// Copyright 2015-2019 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! SHA-2 and the legacy SHA-1 digest algorithm. //! //! If all the data is available in a single contiguous slice then the `digest` //! function should be used. Otherwise, the digest can be calculated in //! multiple steps using `Context`. // Note on why are we doing things the hard way: It would be easy to implement // this using the C `EVP_MD`/`EVP_MD_CTX` interface. However, if we were to do // things that way, we'd have a hard dependency on `malloc` and other overhead. // The goal for this implementation is to drive the overhead as close to zero // as possible. use crate::{ c, cpu, debug, endian::{self, BigEndian}, polyfill, }; use core::num::Wrapping; mod sha1; mod sha2; #[derive(Clone)] pub(crate) struct BlockContext { state: State, // Note that SHA-512 has a 128-bit input bit counter, but this // implementation only supports up to 2^64-1 input bits for all algorithms, // so a 64-bit counter is more than sufficient. completed_data_blocks: u64, /// The context's algorithm. pub algorithm: &'static Algorithm, cpu_features: cpu::Features, } impl BlockContext { pub(crate) fn new(algorithm: &'static Algorithm) -> Self { Self { state: algorithm.initial_state, completed_data_blocks: 0, algorithm, cpu_features: cpu::features(), } } #[inline] pub(crate) fn update(&mut self, input: &[u8]) { let num_blocks = input.len() / self.algorithm.block_len; assert_eq!(num_blocks * self.algorithm.block_len, input.len()); if num_blocks > 0 { unsafe { (self.algorithm.block_data_order)(&mut self.state, input.as_ptr(), num_blocks); } self.completed_data_blocks = self .completed_data_blocks .checked_add(polyfill::u64_from_usize(num_blocks)) .unwrap(); } } pub(crate) fn finish(mut self, pending: &mut [u8], num_pending: usize) -> Digest { let block_len = self.algorithm.block_len; assert_eq!(pending.len(), block_len); assert!(num_pending <= pending.len()); let mut padding_pos = num_pending; pending[padding_pos] = 0x80; padding_pos += 1; if padding_pos > block_len - self.algorithm.len_len { polyfill::slice::fill(&mut pending[padding_pos..block_len], 0); unsafe { (self.algorithm.block_data_order)(&mut self.state, pending.as_ptr(), 1); } // We don't increase |self.completed_data_blocks| because the // padding isn't data, and so it isn't included in the data length. padding_pos = 0; } polyfill::slice::fill(&mut pending[padding_pos..(block_len - 8)], 0); // Output the length, in bits, in big endian order. let completed_data_bits = self .completed_data_blocks .checked_mul(polyfill::u64_from_usize(block_len)) .unwrap() .checked_add(polyfill::u64_from_usize(num_pending)) .unwrap() .checked_mul(8) .unwrap(); pending[(block_len - 8)..block_len].copy_from_slice(&u64::to_be_bytes(completed_data_bits)); unsafe { (self.algorithm.block_data_order)(&mut self.state, pending.as_ptr(), 1); } Digest { algorithm: self.algorithm, value: (self.algorithm.format_output)(self.state), } } } /// A context for multi-step (Init-Update-Finish) digest calculations. /// /// # Examples /// /// ``` /// use ring::digest; /// /// let one_shot = digest::digest(&digest::SHA384, b"hello, world"); /// /// let mut ctx = digest::Context::new(&digest::SHA384); /// ctx.update(b"hello"); /// ctx.update(b", "); /// ctx.update(b"world"); /// let multi_part = ctx.finish(); /// /// assert_eq!(&one_shot.as_ref(), &multi_part.as_ref()); /// ``` #[derive(Clone)] pub struct Context { block: BlockContext, // TODO: More explicitly force 64-bit alignment for |pending|. pending: [u8; MAX_BLOCK_LEN], num_pending: usize, } impl Context { /// Constructs a new context. pub fn new(algorithm: &'static Algorithm) -> Self { Self { block: BlockContext::new(algorithm), pending: [0u8; MAX_BLOCK_LEN], num_pending: 0, } } pub(crate) fn clone_from(block: &BlockContext) -> Self { Self { block: block.clone(), pending: [0u8; MAX_BLOCK_LEN], num_pending: 0, } } /// Updates the digest with all the data in `data`. `update` may be called /// zero or more times until `finish` is called. It must not be called /// after `finish` has been called. pub fn update(&mut self, data: &[u8]) { let block_len = self.block.algorithm.block_len; if data.len() < block_len - self.num_pending { self.pending[self.num_pending..