//! Fix-point analyses on the IR using the "monotone framework". //! //! A lattice is a set with a partial ordering between elements, where there is //! a single least upper bound and a single greatest least bound for every //! subset. We are dealing with finite lattices, which means that it has a //! finite number of elements, and it follows that there exists a single top and //! a single bottom member of the lattice. For example, the power set of a //! finite set forms a finite lattice where partial ordering is defined by set //! inclusion, that is `a <= b` if `a` is a subset of `b`. Here is the finite //! lattice constructed from the set {0,1,2}: //! //! ```text //! .----- Top = {0,1,2} -----. //! / | \ //! / | \ //! / | \ //! {0,1} -------. {0,2} .--------- {1,2} //! | \ / \ / | //! | / \ | //! | / \ / \ | //! {0} --------' {1} `---------- {2} //! \ | / //! \ | / //! \ | / //! `------ Bottom = {} ------' //! ``` //! //! A monotone function `f` is a function where if `x <= y`, then it holds that //! `f(x) <= f(y)`. It should be clear that running a monotone function to a //! fix-point on a finite lattice will always terminate: `f` can only "move" //! along the lattice in a single direction, and therefore can only either find //! a fix-point in the middle of the lattice or continue to the top or bottom //! depending if it is ascending or descending the lattice respectively. //! //! For a deeper introduction to the general form of this kind of analysis, see //! [Static Program Analysis by Anders Møller and Michael I. Schwartzbach][spa]. //! //! [spa]: https://cs.au.dk/~amoeller/spa/spa.pdf // Re-export individual analyses. mod template_params; pub use self::template_params::UsedTemplateParameters; mod derive; pub use self::derive::{as_cannot_derive_set, CannotDerive, DeriveTrait}; mod has_vtable; pub use self::has_vtable::{HasVtable, HasVtableAnalysis, HasVtableResult}; mod has_destructor; pub use self::has_destructor::HasDestructorAnalysis; mod has_type_param_in_array; pub use self::has_type_param_in_array::HasTypeParameterInArray; mod has_float; pub use self::has_float::HasFloat; mod sizedness; pub use self::sizedness::{Sizedness, SizednessAnalysis, SizednessResult}; use crate::ir::context::{BindgenContext, ItemId}; use crate::ir::traversal::{EdgeKind, Trace}; use crate::HashMap; use std::fmt; use std::ops; /// An analysis in the monotone framework. /// /// Implementors of this trait must maintain the following two invariants: /// /// 1. The concrete data must be a member of a finite-height lattice. /// 2. The concrete `constrain` method must be monotone: that is, /// if `x <= y`, then `constrain(x) <= constrain(y)`. /// /// If these invariants do not hold, iteration to a fix-point might never /// complete. /// /// For a simple example analysis, see the `ReachableFrom` type in the `tests` /// module below. pub trait MonotoneFramework: Sized + fmt::Debug { /// The type of node in our dependency graph. /// /// This is just generic (and not `ItemId`) so that we can easily unit test /// without constructing real `Item`s and their `ItemId`s. type Node: Copy; /// Any extra data that is needed during computation. /// /// Again, this is just generic (and not `&BindgenContext`) so that we can /// easily unit test without constructing real `BindgenContext`s full of /// real `Item`s and real `ItemId`s. type Extra: Sized; /// The final output of this analysis. Once we have reached a fix-point, we /// convert `self` into this type, and return it as the final result of the /// analysis. type Output: From + fmt::Debug; /// Construct a new instance of this analysis. fn new(extra: Self::Extra) -> Self; /// Get the initial set of nodes from which to start the analysis. Unless /// you are sure of some domain-specific knowledge, this should be the /// complete set of nodes. fn initial_worklist(&self) -> Vec; /// Update the analysis for the given node. /// /// If this results in changing our internal state (ie, we discovered that /// we have not reached a fix-point and iteration should continue), return /// `ConstrainResult::Changed`. Otherwise, return `ConstrainResult::Same`. /// When `constrain` returns `ConstrainResult::Same` for all nodes in the /// set, we have reached a fix-point and the analysis is complete. fn constrain(&mut self, node: Self::Node) -> ConstrainResult; /// For each node `d` that depends on the given `node`'s current answer when /// running `constrain(d)`, call `f(d)`. This informs us which new nodes to /// queue up in the worklist when `constrain(node)` reports updated /// information. fn each_depending_on(&self, node: Self::Node, f: F) where F: FnMut(Self::Node); } /// Whether an analysis's `constrain` function modified the incremental results /// or not. #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub enum ConstrainResult { /// The incremental results were updated, and the fix-point computation /// should continue. Changed, /// The incremental results were not updated. Same, } impl Default for ConstrainResult { fn default() -> Self { ConstrainResult::Same } } impl ops::BitOr for ConstrainResult { type Output = Self; fn bitor(self, rhs: ConstrainResult) -> Self::Output { if self == ConstrainResult::Changed || rhs == ConstrainResult::Changed { ConstrainResult::Changed } else { ConstrainResult::Same } } } impl ops::BitOrAssign for ConstrainResult { fn bitor_assign(&mut self, rhs: ConstrainResult) { *self = *self | rhs; } } /// Run an analysis in the monotone framework. pub fn analyze(extra: Analysis::Extra) -> Analysis::Output where Analysis: MonotoneFramework, { let mut analysis = Analysis::new(extra); let mut worklist = analysis.initial_worklist(); while let Some(node) = worklist.pop() { if let ConstrainResult::Changed = analysis.constrain(node) { analysis.each_depending_on(node, |needs_work| { worklist.push(needs_work); }); } } analysis.into() } /// Generate the dependency map for analysis pub fn generate_dependencies( ctx: &BindgenContext, consider_edge: F, ) -> HashMap> where F: Fn(EdgeKind) -> bool, { let mut dependencies = HashMap::default(); for &item in ctx.allowlisted_items() { dependencies.entry(item).or_insert(vec![]); { // We reverse our natural IR graph edges to find dependencies // between nodes. item.trace( ctx, &mut |sub_item: ItemId, edge_kind| { if ctx.allowlisted_items().contains(&sub_item) && consider_edge(edge_kind) { dependencies .entry(sub_item) .or_insert(vec![]) .push(item); } }, &(), ); } } dependencies } #[cfg(test)] mod tests { use super::*; use crate::{HashMap, HashSet}; // Here we find the set of nodes that are reachable from any given // node. This is a lattice mapping nodes to subsets of all nodes. Our join // function is set union. // // This is our test graph: // // +---+ +---+ // | | | | // | 1 | .----| 2 | // | | | | | // +---+ | +---+ // | | ^ // | | | // | +---+ '------' // '----->| | // | 3 | // .------| |------. // | +---+ | // | ^ | // v | v // +---+ | +---+ +---+ // | | | | | | | // | 4 | | | 5 |--->| 6 | // | | | | | | | // +---+ | +---+ +---+ // | | | | // | | | v // | +---+ | +---+ // | | | | | | // '----->| 7 |<-----' | 8 | // | | | | // +---+ +---+ // // And here is the mapping from a node to the set of nodes that are // reachable from it within the test graph: // // 1: {3,4,5,6,7,8} // 2: {2} // 3: {3,4,5,6,7,8} // 4: {3,4,5,6,7,8} // 5: {3,4,5,6,7,8} // 6: {8} // 7: {3,4,5,6,7,8} // 8: {} #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] struct Node(usize); #[derive(Clone, Debug, Default, PartialEq, Eq)] struct Graph(HashMap>); impl Graph { fn make_test_graph() -> Graph { let mut g = Graph::default(); g.0.insert(Node(1), vec![Node(3)]); g.0.insert(Node(2), vec![Node(2)]); g.0.insert(Node(3), vec![Node(4), Node(5)]); g.0.insert(Node(4), vec![Node(7)]); g.0.insert(Node(5), vec![Node(6), Node(7)]); g.0.insert(Node(6), vec![Node(8)]); g.0.insert(Node(7), vec![Node(3)]); g.0.insert(Node(8), vec![]); g } fn reverse(&self) -> Graph { let mut reversed = Graph::default(); for (node, edges) in self.0.iter() { reversed.0.entry(*node).or_insert(vec![]); for referent in edges.iter() { reversed.0.entry(*referent).or_insert(vec![]).push(*node); } } reversed } } #[derive(Clone, Debug, PartialEq, Eq)] struct ReachableFrom<'a> { reachable: HashMap>, graph: &'a Graph, reversed: Graph, } impl<'a> MonotoneFramework for ReachableFrom<'a> { type Node = Node; type Extra = &'a Graph; type Output = HashMap>; fn new(graph: &'a Graph) -> ReachableFrom { let reversed = graph.reverse(); ReachableFrom { reachable: Default::default(), graph: graph, reversed: reversed, } } fn initial_worklist(&self) -> Vec { self.graph.0.keys().cloned().collect() } fn constrain(&mut self, node: Node) -> ConstrainResult { // The set of nodes reachable from a node `x` is // // reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ... // // where there exist edges from `x` to each of `s_0, s_1, ...`. // // Yes, what follows is a **terribly** inefficient set union // implementation. Don't copy this code outside of this test! let original_size = self .reachable .entry(node) .or_insert(HashSet::default()) .len(); for sub_node in self.graph.0[&node].iter() { self.reachable.get_mut(&node).unwrap().insert(*sub_node); let sub_reachable = self .reachable .entry(*sub_node) .or_insert(HashSet::default()) .clone(); for transitive in sub_reachable { self.reachable.get_mut(&node).unwrap().insert(transitive); } } let new_size = self.reachable[&node].len(); if original_size != new_size { ConstrainResult::Changed } else { ConstrainResult::Same } } fn each_depending_on(&self, node: Node, mut f: F) where F: FnMut(Node), { for dep in self.reversed.0[&node].iter() { f(*dep); } } } impl<'a> From> for HashMap> { fn from(reachable: ReachableFrom<'a>) -> Self { reachable.reachable } } #[test] fn monotone() { let g = Graph::make_test_graph(); let reachable = analyze::(&g); println!("reachable = {:#?}", reachable); fn nodes(nodes: A) -> HashSet where A: AsRef<[usize]>, { nodes.as_ref().iter().cloned().map(Node).collect() } let mut expected = HashMap::default(); expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8])); expected.insert(Node(2), nodes([2])); expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8])); expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8])); expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8])); expected.insert(Node(6), nodes([8])); expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8])); expected.insert(Node(8), nodes([])); println!("expected = {:#?}", expected); assert_eq!(reachable, expected); } }