// Copyright 2015-2016 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. #![cfg(any(not(target_arch = "wasm32"), feature = "wasm32_c"))] #![forbid( anonymous_parameters, box_pointers, missing_copy_implementations, missing_debug_implementations, missing_docs, trivial_casts, trivial_numeric_casts, unsafe_code, unstable_features, unused_extern_crates, unused_import_braces, unused_qualifications, unused_results, variant_size_differences, warnings )] #[cfg(target_arch = "wasm32")] use wasm_bindgen_test::{wasm_bindgen_test, wasm_bindgen_test_configure}; #[cfg(target_arch = "wasm32")] wasm_bindgen_test_configure!(run_in_browser); use core::ops::RangeFrom; use ring::{aead, error, test, test_file}; #[test] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)] fn aead_aes_gcm_128() { test_aead( &aead::AES_128_GCM, seal_with_key, open_with_key, test_file!("aead_aes_128_gcm_tests.txt"), ); test_aead( &aead::AES_128_GCM, seal_with_less_safe_key, open_with_less_safe_key, test_file!("aead_aes_128_gcm_tests.txt"), ); } #[test] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)] fn aead_aes_gcm_256() { test_aead( &aead::AES_256_GCM, seal_with_key, open_with_key, test_file!("aead_aes_256_gcm_tests.txt"), ); test_aead( &aead::AES_256_GCM, seal_with_less_safe_key, open_with_less_safe_key, test_file!("aead_aes_256_gcm_tests.txt"), ); } #[cfg(any( target_arch = "aarch64", target_arch = "arm", target_arch = "x86_64", target_arch = "x86" ))] #[test] fn aead_chacha20_poly1305() { test_aead( &aead::CHACHA20_POLY1305, seal_with_key, open_with_key, test_file!("aead_chacha20_poly1305_tests.txt"), ); test_aead( &aead::CHACHA20_POLY1305, seal_with_less_safe_key, open_with_less_safe_key, test_file!("aead_chacha20_poly1305_tests.txt"), ); } fn test_aead( aead_alg: &'static aead::Algorithm, seal: Seal, open: Open, test_file: test::File, ) where Seal: Fn( &'static aead::Algorithm, &[u8], aead::Nonce, aead::Aad<&[u8]>, &mut Vec, ) -> Result<(), error::Unspecified>, Open: for<'a> Fn( &'static aead::Algorithm, &[u8], aead::Nonce, aead::Aad<&[u8]>, &'a mut [u8], RangeFrom, ) -> Result<&'a mut [u8], error::Unspecified>, { test_aead_key_sizes(aead_alg); test::run(test_file, |section, test_case| { assert_eq!(section, ""); let key_bytes = test_case.consume_bytes("KEY"); let nonce_bytes = test_case.consume_bytes("NONCE"); let plaintext = test_case.consume_bytes("IN"); let aad = test_case.consume_bytes("AD"); let mut ct = test_case.consume_bytes("CT"); let tag = test_case.consume_bytes("TAG"); let error = test_case.consume_optional_string("FAILS"); match &error { Some(err) if err == "WRONG_NONCE_LENGTH" => { assert!(aead::Nonce::try_assume_unique_for_key(&nonce_bytes).is_err()); return Ok(()); } _ => (), }; let mut s_in_out = plaintext.clone(); let nonce = aead::Nonce::try_assume_unique_for_key(&nonce_bytes).unwrap(); let s_result = seal( aead_alg, &key_bytes[..], nonce, aead::Aad::from(&aad[..]), &mut s_in_out, ); ct.extend(tag); if s_result.is_ok() { assert_eq!(&ct, &s_in_out); } // In release builds, test all prefix lengths from 0 to 4096 bytes. // Debug builds are too slow for this, so for those builds, only // test a smaller subset. // TLS record headers are 5 bytes long. // TLS explicit nonces for AES-GCM are 8 bytes long. static MINIMAL_IN_PREFIX_LENS: [usize; 36] = [ // No input prefix to overwrite; i.e. the opening is exactly // "in place." 0, 1, 2, // Proposed TLS 1.3 header (no explicit nonce). 5, 8, // Probably the most common use of a non-zero `in_prefix_len` // would be to write a decrypted TLS record over the top of the // TLS header and nonce. 5 /* record header */ + 8, /* explicit nonce */ // The stitched AES-GCM x86-64 code works on 6-block (96 byte) // units. Some of the ChaCha20 code is even weirder. 15, // The maximum partial AES block. 16, // One AES block. 17, // One byte more than a full AES block. 31, // 2 AES blocks or 1 ChaCha20 block, minus 1. 32, // Two AES blocks, one ChaCha20 block. 33, // 2 AES blocks or 1 ChaCha20 block, plus 1. 47, // Three AES blocks - 1. 48, // Three AES blocks. 49, // Three AES blocks + 1. 