use super::*; use core::convert::TryInto; #[cfg(feature = "serde")] use core::marker::PhantomData; #[cfg(feature = "serde")] use serde::de::{ Deserialize, Deserializer, Error as DeserializeError, SeqAccess, Visitor, }; #[cfg(feature = "serde")] use serde::ser::{Serialize, SerializeSeq, Serializer}; /// Helper to make an `ArrayVec`. /// /// You specify the backing array type, and optionally give all the elements you /// want to initially place into the array. /// /// ```rust /// use tinyvec::*; /// /// // The backing array type can be specified in the macro call /// let empty_av = array_vec!([u8; 16]); /// let some_ints = array_vec!([i32; 4] => 1, 2, 3); /// /// // Or left to inference /// let empty_av: ArrayVec<[u8; 10]> = array_vec!(); /// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8); /// ``` #[macro_export] macro_rules! array_vec { ($array_type:ty => $($elem:expr),* $(,)?) => { { let mut av: $crate::ArrayVec<$array_type> = Default::default(); $( av.push($elem); )* av } }; ($array_type:ty) => { $crate::ArrayVec::<$array_type>::default() }; ($($elem:expr),*) => { $crate::array_vec!(_ => $($elem),*) }; ($elem:expr; $n:expr) => { $crate::ArrayVec::from([$elem; $n]) }; () => { $crate::array_vec!(_) }; } /// An array-backed, vector-like data structure. /// /// * `ArrayVec` has a fixed capacity, equal to the array size. /// * `ArrayVec` has a variable length, as you add and remove elements. Attempts /// to fill the vec beyond its capacity will cause a panic. /// * All of the vec's array slots are always initialized in terms of Rust's /// memory model. When you remove a element from a location, the old value at /// that location is replaced with the type's default value. /// /// The overall API of this type is intended to, as much as possible, emulate /// the API of the [`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html) /// type. /// /// ## Construction /// /// You can use the `array_vec!` macro similarly to how you might use the `vec!` /// macro. Specify the array type, then optionally give all the initial values /// you want to have. /// ```rust /// # use tinyvec::*; /// let some_ints = array_vec!([i32; 4] => 1, 2, 3); /// assert_eq!(some_ints.len(), 3); /// ``` /// /// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default /// array with length 0. The [`new`](ArrayVec::new) method is the same as /// calling `default` /// ```rust /// # use tinyvec::*; /// let some_ints = ArrayVec::<[i32; 7]>::default(); /// assert_eq!(some_ints.len(), 0); /// /// let more_ints = ArrayVec::<[i32; 7]>::new(); /// assert_eq!(some_ints, more_ints); /// ``` /// /// If you have an array and want the _whole thing_ so count as being "in" the /// new `ArrayVec` you can use one of the `from` implementations. If you want /// _part of_ the array then you can use /// [`from_array_len`](ArrayVec::from_array_len): /// ```rust /// # use tinyvec::*; /// let some_ints = ArrayVec::from([5, 6, 7, 8]); /// assert_eq!(some_ints.len(), 4); /// /// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2); /// assert_eq!(more_ints.len(), 2); /// ``` #[repr(C)] #[derive(Clone, Copy)] pub struct ArrayVec { len: u16, pub(crate) data: A, } impl Default for ArrayVec { fn default() -> Self { Self { len: 0, data: A::default() } } } impl Deref for ArrayVec { type Target = [A::Item]; #[inline(always)] #[must_use] fn deref(&self) -> &Self::Target { &self.data.as_slice()[..self.len as usize] } } impl DerefMut for ArrayVec { #[inline(always)] #[must_use] fn deref_mut(&mut self) -> &mut Self::Target { &mut self.data.as_slice_mut()[..self.len as usize] } } impl> Index for ArrayVec { type Output = >::Output; #[inline(always)] #[must_use] fn index(&self, index: I) -> &Self::Output { &self.deref()[index] } } impl> IndexMut for ArrayVec { #[inline(always)] #[must_use] fn index_mut(&mut self, index: I) -> &mut Self::Output { &mut self.deref_mut()[index] } } #[cfg(feature = "serde")] #[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] impl