#[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Pod, Zeroable}; use core::{ cmp::Ordering, fmt::{ Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, }, num::{FpCategory, ParseFloatError}, str::FromStr, }; pub(crate) mod convert; /// A 16-bit floating point type implementing the [`bfloat16`] format. /// /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard /// `binary32`, a.k.a `f32`. [`bf16`] has approximately the same dynamic range as `f32` by having /// a lower precision than [`f16`]. While [`f16`] has a precision of 11 bits, [`bf16`] has a /// precision of only 8 bits. /// /// Like [`f16`], [`bf16`] does not offer arithmetic operations as it is intended for compact /// storage rather than calculations. Operations should be performed with `f32` or higher-precision /// types and converted to/from [`bf16`] as necessary. /// /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format /// [`bf16`]: struct.bf16.html /// [`f16`]: struct.f16.html #[allow(non_camel_case_types)] #[derive(Clone, Copy, Default)] #[repr(transparent)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] pub struct bf16(u16); impl bf16 { /// Constructs a [`bf16`](struct.bf16.html) value from the raw bits. #[inline] pub const fn from_bits(bits: u16) -> bf16 { bf16(bits) } /// Constructs a [`bf16`](struct.bf16.html) value from a 32-bit floating point value. /// /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. /// Subnormal values that are too tiny to be represented will result in ±0. All other values /// are truncated and rounded to the nearest representable value. #[inline] pub fn from_f32(value: f32) -> bf16 { bf16(convert::f32_to_bf16(value)) } /// Constructs a [`bf16`](struct.bf16.html) value from a 64-bit floating point value. /// /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that /// underflow the minimum exponent will result in subnormals or ±0. All other values are /// truncated and rounded to the nearest representable value. #[inline] pub fn from_f64(value: f64) -> bf16 { bf16(convert::f64_to_bf16(value)) } /// Converts a [`bf16`](struct.bf16.html) into the underlying bit representation. #[inline] pub const fn to_bits(self) -> u16 { self.0 } /// Return the memory representation of the underlying bit representation as a byte array in /// little-endian byte order. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = bf16::from_f32(12.5).to_le_bytes(); /// assert_eq!(bytes, [0x48, 0x41]); /// ``` #[inline] pub fn to_le_bytes(self) -> [u8; 2] { self.0.to_le_bytes() } /// Return the memory representation of the underlying bit representation as a byte array in /// big-endian (network) byte order. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = bf16::from_f32(12.5).to_be_bytes(); /// assert_eq!(bytes, [0x41, 0x48]); /// ``` #[inline] pub fn to_be_bytes(self) -> [u8; 2] { self.0.to_be_bytes() } /// Return the memory representation of the underlying bit representation as a byte array in /// native byte order. /// /// As the target platform's native endianness is used, portable code should use `to_be_bytes` /// or `to_le_bytes`, as appropriate, instead. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = bf16::from_f32(12.5).to_ne_bytes(); /// assert_eq!(bytes, if cfg!(target_endian = "big") { /// [0x41, 0x48] /// } else { /// [0x48, 0x41] /// }); /// ``` #[inline] pub fn to_ne_bytes(self) -> [u8; 2] { self.0.to_ne_bytes() } /// Create a floating point value from its representation as a byte array in little endian. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = bf16::from_le_bytes([0x48, 0x41]); /// assert_eq!(value, bf16::from_f32(12.5)); /// ``` #[inline] pub fn from_le_bytes(bytes: [u8; 2]) -> bf16 { bf16::from_bits(u16::from_le_bytes(bytes)) } /// Create a floating point value from its representation as a byte array in big endian. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = bf16::from_be_bytes([0x41, 0x48]); /// assert_eq!(value, bf16::from_f32(12.5)); /// ``` #[inline] pub fn from_be_bytes(bytes: [u8; 2]) -> bf16 { bf16::from_bits(u16::from_be_bytes(bytes)) } /// Create a floating point value from its representation as a byte array in native endian. /// /// As the target platform's native endianness is used, portable code likely wants to use /// `from_be_bytes` or `from_le_bytes`, as appropriate instead. