm_hvm_kb) { GetOrCreateStatsProcess(pid)->set_vm_hwm_kb(counter); cached.vm_hvm_kb = counter; } } else if (strcmp(key.data(), "VmRSS") == 0) { auto counter = ToU32(value.data()); if (counter != cached.vm_rss_kb) { GetOrCreateStatsProcess(pid)->set_vm_rss_kb(counter); cached.vm_rss_kb = counter; } } else if (strcmp(key.data(), "RssAnon") == 0) { auto counter = ToU32(value.data()); if (counter != cached.rss_anon_kb) { GetOrCreateStatsProcess(pid)->set_rss_anon_kb(counter); cached.rss_anon_kb = counter; } } else if (strcmp(key.data(), "RssFile") == 0) { auto counter = ToU32(value.data()); if (counter != cached.rss_file_kb) { GetOrCreateStatsProcess(pid)->set_rss_file_kb(counter); cached.rss_file_kb = counter; } } else if (strcmp(key.data(), "RssShmem") == 0) { auto counter = ToU32(value.data()); if (counter != cached.rss_shmem_kb) { GetOrCreateStatsProcess(pid)->set_rss_shmem_kb(counter); cached.rss_shmem_kb = counter; } } else if (strcmp(key.data(), "VmSwap") == 0) { auto counter = ToU32(value.data()); if (counter != cached.vm_swap_kb) { GetOrCreateStatsProcess(pid)->set_vm_swap_kb(counter); cached.vm_swap_kb = counter; } } key.clear(); state = kKey; continue; } if (state == kKey) { if (c == ':') { state = kSeparator; continue; } key.push_back(c); continue; } if (state == kSeparator) { if (isspace(c)) continue; value.clear(); value.push_back(c); state = kValue; continue; } if (state == kValue) { value.push_back(c); } } return proc_status_has_mem_counters; } // Fast check to avoid reading information about all threads of a process. // If the total process cpu time has not changed, we can skip reading // time_in_state for all its threads. bool ProcessStatsDataSource::ShouldWriteThreadStats(int32_t pid) { std::string stat = ReadProcPidFile(pid, "stat"); // /proc/pid/stat may contain an additional space inside comm. For example: // 1 (comm foo) 2 3 ... // We strip the prefix including comm. So the result is: 2 3 ... size_t comm_end = stat.rfind(") "); if (comm_end == std::string::npos) return false; std::string stat_after_comm = stat.substr(comm_end + 2); // Indices of space separated fields in /proc/pid/stat offset by 2 to make // up for fields removed by stripping the prefix including comm. const uint32_t kStatCTimeIndex = 13 - 2; const uint32_t kStatSTimeIndex = 14 - 2; auto stat_parts = base::SplitString(stat_after_comm, " "); if (stat_parts.size() <= kStatSTimeIndex) return false; auto maybe_ctime = base::StringToUInt64(stat_parts[kStatCTimeIndex]); if (!maybe_ctime.has_value()) return false; auto maybe_stime = base::StringToUInt64(stat_parts[kStatSTimeIndex]); if (!maybe_stime.has_value()) return false; uint64_t current = maybe_ctime.value() + maybe_stime.value(); uint64_t& cached = process_stats_cache_[pid].cpu_time; if (current != cached) { cached = current; return true; } return false; } void ProcessStatsDataSource::WriteThreadStats(int32_t pid, int32_t tid) { // Reads /proc/tid/time_in_state, which looks like: // cpu0 // 100 0 // 200 5 // ... // cpu6 // 200 0 // 300 70 // ... // Pairs of CPU frequency and the number of ticks at that frequency. std::string time_in_state = ReadProcPidFile(tid, "time_in_state"); // Bail if time_in_state does not have cpuN headings. Parsing this data // without them is more complicated and requires additional information. if (!base::StartsWith(time_in_state, "cpu")) return; protos::pbzero::ProcessStats_Thread* thread = nullptr; base::StringSplitter entries(std::move(time_in_state), '\n'); uint32_t last_cpu = 0; // Whether all frequencies with non-zero ticks are added to cpu_freq_indices. bool full = true; while (entries.Next()) { std::string line(entries.cur_token()); if (base::StartsWith(line, "cpu")) { last_cpu = base::StringToUInt32(line.substr(3)).value(); continue; } base::StringSplitter key_value(&entries, ' '); if (!key_value.Next()) continue; uint32_t freq = ToU32(key_value.cur_token()); uint32_t freq_index = cpu_freq_info_->GetCpuFreqIndex(last_cpu, freq); if (!key_value.Next()) continue; auto maybe_ticks = base::CStringToUInt64(key_value.cur_token()); if (!maybe_ticks.has_value()) continue; uint64_t ticks = maybe_ticks.value(); if (ticks == 0) continue; base::Hash key_hash; key_hash.Update(tid); key_hash.Update(freq_index); size_t key = key_hash.digest() % thread_time_in_state_cache_size_; PERFETTO_DCHECK(thread_time_in_state_cache_.size() == thread_time_in_state_cache_size_); TimeInStateCacheEntry& cached = thread_time_in_state_cache_[key]; TimeInStateCacheEntry current = {tid, freq_index, ticks}; if (current != cached) { cached = current; if (thread == nullptr) { thread = GetOrCreateStatsProcess(pid)->add_threads(); thread->set_tid(tid); } thread->add_cpu_freq_indices(freq_index); thread->add_cpu_freq_ticks(ticks); } else { full = false; } } if (full && thread != nullptr) { thread->set_cpu_freq_full(true); } } uint64_t ProcessStatsDataSource::CacheProcFsScanStartTimestamp() { if (!cur_procfs_scan_start_timestamp_) cur_procfs_scan_start_timestamp_ = static_cast(base::GetBootTimeNs().count()); return cur_procfs_scan_start_timestamp_; } void ProcessStatsDataSource::ClearIncrementalState() { PERFETTO_DLOG("ProcessStatsDataSource clearing incremental state."); seen_pids_.clear(); skip_stats_for_pids_.clear(); cache_ticks_ = 0; process_stats_cache_.clear(); thread_time_in_state_cache_.clear(); thread_time_in_state_cache_.resize(thread_time_in_state_cache_size_); // Set the relevant flag in the next packet. did_clear_incremental_state_ = true; } } // namespace perfetto