63, // Four AES blocks or two ChaCha20 blocks, minus 1. 64, // Four AES blocks or two ChaCha20 blocks. 65, // Four AES blocks or two ChaCha20 blocks, plus 1. 79, // Five AES blocks, minus 1. 80, // Five AES blocks. 81, // Five AES blocks, plus 1. 95, // Six AES blocks or three ChaCha20 blocks, minus 1. 96, // Six AES blocks or three ChaCha20 blocks. 97, // Six AES blocks or three ChaCha20 blocks, plus 1. 111, // Seven AES blocks, minus 1. 112, // Seven AES blocks. 113, // Seven AES blocks, plus 1. 127, // Eight AES blocks or four ChaCha20 blocks, minus 1. 128, // Eight AES blocks or four ChaCha20 blocks. 129, // Eight AES blocks or four ChaCha20 blocks, plus 1. 143, // Nine AES blocks, minus 1. 144, // Nine AES blocks. 145, // Nine AES blocks, plus 1. 255, // 16 AES blocks or 8 ChaCha20 blocks, minus 1. 256, // 16 AES blocks or 8 ChaCha20 blocks. 257, // 16 AES blocks or 8 ChaCha20 blocks, plus 1. ]; let mut more_comprehensive_in_prefix_lengths = [0; 4096]; let in_prefix_lengths = if cfg!(debug_assertions) { &MINIMAL_IN_PREFIX_LENS[..] } else { #[allow(clippy::needless_range_loop)] for b in 0..more_comprehensive_in_prefix_lengths.len() { more_comprehensive_in_prefix_lengths[b] = b; } &more_comprehensive_in_prefix_lengths[..] }; let mut o_in_out = vec![123u8; 4096]; for in_prefix_len in in_prefix_lengths.iter() { o_in_out.truncate(0); for _ in 0..*in_prefix_len { o_in_out.push(123); } o_in_out.extend_from_slice(&ct[..]); let nonce = aead::Nonce::try_assume_unique_for_key(&nonce_bytes).unwrap(); let o_result = open( aead_alg, &key_bytes, nonce, aead::Aad::from(&aad[..]), &mut o_in_out, *in_prefix_len.., ); match error { None => { assert!(s_result.is_ok()); assert_eq!(&plaintext[..], o_result.unwrap()); } Some(ref error) if error == "WRONG_NONCE_LENGTH" => { assert_eq!(Err(error::Unspecified), s_result); assert_eq!(Err(error::Unspecified), o_result); } Some(error) => { unreachable!("Unexpected error test case: {}", error); } }; } Ok(()) }); } fn seal_with_key( algorithm: &'static aead::Algorithm, key: &[u8], nonce: aead::Nonce, aad: aead::Aad<&[u8]>, in_out: &mut Vec, ) -> Result<(), error::Unspecified> { let mut s_key: aead::SealingKey = make_key(algorithm, key, nonce); s_key.seal_in_place_append_tag(aad, in_out) } fn open_with_key<'a>( algorithm: &'static aead::Algorithm, key: &[u8], nonce: aead::Nonce, aad: aead::Aad<&[u8]>, in_out: &'a mut [u8], ciphertext_and_tag: RangeFrom, ) -> Result<&'a mut [u8], error::Unspecified> { let mut o_key: aead::OpeningKey = make_key(algorithm, key, nonce); o_key.open_within(aad, in_out, ciphertext_and_tag) } fn seal_with_less_safe_key( algorithm: &'static aead::Algorithm, key: &[u8], nonce: aead::Nonce, aad: aead::Aad<&[u8]>, in_out: &mut Vec, ) -> Result<(), error::Unspecified> { let key = make_less_safe_key(algorithm, key); key.seal_in_place_append_tag(nonce, aad, in_out) } fn open_with_less_safe_key<'a>( algorithm: &'static aead::Algorithm, key: &[u8], nonce: aead::Nonce, aad: aead::Aad<&[u8]>, in_out: &'a mut [u8], ciphertext_and_tag: RangeFrom, ) -> Result<&'a mut [u8], error::Unspecified> { let key = make_less_safe_key(algorithm, key); key.open_within(nonce, aad, in_out, ciphertext_and_tag) } #[allow(clippy::range_plus_one)] fn test_aead_key_sizes(aead_alg: &'static aead::Algorithm) { let key_len = aead_alg.key_len(); let key_data = vec![0u8; key_len * 2]; // Key is the right size. assert!(aead::UnboundKey::new(aead_alg, &key_data[..key_len]).is_ok()); // Key is one byte too small. assert!(aead::UnboundKey::new(aead_alg, &key_data[..(key_len - 1)]).is_err()); // Key is one byte too large. assert!(aead::UnboundKey::new(aead_alg, &key_data[..(key_len + 1)]).is_err()); // Key is half the required size. assert!(aead::UnboundKey::new(aead_alg, &key_data[..(key_len / 2)]).is_err()); // Key is twice the required size. assert!(aead::UnboundKey::new(aead_alg, &key_data[..(key_len * 2)]).is_err()); // Key is empty. assert!(aead::UnboundKey::new(aead_alg, &[]).is_err()); // Key is one byte. assert!