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") { /// [0x41, 0x48] /// } else { /// [0x48, 0x41] /// }); /// assert_eq!(value, bf16::from_f32(12.5)); /// ``` #[inline] pub fn from_ne_bytes(bytes: [u8; 2]) -> bf16 { bf16::from_bits(u16::from_ne_bytes(bytes)) } /// Converts a [`bf16`](struct.bf16.html) value into an `f32` value. /// /// This conversion is lossless as all values can be represented exactly in `f32`. #[inline] pub fn to_f32(self) -> f32 { convert::bf16_to_f32(self.0) } /// Converts a [`bf16`](struct.bf16.html) value into an `f64` value. /// /// This conversion is lossless as all values can be represented exactly in `f64`. #[inline] pub fn to_f64(self) -> f64 { convert::bf16_to_f64(self.0) } /// Returns `true` if this value is NaN and `false` otherwise. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = bf16::NAN; /// let f = bf16::from_f32(7.0_f32); /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` #[inline] pub const fn is_nan(self) -> bool { self.0 & 0x7FFFu16 > 0x7F80u16 } /// Returns `true` if this value is ±∞ and `false` otherwise. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = bf16::from_f32(7.0f32); /// let inf = bf16::INFINITY; /// let neg_inf = bf16::NEG_INFINITY; /// let nan = bf16::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` #[inline] pub const fn is_infinite(self) -> bool { self.0 & 0x7FFFu16 == 0x7F80u16 } /// Returns `true` if this number is neither infinite nor NaN. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = bf16::from_f32(7.0f32); /// let inf = bf16::INFINITY; /// let neg_inf = bf16::NEG_INFINITY; /// let nan = bf16::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` #[inline] pub const fn is_finite(self) -> bool { self.0 & 0x7F80u16 != 0x7F80u16 } /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let min = bf16::MIN_POSITIVE; /// let max = bf16::MAX; /// let lower_than_min = bf16::from_f32(1.0e-39_f32); /// let zero = bf16::from_f32(0.0_f32); /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!bf16::NAN.is_normal()); /// assert!(!bf16::INFINITY.is_normal()); /// // Values between 0 and `min` are subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` #[inline] pub fn is_normal(self) -> bool { let exp = self.0 & 0x7F80u16; exp != 0x7F80u16 && exp != 0 } /// Returns the floating point category of the number. /// /// If only one property is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// # Examples /// /// ```rust /// use std::num::FpCategory; /// # use half::prelude::*; /// /// let num = bf16::from_f32(12.4_f32); /// let inf = bf16::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` pub fn classify(self) -> FpCategory { let exp = self.0 & 0x7F80u16; let man = self.0 & 0x007Fu16; match (exp, man) { (0, 0) => FpCategory::Zero, (0, _) => FpCategory::Subnormal, (0x7F80u16, 0) => FpCategory::Infinite, (0x7F80u16, _) => FpCategory::Nan, _ => FpCategory::Normal, } } /// Returns a number that represents the sign of `self`. /// /// * 1.0 if the number is positive, +0.0 or `INFINITY` /// * −1.0 if the number is negative, −0.0` or `NEG_INFINITY` /// * NaN if the number is NaN /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = bf16::from_f32(3.5_f32); /// /// assert_eq!(f.signum(), bf16::from_f32(1.0)); /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0)); /// /// assert!(bf16::NAN.signum().is_nan()); /// ``` pub fn signum(self) -> bf16 { if self.is_nan() { self } else if self.0 & 0x8000u16 != 0 { bf16::from_f32(-1.0) } else { bf16::from_f32(1.0) } } /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a /// positive sign bit and +∞. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = bf16::NAN; /// let f = bf16::from_f32(7.0_f32); /// let g = bf16::from_f32(-7.0_f32); /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// // NaN can be either positive or negative /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); /// ``` #[inline] pub const fn is_sign_positive(self) -> bool { self.0 & 0x8000u16 == 0 } /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a /// negative sign bit and −∞. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = bf16::NAN; /// let f = bf16::from_f32(7.0f32); /// let g = bf16::from_f32(-7.0f32); /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// // NaN can be either positive or negative /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); /// ``` #[inline] pub const fn is_sign_negative(self) -> bool { self.0 & 0x8000u16 != 0 } /// Approximate number of [`bf16`](struct.bf16.html) significant digits in base 10. pub const DIGITS: u32 = 2; /// [`bf16`](struct.bf16.html) /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value. /// /// This is the difference between 1.0 and the next largest representable number. pub const EPSILON: bf16 = bf16(0x3C00u16); /// [`bf16`](struct.bf16.html) positive Infinity (+∞). pub const INFINITY: bf16 = bf16(0x7F80u16); /// Number of [`bf16`](struct.bf16.html) significant digits in base 2. pub const MANTISSA_DIGITS: u32 = 8; /// Largest finite [`bf16`](struct.bf16.html) value. pub const MAX: bf16 = bf16(0x7F7F); /// Maximum possible [`bf16`](struct.bf16.html) power of 10 exponent. pub const MAX_10_EXP: i32 = 38; /// Maximum possible [`bf16`](struct.bf16.html) power of 2 exponent. pub const MAX_EXP: i32 = 128; /// Smallest finite [`bf16`](struct.bf16.html) value. pub const MIN: bf16 = bf16(0xFF7F); /// Minimum possible normal [`bf16`](struct.bf16.html) power of 10 exponent. pub const MIN_10_EXP: i32 = -37; /// One greater than the minimum possible normal [`bf16`](struct.bf16.html) power of 2 exponent. pub const MIN_EXP: i32 = -125; /// Smallest positive normal [`bf16`](struct.bf16.html) value. pub const MIN_POSITIVE: bf16 = bf16(0x0080u16); /// [`bf16`](struct.bf16.html) Not a Number (NaN). pub const NAN: bf16 = bf16(0x7FC0u16); /// [`bf16`](struct.bf16.html) negative infinity (-∞). pub const NEG_INFINITY: bf16 = bf16(0xFF80u16); /// The radix or base of the internal representation of [`bf16`](struct.bf16.html). pub const RADIX: u32 = 2; /// Minimum positive subnormal [`bf16`](struct.bf16.html) value. pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16); /// Maximum subnormal [`bf16`](struct.bf16.html) value. pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16); /// [`bf16`](struct.bf16.html) 1 pub const ONE: bf16 = bf16(0x3F80u16); /// [`bf16`](struct.bf16.html) 0 pub const ZERO: bf16 = bf16(0x0000u16); /// [`bf16`](struct.bf16.html) -0 pub const NEG_ZERO: bf16 = bf16(0x8000u16); /// [`bf16`](struct.bf16.html) Euler's number (ℯ). pub const E: bf16 = bf16(0x402Eu16); /// [`bf16`](struct.bf16.html) Archimedes' constant (π). pub const PI: bf16 = bf16(0x4049u16); /// [`bf16`](struct.bf16.html) 1/π pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16); /// [`bf16`](struct.bf16.html) 1/√2 pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16); /// [`bf16`](struct.bf16.html) 2/π pub const FRAC_2_PI: bf16 = bf16(0x3F23u16); /// [`bf16`](struct.bf16.html) 2/√π pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16); /// [`bf16`](struct.bf16.html) π/2 pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16); /// [`bf16`](struct.bf16.html) π/3 pub const FRAC_PI_3: bf16 = bf16(0x3F86u16); /// [`bf16`](struct.bf16.html) π/4 pub const FRAC_PI_4: bf16 = bf16(0x3F49u16); /// [`bf16`](struct.bf16.html) π/6 pub const FRAC_PI_6: bf16 = bf16(0x3F06u16); /// [`bf16`](struct.bf16.html) π/8 pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16); /// [`bf16`](struct.bf16.html) 𝗅𝗇 10 pub const LN_10: bf16 = bf16(0x4013u16); /// [`bf16`](struct.bf16.html) 𝗅𝗇 2 pub const LN_2: bf16 = bf16(0x3F31u16); /// [`bf16`](struct.bf16.html) 𝗅𝗈𝗀₁₀ℯ pub const LOG10_E: bf16 = bf16(0x3EDEu16); /// [`bf16`](struct.bf16.html) 𝗅𝗈𝗀₁₀2 pub const LOG10_2: bf16 = bf16(0x3E9Au16); /// [`bf16`](struct.bf16.html) 𝗅𝗈𝗀₂ℯ pub const LOG2_E: bf16 = bf16(0x3FB9u16); /// [`bf16`](struct.bf16.html) 𝗅𝗈𝗀₂10 pub const LOG2_10: bf16 = bf16(0x4055u16); /// [`bf16`](struct.bf16.html) √2 pub const SQRT_2: bf16 = bf16(0x3FB5u16); } impl From for f32 { #[inline] fn from(x: bf16) -> f32 { x.to_f32() } } impl From for f64 { #[inline] fn from(x: bf16) -> f64 { x.to_f64() } } impl From for bf16 { #[inline] fn from(x: i8) -> bf16 { // Convert to f32, then to bf16 bf16::from_f32(f32::from(x)) } } impl From for