Serialize for ArrayVec where A::Item: Serialize, { #[must_use] fn serialize(&self, serializer: S) -> Result where S: Serializer, { let mut seq = serializer.serialize_seq(Some(self.len()))?; for element in self.iter() { seq.serialize_element(element)?; } seq.end() } } #[cfg(feature = "serde")] #[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] impl<'de, A: Array> Deserialize<'de> for ArrayVec where A::Item: Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { deserializer.deserialize_seq(ArrayVecVisitor(PhantomData)) } } impl ArrayVec { /// Move all values from `other` into this vec. /// /// ## Panics /// * If the vec overflows its capacity /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 10] => 1, 2, 3); /// let mut av2 = array_vec!([i32; 10] => 4, 5, 6); /// av.append(&mut av2); /// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); /// assert_eq!(av2, &[][..]); /// ``` #[inline] pub fn append(&mut self, other: &mut Self) { assert!( self.try_append(other).is_none(), "ArrayVec::append> total length {} exceeds capacity {}!", self.len() + other.len(), A::CAPACITY ); } /// Move all values from `other` into this vec. /// If appending would overflow the capacity, Some(other) is returned. /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 7] => 1, 2, 3); /// let mut av2 = array_vec!([i32; 7] => 4, 5, 6); /// av.append(&mut av2); /// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); /// assert_eq!(av2, &[][..]); /// /// let mut av3 = array_vec!([i32; 7] => 7, 8, 9); /// assert!(av.try_append(&mut av3).is_some()); /// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); /// assert_eq!(av3, &[7, 8, 9][..]); /// ``` #[inline] pub fn try_append<'other>( &mut self, other: &'other mut Self, ) -> Option<&'other mut Self> { let new_len = self.len() + other.len(); if new_len > A::CAPACITY { return Some(other); } let iter = other.iter_mut().map(take); for item in iter { self.push(item); } other.set_len(0); return None; } /// A `*mut` pointer to the backing array. /// /// ## Safety /// /// This pointer has provenance over the _entire_ backing array. #[inline(always)] #[must_use] pub fn as_mut_ptr(&mut self) -> *mut A::Item { self.data.as_slice_mut().as_mut_ptr() } /// Performs a `deref_mut`, into unique slice form. #[inline(always)] #[must_use] pub fn as_mut_slice(&mut self) -> &mut [A::Item] { self.deref_mut() } /// A `*const` pointer to the backing array. /// /// ## Safety /// /// This pointer has provenance over the _entire_ backing array. #[inline(always)] #[must_use] pub fn as_ptr(&self) -> *const A::Item { self.data.as_slice().as_ptr() } /// Performs a `deref`, into shared slice form. #[inline(always)] #[must_use] pub fn as_slice(&self) -> &[A::Item] { self.deref() } /// The capacity of the `ArrayVec`. /// /// This is fixed based on the array type, but can't yet be made a `const fn` /// on Stable Rust. #[inline(always)] #[must_use] pub fn capacity(&self) -> usize { // Note: This shouldn't use A::CAPACITY, because unsafe code can't rely on // any Array invariants. This ensures that at the very least, the returned // value is a valid length for a subslice of the backing array. self.data.as_slice().len() } /// Truncates the `ArrayVec` down to length 0. #[inline(always)] pub fn clear(&mut self) { self.truncate(0) } /// Creates a draining iterator that removes the specified range in the vector /// and yields the removed items. /// /// ## Panics /// * If the start is greater than the end /// * If the end is past the edge of the vec. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4] => 1, 2, 3); /// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect(); /// assert_eq!(av.as_slice(), &[1][..]); /// assert_eq!(av2.as_slice(), &[2, 3][..]); /// /// av.drain(..); /// assert_eq!