(aead::UnboundKey::new(aead_alg, &[0]).is_err()); } // Test that we reject non-standard nonce sizes. #[allow(clippy::range_plus_one)] #[test] fn test_aead_nonce_sizes() -> Result<(), error::Unspecified> { let nonce_len = aead::NONCE_LEN; let nonce = vec![0u8; nonce_len * 2]; assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..nonce_len]).is_ok()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..(nonce_len - 1)]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..(nonce_len + 1)]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..(nonce_len / 2)]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..(nonce_len * 2)]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&[]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..1]).is_err()); assert!(aead::Nonce::try_assume_unique_for_key(&nonce[..16]).is_err()); // 128 bits. Ok(()) } #[cfg(any( target_arch = "aarch64", target_arch = "arm", target_arch = "x86_64", target_arch = "x86" ))] #[allow(clippy::range_plus_one)] #[test] fn aead_chacha20_poly1305_openssh() { // TODO: test_aead_key_sizes(...); test::run( test_file!("aead_chacha20_poly1305_openssh_tests.txt"), |section, test_case| { assert_eq!(section, ""); // XXX: `polyfill::convert` isn't available here. let key_bytes = { let as_vec = test_case.consume_bytes("KEY"); let mut as_array = [0u8; aead::chacha20_poly1305_openssh::KEY_LEN]; as_array.copy_from_slice(&as_vec); as_array }; let sequence_number = test_case.consume_usize("SEQUENCE_NUMBER"); assert_eq!(sequence_number as u32 as usize, sequence_number); let sequence_num = sequence_number as u32; let plaintext = test_case.consume_bytes("IN"); let ct = test_case.consume_bytes("CT"); let expected_tag = test_case.consume_bytes("TAG"); // TODO: Add some tests for when things fail. //let error = test_case.consume_optional_string("FAILS"); let mut tag = [0u8; aead::chacha20_poly1305_openssh::TAG_LEN]; let mut s_in_out = plaintext.clone(); let s_key = aead::chacha20_poly1305_openssh::SealingKey::new(&key_bytes); s_key.seal_in_place(sequence_num, &mut s_in_out[..], &mut tag); assert_eq!(&ct, &s_in_out); assert_eq!(&expected_tag, &tag); let o_key = aead::chacha20_poly1305_openssh::OpeningKey::new(&key_bytes); { let o_result = o_key.open_in_place(sequence_num, &mut s_in_out[..], &tag); assert_eq!(o_result, Ok(&plaintext[4..])); } assert_eq!(&s_in_out[..4], &ct[..4]); assert_eq!(&s_in_out[4..], &plaintext[4..]); Ok(()) }, ); } #[test] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)] fn test_tag_traits() { test::compile_time_assert_send::(); test::compile_time_assert_sync::(); } #[test] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)] fn test_aead_key_debug() { let key_bytes = [0; 32]; let nonce = [0; aead::NONCE_LEN]; let key = aead::UnboundKey::new(&aead::AES_256_GCM, &key_bytes).unwrap(); assert_eq!( "UnboundKey { algorithm: AES_256_GCM }", format!("{:?}", key) ); let sealing_key: aead::SealingKey = make_key( &aead::AES_256_GCM, &key_bytes, aead::Nonce::try_assume_unique_for_key(&nonce).unwrap(), ); assert_eq!( "SealingKey { algorithm: AES_256_GCM }", format!("{:?}", sealing_key) ); let opening_key: aead::OpeningKey = make_key( &aead::AES_256_GCM, &key_bytes, aead::Nonce::try_assume_unique_for_key(&nonce).unwrap(), ); assert_eq!( "OpeningKey { algorithm: AES_256_GCM }", format!("{:?}", opening_key) ); let key: aead::LessSafeKey = make_less_safe_key(&aead::AES_256_GCM, &key_bytes); assert_eq!( "LessSafeKey { algorithm: AES_256_GCM }", format!("{:?}", key) ); } fn make_key>( algorithm: &'static aead::Algorithm, key: &[u8], nonce: aead::Nonce, ) -> K { let key = aead::UnboundKey::new(algorithm, key).unwrap(); let nonce_sequence = OneNonceSequence::new(nonce); K::new(key, nonce_sequence) } fn make_less_safe_key(algorithm: &'static aead::Algorithm, key: &[u8]) -> aead::LessSafeKey { let key = aead::UnboundKey::new(algorithm, key).unwrap(); aead::LessSafeKey::new(key) } struct OneNonceSequence(Option); impl OneNonceSequence { /// Constructs the sequence allowing `advance()` to be called /// `allowed_invocations` times. fn new(nonce: aead::Nonce) -> Self { Self(Some(nonce)) } } impl aead::NonceSequence for OneNonceSequence { fn advance(&mut self) -> Result { self.0.take().ok_or(error::Unspecified) } }