(self.num_pending + data.len())].copy_from_slice(data); self.num_pending += data.len(); return; } let mut remaining = data; if self.num_pending > 0 { let to_copy = block_len - self.num_pending; self.pending[self.num_pending..block_len].copy_from_slice(&data[..to_copy]); self.block.update(&self.pending[..block_len]); remaining = &remaining[to_copy..]; self.num_pending = 0; } let num_blocks = remaining.len() / block_len; let num_to_save_for_later = remaining.len() % block_len; self.block.update(&remaining[..(num_blocks * block_len)]); if num_to_save_for_later > 0 { self.pending[..num_to_save_for_later] .copy_from_slice(&remaining[(remaining.len() - num_to_save_for_later)..]); self.num_pending = num_to_save_for_later; } } /// Finalizes the digest calculation and returns the digest value. `finish` /// consumes the context so it cannot be (mis-)used after `finish` has been /// called. pub fn finish(mut self) -> Digest { let block_len = self.block.algorithm.block_len; self.block .finish(&mut self.pending[..block_len], self.num_pending) } /// The algorithm that this context is using. #[inline(always)] pub fn algorithm(&self) -> &'static Algorithm { self.block.algorithm } } /// Returns the digest of `data` using the given digest algorithm. /// /// # Examples: /// /// ``` /// # #[cfg(feature = "alloc")] /// # { /// use ring::{digest, test}; /// let expected_hex = "09ca7e4eaa6e8ae9c7d261167129184883644d07dfba7cbfbc4c8a2e08360d5b"; /// let expected: Vec = test::from_hex(expected_hex).unwrap(); /// let actual = digest::digest(&digest::SHA256, b"hello, world"); /// /// assert_eq!(&expected, &actual.as_ref()); /// # } /// ``` pub fn digest(algorithm: &'static Algorithm, data: &[u8]) -> Digest { let mut ctx = Context::new(algorithm); ctx.update(data); ctx.finish() } /// A calculated digest value. /// /// Use `as_ref` to get the value as a `&[u8]`. #[derive(Clone, Copy)] pub struct Digest { value: Output, algorithm: &'static Algorithm, } impl Digest { /// The algorithm that was used to calculate the digest value. #[inline(always)] pub fn algorithm(&self) -> &'static Algorithm { self.algorithm } } impl AsRef<[u8]> for Digest { #[inline(always)] fn as_ref(&self) -> &[u8] { let as64 = unsafe { &self.value.as64 }; &endian::as_byte_slice(as64)[..self.algorithm.output_len] } } impl core::fmt::Debug for Digest { fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result { write!(fmt, "{:?}:", self.algorithm)?; debug::write_hex_bytes(fmt, self.as_ref()) } } /// A digest algorithm. pub struct Algorithm { /// The length of a finalized digest. pub output_len: usize, /// The size of the chaining value of the digest function, in bytes. For /// non-truncated algorithms (SHA-1, SHA-256, SHA-512), this is equal to /// `output_len`. For truncated algorithms (e.g. SHA-384, SHA-512/256), /// this is equal to the length before truncation. This is mostly helpful /// for determining the size of an HMAC key that is appropriate for the /// digest algorithm. pub chaining_len: usize, /// The internal block length. pub block_len: usize, /// The length of the length in the padding. len_len: usize, block_data_order: unsafe extern "C" fn(state: &mut State, data: *const u8, num: c::size_t), format_output: fn(input: State) -> Output, initial_state: State, id: AlgorithmID, } #[derive(Debug, Eq, PartialEq)] enum AlgorithmID { SHA1, SHA256, SHA384, SHA512, SHA512_256, } impl PartialEq for Algorithm { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for Algorithm {} derive_debug_via_id!