bf16 { #[inline] fn from(x: u8) -> bf16 { // Convert to f32, then to f16 bf16::from_f32(f32::from(x)) } } impl PartialEq for bf16 { fn eq(&self, other: &bf16) -> bool { if self.is_nan() || other.is_nan() { false } else { (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) } } } impl PartialOrd for bf16 { fn partial_cmp(&self, other: &bf16) -> Option { if self.is_nan() || other.is_nan() { None } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => Some(self.0.cmp(&other.0)), (false, true) => { if (self.0 | other.0) & 0x7FFFu16 == 0 { Some(Ordering::Equal) } else { Some(Ordering::Greater) } } (true, false) => { if (self.0 | other.0) & 0x7FFFu16 == 0 { Some(Ordering::Equal) } else { Some(Ordering::Less) } } (true, true) => Some(other.0.cmp(&self.0)), } } } fn lt(&self, other: &bf16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 < other.0, (false, true) => false, (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, (true, true) => self.0 > other.0, } } } fn le(&self, other: &bf16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 <= other.0, (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, (true, false) => true, (true, true) => self.0 >= other.0, } } } fn gt(&self, other: &bf16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 > other.0, (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, (true, false) => false, (true, true) => self.0 < other.0, } } } fn ge(&self, other: &bf16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 >= other.0, (false, true) => true, (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, (true, true) => self.0 <= other.0, } } } } impl FromStr for bf16 { type Err = ParseFloatError; fn from_str(src: &str) -> Result { f32::from_str(src).map(bf16::from_f32) } } impl Debug for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:?}", self.to_f32()) } } impl Display for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{}", self.to_f32()) } } impl LowerExp for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:e}", self.to_f32()) } } impl UpperExp for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:E}", self.to_f32()) } } impl Binary for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:b}", self.0) } } impl Octal for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:o}", self.0) } } impl LowerHex for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:x}", self.0) } } impl UpperHex for bf16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:X}", self.0) } } #[cfg(feature = "num-traits")] mod impl_num_traits { use super::bf16; use num_traits::{FromPrimitive, ToPrimitive}; impl ToPrimitive for bf16 { fn to_i64(&self) -> Option { Self::to_f32(*self).to_i64() } fn to_u64(&self) -> Option { Self::to_f32(*self).to_u64() } fn to_i8(&self) -> Option { Self::to_f32(*self).to_i8() } fn to_u8(&self) -> Option { Self::to_f32(*self).to_u8() } fn to_i16(&self) -> Option { Self::to_f32(*self).to_i16() } fn to_u16(&self) -> Option { Self::to_f32(*self).to_u16() } fn to_i32(&self) -> Option { Self::to_f32(*self).to_i32() } fn to_u32(&self) -> Option { Self::to_f32(*self).to_u32() } fn to_f32(&self) -> Option { Some(Self::to_f32(*self)) } fn to_f64(&self) -> Option { Some(Self::to_f64(*self)) } } impl FromPrimitive for bf16 { fn from_i64(n: i64) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_u64(n: u64) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_i8(n: i8) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_u8(n: u8) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_i16(n: i16) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_u16(n: u16) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_i32(n: i32) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_u32(n: u32) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_f32(n: f32) -> Option { n.to_f32().map(|x| Self::from_f32(x)) } fn from_f64(n: f64) -> Option { n.to_f64().map(|x| Self::from_f64(x)) } } } #[allow( clippy::cognitive_complexity, clippy::float_cmp, clippy::neg_cmp_op_on_partial_ord )] #[cfg(test)] mod test { use super::*; use core; use core::cmp::Ordering; use quickcheck_macros::quickcheck; #[test] fn test_bf16_consts_from_f32() { let one = bf16::from_f32(1.0); let zero = bf16::from_f32(0.0); let neg_zero = bf16::from_f32(-0.0); let inf = bf16::from_f32(core::f32::INFINITY); let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY); let nan = bf16::from_f32(core::f32::NAN); assert_eq!