/* Copyright (c) 2014, Intel Corporation. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Developers and authors: * Shay Gueron (1, 2), and Vlad Krasnov (1) * (1) Intel Corporation, Israel Development Center * (2) University of Haifa * Reference: * Shay Gueron and Vlad Krasnov * "Fast Prime Field Elliptic Curve Cryptography with 256 Bit Primes" * http://eprint.iacr.org/2013/816 */ #include "ecp_nistz.h" #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #endif /* Point double: r = 2*a */ void GFp_nistz384_point_double(P384_POINT *r, const P384_POINT *a) { BN_ULONG S[P384_LIMBS]; BN_ULONG M[P384_LIMBS]; BN_ULONG Zsqr[P384_LIMBS]; BN_ULONG tmp0[P384_LIMBS]; const BN_ULONG *in_x = a->X; const BN_ULONG *in_y = a->Y; const BN_ULONG *in_z = a->Z; BN_ULONG *res_x = r->X; BN_ULONG *res_y = r->Y; BN_ULONG *res_z = r->Z; elem_mul_by_2(S, in_y); elem_sqr_mont(Zsqr, in_z); elem_sqr_mont(S, S); elem_mul_mont(res_z, in_z, in_y); elem_mul_by_2(res_z, res_z); elem_add(M, in_x, Zsqr); elem_sub(Zsqr, in_x, Zsqr); elem_sqr_mont(res_y, S); elem_div_by_2(res_y, res_y); elem_mul_mont(M, M, Zsqr); elem_mul_by_3(M, M); elem_mul_mont(S, S, in_x); elem_mul_by_2(tmp0, S); elem_sqr_mont(res_x, M); elem_sub(res_x, res_x, tmp0); elem_sub(S, S, res_x); elem_mul_mont(S, S, M); elem_sub(res_y, S, res_y); } /* Point addition: r = a+b */ void GFp_nistz384_point_add(P384_POINT *r, const P384_POINT *a, const P384_POINT *b) { BN_ULONG U2[P384_LIMBS], S2[P384_LIMBS]; BN_ULONG U1[P384_LIMBS], S1[P384_LIMBS]; BN_ULONG Z1sqr[P384_LIMBS]; BN_ULONG Z2sqr[P384_LIMBS]; BN_ULONG H[P384_LIMBS], R[P384_LIMBS]; BN_ULONG Hsqr[P384_LIMBS]; BN_ULONG Rsqr[P384_LIMBS]; BN_ULONG Hcub[P384_LIMBS]; BN_ULONG res_x[P384_LIMBS]; BN_ULONG res_y[P384_LIMBS]; BN_ULONG res_z[P384_LIMBS]; const BN_ULONG *in1_x = a->X; const BN_ULONG *in1_y = a->Y; const BN_ULONG *in1_z = a->Z; const BN_ULONG *in2_x = b->X; const BN_ULONG *in2_y = b->Y; const BN_ULONG *in2_z = b->Z; BN_ULONG in1infty = is_zero(a->Z); BN_ULONG in2infty = is_zero(b->Z); elem_sqr_mont(Z2sqr, in2_z); /* Z2^2 */ elem_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ elem_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */ elem_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ elem_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */ elem_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ elem_sub(R, S2, S1); /* R = S2 - S1 */ elem_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */ elem_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ elem_sub(H, U2, U1); /* H = U2 - U1 */ BN_ULONG is_exceptional = is_equal(U1, U2) & ~in1infty & ~in2infty; if (is_exceptional) { if (is_equal(S1, S2)) { GFp_nistz384_point_double(r, a); } else { limbs_zero(r->X, P384_LIMBS); limbs_zero(r->Y, P384_LIMBS); limbs_zero(r->Z, P384_LIMBS); } return; } elem_sqr_mont(Rsqr, R); /* R^2 */ elem_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ elem_sqr_mont(Hsqr, H); /* H^2 */ elem_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ elem_mul_mont(Hcub, Hsqr, H); /* H^3 */ elem_mul_mont(U2, U1, Hsqr); /* U1*H^2 */ elem_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ elem_sub(res_x, Rsqr, Hsqr); elem_sub(res_x, res_x, Hcub); elem_sub(res_y, U2, res_x); elem_mul_mont(S2, S1, Hcub); elem_mul_mont(res_y, R, res_y); elem_sub(res_y, res_y, S2); copy_conditional(res_x, in2_x, in1infty); copy_conditional(res_y, in2_y, in1infty); copy_conditional(res_z, in2_z, in1infty); copy_conditional(res_x, in1_x, in2infty); copy_conditional(res_y, in1_y, in2infty); copy_conditional(res_z, in1_z, in2infty); limbs_copy(r->X, res_x, P384_LIMBS); limbs_copy(r->Y, res_y, P384_LIMBS); limbs_copy(r->Z, res_z, P384_LIMBS); } static