/* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * Authors: * Brian Bockelman * For conditions of distribution and use, see copyright notice in zlib.h */ #include "../../zbuild.h" #include "../../zutil.h" #include "../../adler32_p.h" #ifdef X86_SSSE3_ADLER32 #include Z_INTERNAL uint32_t adler32_ssse3(uint32_t adler, const unsigned char *buf, size_t len) { uint32_t sum2; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (UNLIKELY(len == 1)) return adler32_len_1(adler, buf, sum2); /* initial Adler-32 value (deferred check for len == 1 speed) */ if (UNLIKELY(buf == NULL)) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (UNLIKELY(len < 16)) return adler32_len_16(adler, buf, len, sum2); uint32_t ALIGNED_(16) s1[4], s2[4]; s1[0] = s1[1] = s1[2] = 0; s1[3] = adler; s2[0] = s2[1] = s2[2] = 0; s2[3] = sum2; char ALIGNED_(16) dot1[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; __m128i dot1v = _mm_load_si128((__m128i*)dot1); char ALIGNED_(16) dot2[16] = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; __m128i dot2v = _mm_load_si128((__m128i*)dot2); short ALIGNED_(16) dot3[8] = {1, 1, 1, 1, 1, 1, 1, 1}; __m128i dot3v = _mm_load_si128((__m128i*)dot3); // We will need to multiply by //char ALIGNED_(16) shift[4] = {0, 0, 0, 4}; //{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}; char ALIGNED_(16) shift[16] = {4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; __m128i shiftv = _mm_load_si128((__m128i*)shift); while (len >= 16) { __m128i vs1 = _mm_load_si128((__m128i*)s1); __m128i vs2 = _mm_load_si128((__m128i*)s2); __m128i vs1_0 = vs1; int k = (len < NMAX ? (int)len : NMAX); k -= k % 16; len -= k; while (k >= 16) { /* vs1 = adler + sum(c[i]) vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] ) NOTE: 256-bit equivalents are: _mm256_maddubs_epi16 <- operates on 32 bytes to 16 shorts _mm256_madd_epi16 <- Sums 16 shorts to 8 int32_t. We could rewrite the below to use 256-bit instructions instead of 128-bit. */ __m128i vbuf = _mm_loadu_si128((__m128i*)buf); buf += 16; k -= 16; __m128i v_short_sum1 = _mm_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts. __m128i vsum1 = _mm_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t; __m128i v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v); vs1 = _mm_add_epi32(vsum1, vs1); __m128i vsum2 = _mm_madd_epi16(v_short_sum2, dot3v); vs1_0 = _mm_sll_epi32(vs1_0, shiftv); vsum2 = _mm_add_epi32(vsum2, vs2); vs2 = _mm_add_epi32(vsum2, vs1_0); vs1_0 = vs1; } // At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that // would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on. uint32_t ALIGNED_(16) s1_unpack[4]; uint32_t ALIGNED_(16) s2_unpack[4]; _mm_store_si128((__m128i*)s1_unpack, vs1); _mm_store_si128((__m128i*)s2_unpack, vs2); adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE); adler %= BASE; s1[3] = adler; sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE); sum2 %= BASE; s2[3] = sum2; } while (len) { len--; adler += *buf++; sum2 += adler; } adler %= BASE; sum2 %= BASE; /* return recombined sums */ return adler | (sum2 << 16); } #endif