(bf16::ONE, one); assert_eq!(bf16::ZERO, zero); assert_eq!(bf16::NEG_ZERO, neg_zero); assert_eq!(bf16::INFINITY, inf); assert_eq!(bf16::NEG_INFINITY, neg_inf); assert!(nan.is_nan()); assert!(bf16::NAN.is_nan()); let e = bf16::from_f32(core::f32::consts::E); let pi = bf16::from_f32(core::f32::consts::PI); let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI); let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2); let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI); let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2); let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3); let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4); let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6); let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8); let ln_10 = bf16::from_f32(core::f32::consts::LN_10); let ln_2 = bf16::from_f32(core::f32::consts::LN_2); let log10_e = bf16::from_f32(core::f32::consts::LOG10_E); // core::f32::consts::LOG10_2 requires rustc 1.43.0 let log10_2 = bf16::from_f32(2f32.log10()); let log2_e = bf16::from_f32(core::f32::consts::LOG2_E); // core::f32::consts::LOG2_10 requires rustc 1.43.0 let log2_10 = bf16::from_f32(10f32.log2()); let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2); assert_eq!(bf16::E, e); assert_eq!(bf16::PI, pi); assert_eq!(bf16::FRAC_1_PI, frac_1_pi); assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); assert_eq!(bf16::FRAC_2_PI, frac_2_pi); assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); assert_eq!(bf16::FRAC_PI_2, frac_pi_2); assert_eq!(bf16::FRAC_PI_3, frac_pi_3); assert_eq!(bf16::FRAC_PI_4, frac_pi_4); assert_eq!(bf16::FRAC_PI_6, frac_pi_6); assert_eq!(bf16::FRAC_PI_8, frac_pi_8); assert_eq!(bf16::LN_10, ln_10); assert_eq!(bf16::LN_2, ln_2); assert_eq!(bf16::LOG10_E, log10_e); assert_eq!(bf16::LOG10_2, log10_2); assert_eq!(bf16::LOG2_E, log2_e); assert_eq!(bf16::LOG2_10, log2_10); assert_eq!(bf16::SQRT_2, sqrt_2); } #[test] fn test_bf16_consts_from_f64() { let one = bf16::from_f64(1.0); let zero = bf16::from_f64(0.0); let neg_zero = bf16::from_f64(-0.0); let inf = bf16::from_f64(core::f64::INFINITY); let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY); let nan = bf16::from_f64(core::f64::NAN); assert_eq!(bf16::ONE, one); assert_eq!(bf16::ZERO, zero); assert_eq!(bf16::NEG_ZERO, neg_zero); assert_eq!(bf16::INFINITY, inf); assert_eq!(bf16::NEG_INFINITY, neg_inf); assert!(nan.is_nan()); assert!(bf16::NAN.is_nan()); let e = bf16::from_f64(core::f64::consts::E); let pi = bf16::from_f64(core::f64::consts::PI); let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI); let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2); let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI); let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2); let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3); let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4); let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6); let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8); let ln_10 = bf16::from_f64(core::f64::consts::LN_10); let ln_2 = bf16::from_f64(core::f64::consts::LN_2); let log10_e = bf16::from_f64(core::f64::consts::LOG10_E); // core::f64::consts::LOG10_2 requires rustc 1.43.0 let log10_2 = bf16::from_f64(2f64.log10()); let log2_e = bf16::from_f64(core::f64::consts::LOG2_E); // core::f64::consts::LOG2_10 requires rustc 1.43.0 let log2_10 = bf16::from_f64(10f64.log2()); let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2); assert_eq!(bf16::E, e); assert_eq!(bf16::PI, pi); assert_eq!(bf16::FRAC_1_PI, frac_1_pi); assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); assert_eq!(bf16::FRAC_2_PI, frac_2_pi); assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); assert_eq!(bf16::FRAC_PI_2, frac_pi_2); assert_eq!(bf16::FRAC_PI_3, frac_pi_3); assert_eq!(bf16::FRAC_PI_4, frac_pi_4); assert_eq!(bf16::FRAC_PI_6, frac_pi_6); assert_eq!(bf16::FRAC_PI_8, frac_pi_8); assert_eq!(bf16::LN_10, ln_10); assert_eq!