(av.as_slice(), &[]); /// ``` #[inline] pub fn drain(&mut self, range: R) -> ArrayVecDrain<'_, A::Item> where R: RangeBounds, { ArrayVecDrain::new(self, range) } /// Returns the inner array of the `ArrayVec`. /// /// This returns the full array, even if the `ArrayVec` length is currently /// less than that. /// /// ## Example /// /// ```rust /// # use tinyvec::{array_vec, ArrayVec}; /// let mut favorite_numbers = array_vec!([i32; 5] => 87, 48, 33, 9, 26); /// assert_eq!(favorite_numbers.clone().into_inner(), [87, 48, 33, 9, 26]); /// /// favorite_numbers.pop(); /// assert_eq!(favorite_numbers.into_inner(), [87, 48, 33, 9, 0]); /// ``` /// /// A use for this function is to build an array from an iterator by first /// collecting it into an `ArrayVec`. /// /// ```rust /// # use tinyvec::ArrayVec; /// let arr_vec: ArrayVec<[i32; 10]> = (1..=3).cycle().take(10).collect(); /// let inner = arr_vec.into_inner(); /// assert_eq!(inner, [1, 2, 3, 1, 2, 3, 1, 2, 3, 1]); /// ``` #[inline] pub fn into_inner(self) -> A { self.data } /// Clone each element of the slice into this `ArrayVec`. /// /// ## Panics /// * If the `ArrayVec` would overflow, this will panic. #[inline] pub fn extend_from_slice(&mut self, sli: &[A::Item]) where A::Item: Clone, { if sli.is_empty() { return; } let new_len = self.len as usize + sli.len(); assert!( new_len <= A::CAPACITY, "ArrayVec::extend_from_slice> total length {} exceeds capacity {}!", new_len, A::CAPACITY ); let target = &mut self.data.as_slice_mut()[self.len as usize..new_len]; target.clone_from_slice(sli); self.set_len(new_len); } /// Fill the vector until its capacity has been reached. /// /// Successively fills unused space in the spare slice of the vector with /// elements from the iterator. It then returns the remaining iterator /// without exhausting it. This also allows appending the head of an /// infinite iterator. /// /// This is an alternative to `Extend::extend` method for cases where the /// length of the iterator can not be checked. Since this vector can not /// reallocate to increase its capacity, it is unclear what to do with /// remaining elements in the iterator and the iterator itself. The /// interface also provides no way to communicate this to the caller. /// /// ## Panics /// * If the `next` method of the provided iterator panics. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// let mut to_inf = av.fill(0..); /// assert_eq!(&av[..], [0, 1, 2, 3]); /// assert_eq!(to_inf.next(), Some(4)); /// ``` #[inline] pub fn fill>( &mut self, iter: I, ) -> I::IntoIter { // If this is written as a call to push for each element in iter, the // compiler emits code that updates the length for every element. The // additional complexity from that length update is worth nearly 2x in // the runtime of this function. let mut iter = iter.into_iter(); let mut pushed = 0; let to_take = self.capacity() - self.len(); let target = &mut self.data.as_slice_mut()[self.len as usize..]; for element in iter.by_ref().take(to_take) { target[pushed] = element; pushed += 1; } self.len += pushed as u16; iter } /// Wraps up an array and uses the given length as the initial length. /// /// If you want to simply use the full array, use `from` instead. /// /// ## Panics /// /// * The length specified must be less than or equal to the capacity of the /// array. #[inline] #[must_use] #[allow(clippy::match_wild_err_arm)] pub fn from_array_len(data: A, len: usize) -> Self { match Self::try_from_array_len(data, len) { Ok(out) => out, Err(_) => panic!( "ArrayVec::from_array_len> length {} exceeds capacity {}!", len, A::CAPACITY ), } } /// Inserts an item at the position given, moving all following elements +1 /// index. /// /// ## Panics /// * If `index` > `len` /// * If the capacity is exhausted /// /// ## Example /// ```rust /// use tinyvec::*; /// let mut av = array_vec!([i32; 10] => 1, 2, 3); /// av.insert(1, 4); /// assert_eq!(av.as_slice(), &[1, 4, 2, 3]); /// av.insert(4, 5); /// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]); /// ``` #[inline] pub fn insert(&mut self, index: usize, item: A::Item) { let x = self.try_insert(index, item); assert!