void add_precomputed_w5(P384_POINT *r, crypto_word wvalue, const P384_POINT table[16]) { crypto_word recoded_is_negative; crypto_word recoded; booth_recode(&recoded_is_negative, &recoded, wvalue, 5); alignas(64) P384_POINT h; gfp_p384_point_select_w5(&h, table, recoded); alignas(64) BN_ULONG tmp[P384_LIMBS]; GFp_p384_elem_neg(tmp, h.Y); copy_conditional(h.Y, tmp, recoded_is_negative); GFp_nistz384_point_add(r, r, &h); } /* r = p * p_scalar */ void GFp_nistz384_point_mul(P384_POINT *r, const BN_ULONG p_scalar[P384_LIMBS], const BN_ULONG p_x[P384_LIMBS], const BN_ULONG p_y[P384_LIMBS]) { static const size_t kWindowSize = 5; static const crypto_word kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; uint8_t p_str[(P384_LIMBS * sizeof(Limb)) + 1]; gfp_little_endian_bytes_from_scalar(p_str, sizeof(p_str) / sizeof(p_str[0]), p_scalar, P384_LIMBS); /* A |P384_POINT| is (3 * 48) = 144 bytes, and the 64-byte alignment should * add no more than 63 bytes of overhead. Thus, |table| should require * ~2367 ((144 * 16) + 63) bytes of stack space. */ alignas(64) P384_POINT table[16]; /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is * not stored. All other values are actually stored with an offset of -1 in * table. */ P384_POINT *row = table; limbs_copy(row[1 - 1].X, p_x, P384_LIMBS); limbs_copy(row[1 - 1].Y, p_y, P384_LIMBS); limbs_copy(row[1 - 1].Z, ONE, P384_LIMBS); GFp_nistz384_point_double(&row[2 - 1], &row[1 - 1]); GFp_nistz384_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); GFp_nistz384_point_double(&row[4 - 1], &row[2 - 1]); GFp_nistz384_point_double(&row[6 - 1], &row[3 - 1]); GFp_nistz384_point_double(&row[8 - 1], &row[4 - 1]); GFp_nistz384_point_double(&row[12 - 1], &row[6 - 1]); GFp_nistz384_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); GFp_nistz384_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); GFp_nistz384_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); GFp_nistz384_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); GFp_nistz384_point_double(&row[14 - 1], &row[7 - 1]); GFp_nistz384_point_double(&row[10 - 1], &row[5 - 1]); GFp_nistz384_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); GFp_nistz384_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); GFp_nistz384_point_double(&row[16 - 1], &row[8 - 1]); static const size_t START_INDEX = 384 - 4; size_t index = START_INDEX; BN_ULONG recoded_is_negative; crypto_word recoded; crypto_word wvalue = p_str[(index - 1) / 8]; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; booth_recode(&recoded_is_negative, &recoded, wvalue, 5); dev_assert_secret(!recoded_is_negative); gfp_p384_point_select_w5(r, table, recoded); while (index >= kWindowSize) { if (index != START_INDEX) { size_t off = (index - 1) / 8; wvalue = p_str[off] | p_str[off + 1] << 8; wvalue = (wvalue >> ((index - 1) % 8)) & kMask; add_precomputed_w5(r, wvalue, table); } index -= kWindowSize; GFp_nistz384_point_double(r, r); GFp_nistz384_point_double(r, r); GFp_nistz384_point_double(r, r); GFp_nistz384_point_double(r, r); GFp_nistz384_point_double(r, r); } /* Final window */ wvalue = p_str[0]; wvalue = (wvalue << 1) & kMask; add_precomputed_w5(r, wvalue, table); } #if defined(__GNUC__) #pragma GCC diagnostic pop #endif