(bf16::LN_2, ln_2); assert_eq!(bf16::LOG10_E, log10_e); assert_eq!(bf16::LOG10_2, log10_2); assert_eq!(bf16::LOG2_E, log2_e); assert_eq!(bf16::LOG2_10, log2_10); assert_eq!(bf16::SQRT_2, sqrt_2); } #[test] fn test_nan_conversion_to_smaller() { let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); let nan32 = f32::from_bits(0x7F80_0001u32); let neg_nan32 = f32::from_bits(0xFF80_0001u32); let nan32_from_64 = nan64 as f32; let neg_nan32_from_64 = neg_nan64 as f32; let nan16_from_64 = bf16::from_f64(nan64); let neg_nan16_from_64 = bf16::from_f64(neg_nan64); let nan16_from_32 = bf16::from_f32(nan32); let neg_nan16_from_32 = bf16::from_f32(neg_nan32); assert!(nan64.is_nan() && nan64.is_sign_positive()); assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); assert!(nan32.is_nan() && nan32.is_sign_positive()); assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); } #[test] fn test_nan_conversion_to_larger() { let nan16 = bf16::from_bits(0x7F81u16); let neg_nan16 = bf16::from_bits(0xFF81u16); let nan32 = f32::from_bits(0x7F80_0001u32); let neg_nan32 = f32::from_bits(0xFF80_0001u32); let nan32_from_16 = f32::from(nan16); let neg_nan32_from_16 = f32::from(neg_nan16); let nan64_from_16 = f64::from(nan16); let neg_nan64_from_16 = f64::from(neg_nan16); let nan64_from_32 = f64::from(nan32); let neg_nan64_from_32 = f64::from(neg_nan32); assert!(nan16.is_nan() && nan16.is_sign_positive()); assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); assert!(nan32.is_nan() && nan32.is_sign_positive()); assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); } #[test] fn test_bf16_to_f32() { let f = bf16::from_f32(7.0); assert_eq!(f.to_f32(), 7.0f32); // 7.1 is NOT exactly representable in 16-bit, it's rounded let f = bf16::from_f32(7.1); let diff = (f.to_f32() - 7.1f32).abs(); // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 assert!(diff <= 4.0 * bf16::EPSILON.to_f32()); let tiny32 = f32::from_bits(0x0001_0000u32); assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32); assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32); assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32)); assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32)); } #[test] fn test_bf16_to_f64() { let f = bf16::from_f64(7.0); assert_eq!(f.to_f64(), 7.0f64); // 7.1 is NOT exactly representable in 16-bit, it's rounded let f = bf16::from_f64(7.1); let diff = (f.to_f64() - 7.1f64).abs(); // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 assert!(diff <= 4.0 * bf16::EPSILON.to_f64()); let tiny64 = 2.0f64.powi(-133); assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64); assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64); assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64)); assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64)); } #[test] fn test_comparisons() { let zero = bf16::from_f64(0.0); let one = bf16::from_f64(1.0); let neg_zero = bf16::from_f64(-0.0); let neg_one = bf16::from_f64(-1.0); assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); assert!(zero == neg_zero); assert!(neg_zero == zero); assert!(!(zero != neg_zero)); assert!(!(neg_zero != zero)); assert!(!(zero < neg_zero)); assert!(!(neg_zero < zero)); assert!(zero <= neg_zero); assert!(neg_zero <= zero); assert!(!(zero > neg_zero)); assert!(!(neg_zero > zero)); assert!(zero >= neg_zero); assert!(neg_zero >= zero); assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); assert!(!(one == neg_zero)); assert!(!(neg_zero == one)); assert!(one != neg_zero); assert!(neg_zero != one); assert!(!(one < neg_zero)); assert!(neg_zero < one); assert!(!(one <= neg_zero)); assert!(neg_zero <= one); assert!(one > neg_zero); assert!(!(neg_zero > one)); assert!(one >= neg_zero); assert!(!(neg_zero >= one)); assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); assert!(!(one == neg_one)); assert!(!(neg_one == one)); assert!(one != neg_one); assert!(neg_one != one); assert!(!(one < neg_one)); assert!(neg_one < one); assert!(!(one <= neg_one)); assert!(neg_one <= one); assert!(one > neg_one); assert!(!(neg_one > one)); assert!(one >= neg_one); assert!(!