/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ use super::{cosf, fabsf, logf, sinf, sqrtf}; const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */ const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */ fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 { let z: f64; let mut s: f64; let c: f64; let mut ss: f64; let mut cc: f64; s = sinf(x) as f64; if y1 { s = -s; } c = cosf(x) as f64; cc = s - c; if ix < 0x7f000000 { ss = -s - c; z = cosf(2.0 * x) as f64; if s * c > 0.0 { cc = z / ss; } else { ss = z / cc; } if ix < 0x58800000 { if y1 { ss = -ss; } cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss; } } if sign { cc = -cc; } return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32; } /* R0/S0 on [0,2] */ const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */ const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */ const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */ const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */ const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */ const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */ const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */ const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */ const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */ pub fn j1f(x: f32) -> f32 { let mut z: f32; let r: f32; let s: f32; let mut ix: u32; let sign: bool; ix = x.to_bits(); sign = (ix >> 31) != 0; ix &= 0x7fffffff; if ix >= 0x7f800000 { return 1.0 / (x * x); } if ix >= 0x40000000 { /* |x| >= 2 */ return common(ix, fabsf(x), false, sign); } if ix >= 0x39000000 { /* |x| >= 2**-13 */ z = x * x; r = z * (R00 + z * (R01 + z * (R02 + z * R03))); s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05)))); z = 0.5 + r / s; } else { z = 0.5; } return z * x; } const U0: [f32; 5] = [ -1.9605709612e-01, /* 0xbe48c331 */ 5.0443872809e-02, /* 0x3d4e9e3c */ -1.9125689287e-03, /* 0xbafaaf2a */ 2.3525259166e-05, /* 0x37c5581c */ -9.1909917899e-08, /* 0xb3c56003 */ ]; const V0: [f32; 5] = [ 1.9916731864e-02, /* 0x3ca3286a */ 2.0255257550e-04, /* 0x3954644b */ 1.3560879779e-06, /* 0x35b602d4 */ 6.2274145840e-09, /* 0x31d5f8eb */ 1.6655924903e-11, /* 0x2d9281cf */ ]; pub fn y1f(x: f32) -> f32 { let z: f32; let u: f32; let v: f32; let ix: u32; ix = x.to_bits(); if (ix & 0x7fffffff) == 0 { return -1.0 / 0.0; } if (ix >> 31) != 0 { return 0.0 / 0.0; } if ix >= 0x7f800000 { return 1.0 / x; } if ix >= 0x40000000 { /* |x| >= 2.0 */ return common(ix, x, true, false); } if ix < 0x33000000 { /* x < 2**-25 */ return -TPI / x; } z = x * x; u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4]))); v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4])))); return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x); } /* For x >= 8, the asymptotic expansions of pone is * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. * We approximate pone by * pone(x) = 1 + (R/S) * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 * S = 1 + ps0*s^2 + ... + ps4*s^10 * and * | pone(x)-1-R/S | <= 2 ** ( -60.06) */ const PR8: [f32; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.0000000000e+00, /* 0x00000000 */ 1.1718750000e-01, /* 0x3df00000 */ 1.3239480972e+01, /* 0x4153d4ea */ 4.1205184937e+02, /* 0x43ce06a3 */ 3.8747453613e+03, /* 0x45722bed */ 7.9144794922e+03, /* 0x45f753d6 */ ]; const PS8: [f32; 5] = [ 1.1420736694e+02, /* 0x42e46a2c */ 3.6509309082e+03, /* 0x45642ee5 */ 3.6956207031e+04, /* 0x47105c35 */ 9.7602796875e+04, /* 0x47bea166 */ 3.0804271484e+04, /* 0x46f0a88b */ ]; const PR5: [f32; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ 1.3199052094e-11, /* 0x2d68333f */ 1.1718749255e-01, /* 0x3defffff */ 6.8027510643e+00, /* 0x40d9b023 */ 1.0830818176e+02, /* 0x42d89dca */ 5.1763616943e+02, /* 0x440168b7 */ 5.2871520996e+02, /* 0x44042dc6 */ ]; const PS5: [f32; 5] = [ 5.9280597687e+01, /* 0x426d1f55 */ 9.9140142822e+02, /* 0x4477d9b1 */ 5.3532670898e+03, /* 0x45a74a23 */ 7.8446904297e+03, /* 0x45f52586 */ 1.5040468750e+03, /* 0x44bc0180 */ ]; const PR3: [f32; 6] = [ 3.0250391081e-09, /* 0x314fe10d */ 1.1718686670e-01, /* 0x3defffab */ 3.9329774380e+00, /* 0x407bb5e7 */ 3.5119403839e+01, /* 0x420c7a45 */ 9.1055007935e+01, /* 