// Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "puffin/src/puffin_stream.h" #include #include #include #include #include #include "puffin/src/bit_reader.h" #include "puffin/src/bit_writer.h" #include "puffin/src/include/puffin/common.h" #include "puffin/src/include/puffin/huffer.h" #include "puffin/src/include/puffin/puffer.h" #include "puffin/src/include/puffin/stream.h" #include "puffin/src/logging.h" #include "puffin/src/puff_reader.h" #include "puffin/src/puff_writer.h" using std::shared_ptr; using std::unique_ptr; using std::vector; namespace puffin { namespace { bool CheckArgsIntegrity(uint64_t puff_size, const vector& deflates, const vector& puffs) { TEST_AND_RETURN_FALSE(puffs.size() == deflates.size()); // Check if the |puff_size| is actually greater than the last byte of the last // puff in |puffs|. if (!puffs.empty()) { TEST_AND_RETURN_FALSE(puff_size >= puffs.back().offset + puffs.back().length); } // Check to make sure |puffs| and |deflates| are sorted and non-overlapping. auto is_overlap = [](const auto& a, const auto& b) { return (a.offset + a.length) > b.offset; }; TEST_AND_RETURN_FALSE(deflates.end() == std::adjacent_find(deflates.begin(), deflates.end(), is_overlap)); TEST_AND_RETURN_FALSE(puffs.end() == std::adjacent_find(puffs.begin(), puffs.end(), is_overlap)); return true; } } // namespace UniqueStreamPtr PuffinStream::CreateForPuff(UniqueStreamPtr stream, shared_ptr puffer, uint64_t puff_size, const vector& deflates, const vector& puffs, size_t max_cache_size) { TEST_AND_RETURN_VALUE(CheckArgsIntegrity(puff_size, deflates, puffs), nullptr); TEST_AND_RETURN_VALUE(stream->Seek(0), nullptr); UniqueStreamPtr puffin_stream(new PuffinStream(std::move(stream), puffer, nullptr, puff_size, deflates, puffs, max_cache_size)); TEST_AND_RETURN_VALUE(puffin_stream->Seek(0), nullptr); return puffin_stream; } UniqueStreamPtr PuffinStream::CreateForHuff(UniqueStreamPtr stream, shared_ptr huffer, uint64_t puff_size, const vector& deflates, const vector& puffs) { TEST_AND_RETURN_VALUE(CheckArgsIntegrity(puff_size, deflates, puffs), nullptr); TEST_AND_RETURN_VALUE(stream->Seek(0), nullptr); UniqueStreamPtr puffin_stream(new PuffinStream( std::move(stream), nullptr, huffer, puff_size, deflates, puffs, 0)); TEST_AND_RETURN_VALUE(puffin_stream->Seek(0), nullptr); return puffin_stream; } PuffinStream::PuffinStream(UniqueStreamPtr stream, shared_ptr puffer, shared_ptr huffer, uint64_t puff_size, const vector& deflates, const vector& puffs, size_t max_cache_size) : stream_(std::move(stream)), puffer_(puffer), huffer_(huffer), puff_stream_size_(puff_size), deflates_(deflates), puffs_(puffs), puff_pos_(0), skip_bytes_(0), deflate_bit_pos_(0), last_byte_(0), extra_byte_(0), is_for_puff_(puffer_ ? true : false), closed_(false), max_cache_size_(max_cache_size), cur_cache_size_(0) { // Building upper bounds for faster seek. upper_bounds_.reserve(puffs.size()); for (const auto& puff : puffs) { upper_bounds_.emplace_back(puff.offset + puff.length); } upper_bounds_.emplace_back(puff_stream_size_ + 1); // We can pass the size of the deflate stream too, but it is not necessary // yet. We cannot get the size of stream from itself, because we might be // writing into it and its size is not defined yet. uint64_t deflate_stream_size = puff_stream_size_; if (!puffs.empty()) { deflate_stream_size = ((deflates.back().offset + deflates.back().length) / 8) + puff_stream_size_ - (puffs.back().offset + puffs.back().length); } deflates_.emplace_back(deflate_stream_size * 8, 0); puffs_.emplace_back(puff_stream_size_, 0); // Look for the largest puff and deflate extents and get proper size buffers. uint64_t max_puff_length = 0; for (const auto& puff : puffs) { max_puff_length = std::max(max_puff_length, puff.length); } puff_buffer_.reset(new Buffer(max_puff_length + 1)); if (max_cache_size_ < max_puff_length) { max_cache_size_ = 0; // It means we are not caching puffs. } uint64_t max_deflate_length = 0; for (const auto& deflate : deflates) { max_deflate_length = std::max(max_deflate_length, deflate.length * 8); } deflate_buffer_.reset(new Buffer(max_deflate_length + 2)); } bool PuffinStream::GetSize(uint64_t* size) const { *size = puff_stream_size_; return true; } bool PuffinStream::GetOffset(uint64_t* offset) const { *offset = puff_pos_ + skip_bytes_; return true; } bool PuffinStream::Seek(uint64_t offset) { TEST_AND_RETURN_FALSE(!closed_); if (!is_for_puff_) { // For huffing we should not seek, only seek to zero is accepted. TEST_AND_RETURN_FALSE(offset == 0); } TEST_AND_RETURN_FALSE(offset <= puff_stream_size_); // We are searching first available puff which either includes the |offset| or // it is the next available puff after |offset|. auto next_puff_iter = std::upper_bound(upper_bounds_.begin(), upper_bounds_.end(), offset); TEST_AND_RETURN_FALSE(next_puff_iter != upper_bounds_.end()); auto next_puff_idx = std::distance(upper_bounds_.begin(), next_puff_iter); cur_puff_ = std::next(puffs_.begin(), next_puff_idx); cur_deflate_ = std::next(deflates_.begin(), next_puff_idx); if (offset < cur_puff_->offset) { // between two puffs. puff_pos_ = offset; auto back_track_bytes = cur_puff_->offset - puff_pos_; deflate_bit_pos_ = ((cur_deflate_->offset + 7) / 8 - back_track_bytes) * 8; if (cur_puff_ != puffs_.begin()) { auto prev_deflate = std::prev(cur_deflate_); if (deflate_bit_pos_ < prev_deflate->offset + prev_deflate->length) { deflate_bit_pos_ = prev_deflate->offset + prev_deflate->length; } } } else { // Inside a puff. puff_pos_ = cur_puff_->offset; deflate_bit_pos_ = cur_deflate_->offset; } skip_bytes_ = offset - puff_pos_; if (!is_for_puff_ && offset == 0) { TEST_AND_RETURN_FALSE(stream_->Seek(0)); TEST_AND_RETURN_FALSE(SetExtraByte()); } return true; } bool PuffinStream::Close() { closed_ = true; return stream_->Close(); } bool PuffinStream::Read(void* buffer, size_t count) { TEST_AND_RETURN_FALSE(!closed_); TEST_AND_RETURN_FALSE(is_for_puff_); if (cur_puff_ == puffs_.end()) { TEST_AND_RETURN_FALSE(count == 0); } auto bytes = static_cast(buffer); uint64_t length = count; uint64_t bytes_read = 0; while (bytes_read < length) { if (puff_pos_ < cur_puff_->offset) { // Reading between two deflates. We also read bytes that have at least one // bit of a deflate bit stream. The byte which has both deflate and raw // data will be shifted or masked off the deflate bits and the remaining // value will be saved in the puff stream as an byte integer. uint64_t start_byte = (deflate_bit_pos_ / 8); uint64_t end_byte = (cur_deflate_->offset + 7) / 8; auto bytes_to_read = std::min(length - bytes_read, end_byte - start_byte); TEST_AND_RETURN_FALSE(bytes_to_read >= 1); TEST_AND_RETURN_FALSE(stream_->Seek(start_byte)); TEST_AND_RETURN_FALSE(stream_->Read(bytes + bytes_read, bytes_to_read)); // If true, we read the first byte of the curret deflate. So we have to // mask out the deflate bits (which are most significant bits.) if ((start_byte + bytes_to_read) * 8 > cur_deflate_->offset) { bytes[bytes_read + bytes_to_read - 1] &= (1 << (cur_deflate_->offset & 7)) - 1; } // If true, we read the last byte of the previous deflate and we have to // shift it out. The least significat bits belongs to the deflate // stream. The order of these last two conditions are important because a // byte can contain a finishing deflate and a starting deflate with some // bits between them so we have to modify correctly. Keep in mind that in // this situation both are modifying the same byte. if (start_byte * 8 < deflate_bit_pos_) { bytes[bytes_read] >>= deflate_bit_pos_ & 7; } // Pass |deflate_bit_pos_| for all the read bytes. deflate_bit_pos_ -= deflate_bit_pos_ & 7; deflate_bit_pos_ += bytes_to_read * 8; if (deflate_bit_pos_ > cur_deflate_->offset) { // In case it reads into the first byte of the current deflate. deflate_bit_pos_ = cur_deflate_->offset; } bytes_read += bytes_to_read; puff_pos_ += bytes_to_read; TEST_AND_RETURN_FALSE(puff_pos_ <= cur_puff_->offset); } else { // Reading the deflate itself. We read all bytes including the first and // last byte (which may partially include a deflate bit). Here we keep the // |puff_pos_| point to the first byte of the puffed stream and // |skip_bytes_| shows how many bytes in the puff we have copied till now. auto start_byte = (cur_deflate_->offset / 8); auto end_byte = (cur_deflate_->offset + cur_deflate_->length + 7) / 8; auto bytes_to_read = end_byte - start_byte; // Puff directly to buffer if it has space. bool puff_directly_into_buffer = max_cache_size_ == 0 && (skip_bytes_ == 0) && (length - bytes_read >= cur_puff_->length); auto cur_puff_idx = std::distance(puffs_.begin(), cur_puff_); if (max_cache_size_ == 0 || !GetPuffCache(cur_puff_idx, cur_puff_->length, &puff_buffer_)) { // Did not find the puff buffer in cache. We have to build it. deflate_buffer_->resize(bytes_to_read); TEST_AND_RETURN_FALSE(stream_->Seek(start_byte)); TEST_AND_RETURN_FALSE( stream_->Read(deflate_buffer_->data(), bytes_to_read)); BufferBitReader bit_reader(deflate_buffer_->data(), bytes_to_read); BufferPuffWriter puff_writer(puff_directly_into_buffer ? bytes + bytes_read : puff_buffer_->data(), cur_puff_->length); // Drop the first unused bits. size_t extra_bits_len = cur_deflate_->offset & 7; TEST_AND_RETURN_FALSE(bit_reader.CacheBits(extra_bits_len)); bit_reader.DropBits(extra_bits_len); TEST_AND_RETURN_FALSE( puffer_->PuffDeflate(&bit_reader, &puff_writer, nullptr)); TEST_AND_RETURN_FALSE(bytes_to_read == bit_reader.Offset()); TEST_AND_RETURN_FALSE(cur_puff_->length == puff_writer.Size()); } else { // Just seek to proper location. TEST_AND_RETURN_FALSE(stream_->Seek(start_byte + bytes_to_read)); } // Copy from puff buffer to output if needed. auto bytes_to_copy = std::min(length - bytes_read, cur_puff_->length - skip_bytes_); if (!puff_directly_into_buffer) { memcpy(bytes + bytes_read, puff_buffer_->data() + skip_bytes_, bytes_to_copy); } skip_bytes_ += bytes_to_copy; bytes_read += bytes_to_copy; // Move to next puff. if (puff_pos_ + skip_bytes_ == cur_puff_->offset + cur_puff_->length) { puff_pos_ += skip_bytes_; skip_bytes_ = 0; deflate_bit_pos_ = cur_deflate_->offset + cur_deflate_->length; cur_puff_++; cur_deflate_++; if (cur_puff_ == puffs_.end()) { break; } } } } TEST_AND_RETURN_FALSE(bytes_read == length); return true; } bool PuffinStream::Write(const void* buffer, size_t count) { TEST_AND_RETURN_FALSE(!closed_); TEST_AND_RETURN_FALSE(!is_for_puff_); auto bytes = static_cast(buffer); uint64_t length = count; uint64_t bytes_wrote = 0; while (bytes_wrote < length) { if (deflate_bit_pos_ < (cur_deflate_->offset & ~7ull)) { // Between two puffs or before the first puff. We know that we are // starting from the byte boundary because we have already processed the // non-deflate bits of the last byte of the last deflate. Here we don't // process any byte that has deflate bit. TEST_AND_RETURN_FALSE((deflate_bit_pos_ & 7) == 0); auto copy_len = std::min((cur_deflate_->offset / 8) - (deflate_bit_pos_ / 8), length - bytes_wrote); TEST_AND_RETURN_FALSE(stream_->Write(bytes + bytes_wrote, copy_len)); bytes_wrote += copy_len; puff_pos_ += copy_len; deflate_bit_pos_ += copy_len * 8; } else { // We are in a puff. We have to buffer incoming bytes until we reach the // size of the current puff so we can huff :). If the last bit of the // current deflate does not end in a byte boundary, then we have to read // one more byte to fill up the last byte of the deflate stream before // doing anything else. // |deflate_bit_pos_| now should be in the same byte as // |cur_deflate->offset|. if (deflate_bit_pos_ < cur_deflate_->offset) { last_byte_ |= bytes[bytes_wrote++] << (deflate_bit_pos_ & 7); skip_bytes_ = 0; deflate_bit_pos_ = cur_deflate_->offset; puff_pos_++; TEST_AND_RETURN_FALSE(puff_pos_ == cur_puff_->offset); } auto copy_len = std::min(length - bytes_wrote, cur_puff_->length + extra_byte_ - skip_bytes_); TEST_AND_RETURN_FALSE(puff_buffer_->size() >= skip_bytes_ + copy_len); memcpy(puff_buffer_->data() + skip_bytes_, bytes + bytes_wrote, copy_len); skip_bytes_ += copy_len; bytes_wrote += copy_len; if (skip_bytes_ == cur_puff_->length + extra_byte_) { // |puff_buffer_| is full, now huff into the |deflate_buffer_|. auto start_byte = cur_deflate_->offset / 8; auto end_byte = (cur_deflate_->offset + cur_deflate_->length + 7) / 8; auto bytes_to_write = end_byte - start_byte; deflate_buffer_->resize(bytes_to_write); BufferBitWriter bit_writer(deflate_buffer_->data(), bytes_to_write); BufferPuffReader puff_reader(puff_buffer_->data(), cur_puff_->length); // Write last byte if it has any. TEST_AND_RETURN_FALSE( bit_writer.WriteBits(cur_deflate_->offset & 7, last_byte_)); last_byte_ = 0; TEST_AND_RETURN_FALSE(huffer_->HuffDeflate(&puff_reader, &bit_writer)); TEST_AND_RETURN_FALSE(bit_writer.Size() == bytes_to_write); TEST_AND_RETURN_FALSE(puff_reader.BytesLeft() == 0); deflate_bit_pos_ = cur_deflate_->offset + cur_deflate_->length; if (extra_byte_ == 1) { deflate_buffer_->data()[bytes_to_write - 1] |= puff_buffer_->data()[cur_puff_->length] << (deflate_bit_pos_ & 7); deflate_bit_pos_ = (deflate_bit_pos_ + 7) & ~7ull; } else if ((deflate_bit_pos_ & 7) != 0) { // This happens if current and next deflate finish and end on the same // byte, then we cannot write into output until we have huffed the // next puff buffer, so untill then we cache it into |last_byte_| and // we won't write it out. last_byte_ = deflate_buffer_->data()[bytes_to_write - 1]; bytes_to_write--; } // Write |deflate_buffer_| into output. TEST_AND_RETURN_FALSE( stream_->Write(deflate_buffer_->data(), bytes_to_write)); // Move to the next deflate/puff. puff_pos_ += skip_bytes_; skip_bytes_ = 0; cur_puff_++; cur_deflate_++; if (cur_puff_ == puffs_.end()) { break; } // Find if need an extra byte to cache at the end. TEST_AND_RETURN_FALSE(SetExtraByte()); } } } TEST_AND_RETURN_FALSE(bytes_wrote == length); return true; } bool PuffinStream::SetExtraByte() { TEST_AND_RETURN_FALSE(cur_deflate_ != deflates_.end()); if ((cur_deflate_ + 1) == deflates_.end()) { extra_byte_ = 0; return true; } uint64_t end_bit = cur_deflate_->offset + cur_deflate_->length; if ((end_bit & 7) && ((end_bit + 7) & ~7ull) <= (cur_deflate_ + 1)->offset) { extra_byte_ = 1; } else { extra_byte_ = 0; } return true; } bool PuffinStream::GetPuffCache(int puff_id, uint64_t puff_size, shared_ptr* buffer) { bool found = false; // Search for it. std::pair> cache; // TODO(*): Find a faster way of doing this? Maybe change the data structure // that supports faster search. for (auto iter = caches_.begin(); iter != caches_.end(); ++iter) { if (iter->first == puff_id) { cache = std::move(*iter); found = true; // Remove it so later we can add it to the begining of the list. caches_.erase(iter); break; } } // If not found, either create one or get one from the list. if (!found) { // If |caches_| were full, remove last ones in the list (least used), until // we have enough space for the new cache. while (!caches_.empty() && cur_cache_size_ + puff_size > max_cache_size_) { cache = std::move(caches_.back()); caches_.pop_back(); // Remove it from the list. cur_cache_size_ -= cache.second->capacity(); } // If we have not populated the cache yet, create one. if (!cache.second) { cache.second.reset(new Buffer(puff_size)); } cache.second->resize(puff_size); constexpr uint64_t kMaxSizeDifference = 20 * 1024; if (puff_size + kMaxSizeDifference < cache.second->capacity()) { cache.second->shrink_to_fit(); } cur_cache_size_ += cache.second->capacity(); cache.first = puff_id; } *buffer = cache.second; // By now we have either removed a cache or created new one. Now we have to // insert it in the front of the list so it becomes the most recently used // one. caches_.push_front(std::move(cache)); return found; } } // namespace puffin