(x.is_none(), "ArrayVec::insert> capacity overflow!"); } /// Tries to insert an item at the position given, moving all following /// elements +1 index. /// Returns back the element if the capacity is exhausted, /// otherwise returns None. /// /// ## Panics /// * If `index` > `len` /// /// ## Example /// ```rust /// use tinyvec::*; /// let mut av = array_vec!([&'static str; 4] => "one", "two", "three"); /// av.insert(1, "four"); /// assert_eq!(av.as_slice(), &["one", "four", "two", "three"]); /// assert_eq!(av.try_insert(4, "five"), Some("five")); /// ``` #[inline] pub fn try_insert( &mut self, index: usize, mut item: A::Item, ) -> Option { assert!( index <= self.len as usize, "ArrayVec::try_insert> index {} is out of bounds {}", index, self.len ); // A previous implementation used self.try_push and slice::rotate_right // rotate_right and rotate_left generate a huge amount of code and fail to // inline; calling them here incurs the cost of all the cases they // handle even though we're rotating a usually-small array by a constant // 1 offset. This swap-based implementation benchmarks much better for // small array lengths in particular. if (self.len as usize) < A::CAPACITY { self.len += 1; } else { return Some(item); } let target = &mut self.as_mut_slice()[index..]; for i in 0..target.len() { core::mem::swap(&mut item, &mut target[i]); } return None; } /// Checks if the length is 0. #[inline(always)] #[must_use] pub fn is_empty(&self) -> bool { self.len == 0 } /// The length of the `ArrayVec` (in elements). #[inline(always)] #[must_use] pub fn len(&self) -> usize { self.len as usize } /// Makes a new, empty `ArrayVec`. #[inline(always)] #[must_use] pub fn new() -> Self { Self::default() } /// Remove and return the last element of the vec, if there is one. /// /// ## Failure /// * If the vec is empty you get `None`. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 10] => 1, 2); /// assert_eq!(av.pop(), Some(2)); /// assert_eq!(av.pop(), Some(1)); /// assert_eq!(av.pop(), None); /// ``` #[inline] pub fn pop(&mut self) -> Option { if self.len > 0 { self.len -= 1; let out = take(&mut self.data.as_slice_mut()[self.len as usize]); Some(out) } else { None } } /// Place an element onto the end of the vec. /// /// ## Panics /// * If the length of the vec would overflow the capacity. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 2]); /// assert_eq!(&av[..], []); /// av.push(1); /// assert_eq!(&av[..], [1]); /// av.push(2); /// assert_eq!(&av[..], [1, 2]); /// // av.push(3); this would overflow the ArrayVec and panic! /// ``` #[inline(always)] pub fn push(&mut self, val: A::Item) { let x = self.try_push(val); assert!(x.is_none(), "ArrayVec::push> capacity overflow!"); } /// Tries to place an element onto the end of the vec.\ /// Returns back the element if the capacity is exhausted, /// otherwise returns None. /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 2]); /// assert_eq!(av.as_slice(), []); /// assert_eq!(av.try_push(1), None); /// assert_eq!(&av[..], [1]); /// assert_eq!(av.try_push(2), None); /// assert_eq!(&av[..], [1, 2]); /// assert_eq!(av.try_push(3), Some(3)); /// ``` #[inline(always)] pub fn try_push(&mut self, val: A::Item) -> Option { debug_assert!(self.len as usize <= A::CAPACITY); let itemref = match self.data.as_slice_mut().get_mut(self.len as usize) { None => return Some(val), Some(x) => x, }; *itemref = val; self.len += 1; return None; } /// Removes the item at `index`, shifting all others down by one index. /// /// Returns the removed element. /// /// ## Panics /// /// * If the index is out of bounds. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4] => 1, 2, 3); /// assert_eq!(av.remove(1), 2); /// assert_eq!