0x42b61c2a */ 4.8559066772e+01, /* 0x42423c7c */ ]; const PS3: [f32; 5] = [ 3.4791309357e+01, /* 0x420b2a4d */ 3.3676245117e+02, /* 0x43a86198 */ 1.0468714600e+03, /* 0x4482dbe3 */ 8.9081134033e+02, /* 0x445eb3ed */ 1.0378793335e+02, /* 0x42cf936c */ ]; const PR2: [f32; 6] = [ /* for x in [2.8570,2]=1/[0.3499,0.5] */ 1.0771083225e-07, /* 0x33e74ea8 */ 1.1717621982e-01, /* 0x3deffa16 */ 2.3685150146e+00, /* 0x401795c0 */ 1.2242610931e+01, /* 0x4143e1bc */ 1.7693971634e+01, /* 0x418d8d41 */ 5.0735230446e+00, /* 0x40a25a4d */ ]; const PS2: [f32; 5] = [ 2.1436485291e+01, /* 0x41ab7dec */ 1.2529022980e+02, /* 0x42fa9499 */ 2.3227647400e+02, /* 0x436846c7 */ 1.1767937469e+02, /* 0x42eb5bd7 */ 8.3646392822e+00, /* 0x4105d590 */ ]; fn ponef(x: f32) -> f32 { let p: &[f32; 6]; let q: &[f32; 5]; let z: f32; let r: f32; let s: f32; let mut ix: u32; ix = x.to_bits(); ix &= 0x7fffffff; if ix >= 0x41000000 { p = &PR8; q = &PS8; } else if ix >= 0x409173eb { p = &PR5; q = &PS5; } else if ix >= 0x4036d917 { p = &PR3; q = &PS3; } else /*ix >= 0x40000000*/ { p = &PR2; q = &PS2; } z = 1.0 / (x * x); r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); return 1.0 + r / s; } /* For x >= 8, the asymptotic expansions of qone is * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. * We approximate pone by * qone(x) = s*(0.375 + (R/S)) * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 * S = 1 + qs1*s^2 + ... + qs6*s^12 * and * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) */ const QR8: [f32; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.0000000000e+00, /* 0x00000000 */ -1.0253906250e-01, /* 0xbdd20000 */ -1.6271753311e+01, /* 0xc1822c8d */ -7.5960174561e+02, /* 0xc43de683 */ -1.1849806641e+04, /* 0xc639273a */ -4.8438511719e+04, /* 0xc73d3683 */ ]; const QS8: [f32; 6] = [ 1.6139537048e+02, /* 0x43216537 */ 7.8253862305e+03, /* 0x45f48b17 */ 1.3387534375e+05, /* 0x4802bcd6 */ 7.1965775000e+05, /* 0x492fb29c */ 6.6660125000e+05, /* 0x4922be94 */ -2.9449025000e+05, /* 0xc88fcb48 */ ]; const QR5: [f32; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ -2.0897993405e-11, /* 0xadb7d219 */ -1.0253904760e-01, /* 0xbdd1fffe */ -8.0564479828e+00, /* 0xc100e736 */ -1.8366960144e+02, /* 0xc337ab6b */ -1.3731937256e+03, /* 0xc4aba633 */ -2.6124443359e+03, /* 0xc523471c */ ]; const QS5: [f32; 6] = [ 8.1276550293e+01, /* 0x42a28d98 */ 1.9917987061e+03, /* 0x44f8f98f */ 1.7468484375e+04, /* 0x468878f8 */ 4.9851425781e+04, /* 0x4742bb6d */ 2.7948074219e+04, /* 0x46da5826 */ -4.7191835938e+03, /* 0xc5937978 */ ]; const QR3: [f32; 6] = [ -5.0783124372e-09, /* 0xb1ae7d4f */ -1.0253783315e-01, /* 0xbdd1ff5b */ -4.6101160049e+00, /* 0xc0938612 */ -5.7847221375e+01, /* 0xc267638e */ -2.2824453735e+02, /* 0xc3643e9a */ -2.1921012878e+02, /* 0xc35b35cb */ ]; const QS3: [f32; 6] = [ 4.7665153503e+01, /* 0x423ea91e */ 6.7386511230e+02, /* 0x4428775e */ 3.3801528320e+03, /* 0x45534272 */ 5.5477290039e+03, /* 0x45ad5dd5 */ 1.9031191406e+03, /* 0x44ede3d0 */ -1.3520118713e+02, /* 0xc3073381 */ ]; const QR2: [f32; 6] = [ /* for x in [2.8570,2]=1/[0.3499,0.5] */ -1.7838172539e-07, /* 0xb43f8932 */ -1.0251704603e-01, /* 0xbdd1f475 */ -2.7522056103e+00, /* 0xc0302423 */ -1.9663616180e+01, /* 0xc19d4f16 */ -4.2325313568e+01, /* 0xc2294d1f */ -2.1371921539e+01, /* 0xc1aaf9b2 */ ]; const QS2: [f32; 6] = [ 2.9533363342e+01, /* 0x41ec4454 */ 2.5298155212e+02, /* 0x437cfb47 */ 7.5750280762e+02, /* 0x443d602e */ 7.3939318848e+02, /* 0x4438d92a */ 1.5594900513e+02, /* 0x431bf2f2 */ -4.9594988823e+00, /* 0xc09eb437 */ ]; fn qonef(x: f32) -> f32 { let p: &[f32; 6]; let q: &[f32; 6]; let s: f32; let r: f32; let z: f32; let mut ix: u32; ix = x.to_bits(); ix &= 0x7fffffff; if ix >= 0x41000000 { p = &QR8; q = &QS8; } else if ix >= 0x409173eb { p = &QR5; q = &QS5; } else if ix >= 0x4036d917 { p = &QR3; q = &QS3; } else /*ix >= 0x40000000*/ { p = &QR2; q = &QS2; } z = 1.0 / (x * x); r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); return (0.375 + r / s) / x; } #[cfg(test)] mod tests { use super::{j1f, y1f}; #[test] fn test_j1f_2488() { // 0x401F3E49 assert_eq!(j1f(2.4881766_f32), 0.49999475_f32); } #[test] fn test_y1f_2002() { assert_eq!(y1f(2.0000002_f32), -0.10703229_f32); } }