(Algorithm); /// SHA-1 as specified in [FIPS 180-4]. Deprecated. /// /// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf pub static SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm { output_len: sha1::OUTPUT_LEN, chaining_len: sha1::CHAINING_LEN, block_len: sha1::BLOCK_LEN, len_len: 64 / 8, block_data_order: sha1::block_data_order, format_output: sha256_format_output, initial_state: State { as32: [ Wrapping(0x67452301u32), Wrapping(0xefcdab89u32), Wrapping(0x98badcfeu32), Wrapping(0x10325476u32), Wrapping(0xc3d2e1f0u32), Wrapping(0), Wrapping(0), Wrapping(0), ], }, id: AlgorithmID::SHA1, }; /// SHA-256 as specified in [FIPS 180-4]. /// /// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf pub static SHA256: Algorithm = Algorithm { output_len: SHA256_OUTPUT_LEN, chaining_len: SHA256_OUTPUT_LEN, block_len: 512 / 8, len_len: 64 / 8, block_data_order: sha2::GFp_sha256_block_data_order, format_output: sha256_format_output, initial_state: State { as32: [ Wrapping(0x6a09e667u32), Wrapping(0xbb67ae85u32), Wrapping(0x3c6ef372u32), Wrapping(0xa54ff53au32), Wrapping(0x510e527fu32), Wrapping(0x9b05688cu32), Wrapping(0x1f83d9abu32), Wrapping(0x5be0cd19u32), ], }, id: AlgorithmID::SHA256, }; /// SHA-384 as specified in [FIPS 180-4]. /// /// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf pub static SHA384: Algorithm = Algorithm { output_len: SHA384_OUTPUT_LEN, chaining_len: SHA512_OUTPUT_LEN, block_len: SHA512_BLOCK_LEN, len_len: SHA512_LEN_LEN, block_data_order: sha2::GFp_sha512_block_data_order, format_output: sha512_format_output, initial_state: State { as64: [ Wrapping(0xcbbb9d5dc1059ed8), Wrapping(0x629a292a367cd507), Wrapping(0x9159015a3070dd17), Wrapping(0x152fecd8f70e5939), Wrapping(0x67332667ffc00b31), Wrapping(0x8eb44a8768581511), Wrapping(0xdb0c2e0d64f98fa7), Wrapping(0x47b5481dbefa4fa4), ], }, id: AlgorithmID::SHA384, }; /// SHA-512 as specified in [FIPS 180-4]. /// /// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf pub static SHA512: Algorithm = Algorithm { output_len: SHA512_OUTPUT_LEN, chaining_len: SHA512_OUTPUT_LEN, block_len: SHA512_BLOCK_LEN, len_len: SHA512_LEN_LEN, block_data_order: sha2::GFp_sha512_block_data_order, format_output: sha512_format_output, initial_state: State { as64: [ Wrapping(0x6a09e667f3bcc908), Wrapping(0xbb67ae8584caa73b), Wrapping(0x3c6ef372fe94f82b), Wrapping(0xa54ff53a5f1d36f1), Wrapping(0x510e527fade682d1), Wrapping(0x9b05688c2b3e6c1f), Wrapping(0x1f83d9abfb41bd6b), Wrapping(0x5be0cd19137e2179), ], }, id: AlgorithmID::SHA512, }; /// SHA-512/256 as specified in [FIPS 180-4]. /// /// This is *not* the same as just truncating the output of SHA-512, as /// SHA-512/256 has its own initial state distinct from SHA-512's initial /// state. /// /// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf pub static SHA512_256: Algorithm = Algorithm { output_len: SHA512_256_OUTPUT_LEN, chaining_len: SHA512_OUTPUT_LEN, block_len: SHA512_BLOCK_LEN, len_len: SHA512_LEN_LEN, block_data_order: sha2::GFp_sha512_block_data_order, format_output: sha512_format_output, initial_state: State { as64: [ Wrapping(0x22312194fc2bf72c), Wrapping(0x9f555fa3c84c64c2), Wrapping(0x2393b86b6f53b151), Wrapping(0x963877195940eabd), Wrapping(0x96283ee2a88effe3), Wrapping(0xbe5e1e2553863992), Wrapping(0x2b0199fc2c85b8aa), Wrapping(0x0eb72ddc81c52ca2), ], }, id: AlgorithmID::SHA512_256, }; #[derive(Clone, Copy)] // XXX: Why do we need to be `Copy`? #[repr(C)] union State { as64: [Wrapping; sha2::CHAINING_WORDS], as32: [Wrapping; sha2::CHAINING_WORDS], } #[derive(Clone, Copy)] #[repr(C)] union Output { as64: [BigEndian; 512 / 8 / core::mem::size_of::>()], as32: [BigEndian; 