(neg_one >= one)); } #[test] #[allow(clippy::erasing_op, clippy::identity_op)] fn round_to_even_f32() { // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 let min_sub = bf16::from_bits(1); let min_sub_f = (-133f32).exp2(); assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) assert_eq!( bf16::from_f32(min_sub_f * 0.49).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( bf16::from_f32(min_sub_f * 0.50).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( bf16::from_f32(min_sub_f * 0.51).to_bits(), min_sub.to_bits() * 1 ); // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) assert_eq!( bf16::from_f32(min_sub_f * 1.49).to_bits(), min_sub.to_bits() * 1 ); assert_eq!( bf16::from_f32(min_sub_f * 1.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f32(min_sub_f * 1.51).to_bits(), min_sub.to_bits() * 2 ); // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) assert_eq!( bf16::from_f32(min_sub_f * 2.49).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f32(min_sub_f * 2.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f32(min_sub_f * 2.51).to_bits(), min_sub.to_bits() * 3 ); assert_eq!( bf16::from_f32(250.49f32).to_bits(), bf16::from_f32(250.0).to_bits() ); assert_eq!( bf16::from_f32(250.50f32).to_bits(), bf16::from_f32(250.0).to_bits() ); assert_eq!( bf16::from_f32(250.51f32).to_bits(), bf16::from_f32(251.0).to_bits() ); assert_eq!( bf16::from_f32(251.49f32).to_bits(), bf16::from_f32(251.0).to_bits() ); assert_eq!( bf16::from_f32(251.50f32).to_bits(), bf16::from_f32(252.0).to_bits() ); assert_eq!( bf16::from_f32(251.51f32).to_bits(), bf16::from_f32(252.0).to_bits() ); assert_eq!( bf16::from_f32(252.49f32).to_bits(), bf16::from_f32(252.0).to_bits() ); assert_eq!( bf16::from_f32(252.50f32).to_bits(), bf16::from_f32(252.0).to_bits() ); assert_eq!( bf16::from_f32(252.51f32).to_bits(), bf16::from_f32(253.0).to_bits() ); } #[test] #[allow(clippy::erasing_op, clippy::identity_op)] fn round_to_even_f64() { // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 let min_sub = bf16::from_bits(1); let min_sub_f = (-133f64).exp2(); assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) assert_eq!( bf16::from_f64(min_sub_f * 0.49).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( bf16::from_f64(min_sub_f * 0.50).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( bf16::from_f64(min_sub_f * 0.51).to_bits(), min_sub.to_bits() * 1 ); // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) assert_eq!( bf16::from_f64(min_sub_f * 1.49).to_bits(), min_sub.to_bits() * 1 ); assert_eq!( bf16::from_f64(min_sub_f * 1.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f64(min_sub_f * 1.51).to_bits(), min_sub.to_bits() * 2 ); // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) assert_eq!( bf16::from_f64(min_sub_f * 2.49).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f64(min_sub_f * 2.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( bf16::from_f64(min_sub_f * 2.51).to_bits(), min_sub.to_bits() * 3 ); assert_eq!( bf16::from_f64(250.49f64).to_bits(), bf16::from_f64(250.0).to_bits() ); assert_eq!( bf16::from_f64(250.50f64).to_bits(), bf16::from_f64(250.0).to_bits() ); assert_eq!( bf16::from_f64(250.51f64).to_bits(), bf16::from_f64(251.0).to_bits() ); assert_eq!( bf16::from_f64(251.49f64).to_bits(), bf16::from_f64(251.0).to_bits() ); assert_eq!( bf16::from_f64(251.50f64).to_bits(), bf16::from_f64(252.0).to_bits() ); assert_eq!( bf16::from_f64(251.51f64).to_bits(), bf16::from_f64(252.0).to_bits() ); assert_eq!( bf16::from_f64(252.49f64).to_bits(), bf16::from_f64(252.0).to_bits() ); assert_eq!( bf16::from_f64(252.50f64).to_bits(), bf16::from_f64(252.0).to_bits() ); assert_eq!( bf16::from_f64(252.51f64).to_bits(), bf16::from_f64(253.0).to_bits() ); } impl quickcheck::Arbitrary for bf16 { fn arbitrary(g: &mut G) -> Self { use rand::Rng; bf16(g.gen()) } } #[quickcheck] fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool { let roundtrip = bf16::from_f32(f.to_f32()); if f.is_nan() { roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() } else { f.0 == roundtrip.0 } } #[quickcheck] fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool { let roundtrip = bf16::from_f64(f.to_f64()); if f.is_nan() { roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() } else { f.0 == roundtrip.0 } } }