256 / 8 / core::mem::size_of::>()], } /// The maximum block length (`Algorithm::block_len`) of all the algorithms in /// this module. pub const MAX_BLOCK_LEN: usize = 1024 / 8; /// The maximum output length (`Algorithm::output_len`) of all the algorithms /// in this module. pub const MAX_OUTPUT_LEN: usize = 512 / 8; /// The maximum chaining length (`Algorithm::chaining_len`) of all the /// algorithms in this module. pub const MAX_CHAINING_LEN: usize = MAX_OUTPUT_LEN; fn sha256_format_output(input: State) -> Output { let input = unsafe { &input.as32 }; Output { as32: [ BigEndian::from(input[0]), BigEndian::from(input[1]), BigEndian::from(input[2]), BigEndian::from(input[3]), BigEndian::from(input[4]), BigEndian::from(input[5]), BigEndian::from(input[6]), BigEndian::from(input[7]), ], } } fn sha512_format_output(input: State) -> Output { let input = unsafe { &input.as64 }; Output { as64: [ BigEndian::from(input[0]), BigEndian::from(input[1]), BigEndian::from(input[2]), BigEndian::from(input[3]), BigEndian::from(input[4]), BigEndian::from(input[5]), BigEndian::from(input[6]), BigEndian::from(input[7]), ], } } /// The length of the output of SHA-1, in bytes. pub const SHA1_OUTPUT_LEN: usize = sha1::OUTPUT_LEN; /// The length of the output of SHA-256, in bytes. pub const SHA256_OUTPUT_LEN: usize = 256 / 8; /// The length of the output of SHA-384, in bytes. pub const SHA384_OUTPUT_LEN: usize = 384 / 8; /// The length of the output of SHA-512, in bytes. pub const SHA512_OUTPUT_LEN: usize = 512 / 8; /// The length of the output of SHA-512/256, in bytes. pub const SHA512_256_OUTPUT_LEN: usize = 256 / 8; /// The length of a block for SHA-512-based algorithms, in bytes. const SHA512_BLOCK_LEN: usize = 1024 / 8; /// The length of the length field for SHA-512-based algorithms, in bytes. const SHA512_LEN_LEN: usize = 128 / 8; #[cfg(test)] mod tests { mod max_input { use super::super::super::digest; use crate::polyfill; use alloc::vec; macro_rules! max_input_tests { ( $algorithm_name:ident ) => { mod $algorithm_name { use super::super::super::super::digest; #[test] fn max_input_test() { super::max_input_test(&digest::$algorithm_name); } #[test] #[should_panic] fn too_long_input_test_block() { super::too_long_input_test_block(&digest::$algorithm_name); } #[test] #[should_panic] fn too_long_input_test_byte() { super::too_long_input_test_byte(&digest::$algorithm_name); } } }; } fn max_input_test(alg: &'static digest::Algorithm) { let mut context = nearly_full_context(alg); let next_input = vec![0u8; alg.block_len - 1]; context.update(&next_input); let _ = context.finish(); // no panic } fn too_long_input_test_block(alg: &'static digest::Algorithm) { let mut context = nearly_full_context(alg); let next_input = vec![0u8; alg.block_len]; context.update(&next_input); let _ = context.finish(); // should panic } fn too_long_input_test_byte(alg: &'static digest::Algorithm) { let mut context = nearly_full_context(alg); let next_input = vec![0u8; alg.block_len - 1]; context.update(&next_input); // no panic context.update(&[0]); let _ = context.finish(); // should panic } fn nearly_full_context(alg: &'static digest::Algorithm) -> digest::Context { // All implementations currently support up to 2^64-1 bits // of input; according to the spec, SHA-384 and SHA-512 // support up to 2^128-1, but that's not implemented yet. let max_bytes = 1u64 << (64 - 3); let max_blocks = max_bytes / polyfill::u64_from_usize(alg.block_len); digest::Context { block: digest::BlockContext { state: alg.initial_state, completed_data_blocks: max_blocks - 1, algorithm: alg, cpu_features: crate::cpu::features(), }, pending: [0u8; digest::MAX_BLOCK_LEN], num_pending: 0, } } max_input_tests!(SHA1_FOR_LEGACY_USE_ONLY); max_input_tests!(SHA256); max_input_tests!(SHA384); max_input_tests!(SHA512); } }