(&av[..], [1, 3]); /// ``` #[inline] pub fn remove(&mut self, index: usize) -> A::Item { let targets: &mut [A::Item] = &mut self.deref_mut()[index..]; let item = take(&mut targets[0]); // A previous implementation used rotate_left // rotate_right and rotate_left generate a huge amount of code and fail to // inline; calling them here incurs the cost of all the cases they // handle even though we're rotating a usually-small array by a constant // 1 offset. This swap-based implementation benchmarks much better for // small array lengths in particular. for i in 0..targets.len() - 1 { targets.swap(i, i + 1); } self.len -= 1; item } /// As [`resize_with`](ArrayVec::resize_with) /// and it clones the value as the closure. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([&str; 10] => "hello"); /// av.resize(3, "world"); /// assert_eq!(&av[..], ["hello", "world", "world"]); /// /// let mut av = array_vec!([i32; 10] => 1, 2, 3, 4); /// av.resize(2, 0); /// assert_eq!(&av[..], [1, 2]); /// ``` #[inline] pub fn resize(&mut self, new_len: usize, new_val: A::Item) where A::Item: Clone, { self.resize_with(new_len, || new_val.clone()) } /// Resize the vec to the new length. /// /// If it needs to be longer, it's filled with repeated calls to the provided /// function. If it needs to be shorter, it's truncated. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([i32; 10] => 1, 2, 3); /// av.resize_with(5, Default::default); /// assert_eq!(&av[..], [1, 2, 3, 0, 0]); /// /// let mut av = array_vec!([i32; 10]); /// let mut p = 1; /// av.resize_with(4, || { /// p *= 2; /// p /// }); /// assert_eq!(&av[..], [2, 4, 8, 16]); /// ``` #[inline] pub fn resize_with A::Item>( &mut self, new_len: usize, mut f: F, ) { match new_len.checked_sub(self.len as usize) { None => self.truncate(new_len), Some(new_elements) => { for _ in 0..new_elements { self.push(f()); } } } } /// Walk the vec and keep only the elements that pass the predicate given. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4); /// av.retain(|&x| x % 2 == 0); /// assert_eq!(&av[..], [2, 4]); /// ``` #[inline] pub fn retain bool>(&mut self, mut acceptable: F) { // Drop guard to contain exactly the remaining elements when the test // panics. struct JoinOnDrop<'vec, Item> { items: &'vec mut [Item], done_end: usize, // Start of tail relative to `done_end`. tail_start: usize, } impl Drop for JoinOnDrop<'_, Item> { fn drop(&mut self) { self.items[self.done_end..].rotate_left(self.tail_start); } } let mut rest = JoinOnDrop { items: &mut self.data.as_slice_mut()[..self.len as usize], done_end: 0, tail_start: 0, }; let len = self.len as usize; for idx in 0..len { // Loop start invariant: idx = rest.done_end + rest.tail_start if !acceptable(&rest.items[idx]) { let _ = take(&mut rest.items[idx]); self.len -= 1; rest.tail_start += 1; } else { rest.items.swap(rest.done_end, idx); rest.done_end += 1; } } } /// Forces the length of the vector to `new_len`. /// /// ## Panics /// * If `new_len` is greater than the vec's capacity. /// /// ## Safety /// * This is a fully safe operation! The inactive memory already counts as /// "initialized" by Rust's rules. /// * Other than "the memory is initialized" there are no other guarantees /// regarding what you find in the inactive portion of the vec. #[inline(always)] pub fn set_len(&mut self, new_len: usize) { if new_len > A::CAPACITY { // Note(Lokathor): Technically we don't have to panic here, and we could // just let some other call later on trigger a panic on accident when the // length is wrong. However, it's a lot easier to catch bugs when things // are more "fail-fast". panic!( "ArrayVec::set_len> new length {} exceeds capacity {}", new_len, A::CAPACITY ) } let new_len: u16 = new_len .try_into() .expect("ArrayVec::set_len> new length is not in range 0..=u16::MAX"); self.len = new_len; } /// Splits the collection at the point given. /// /// * `[0, at)` stays in this vec /// * `[at, len)` ends up in the new vec. /// /// ## Panics /// * if at > len /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4] => 1, 2, 3); /// let av2 = av.split_off(1); /// assert_eq!(&av[..], [1]); /// assert_eq!(&av2[..], [2, 3]); /// ``` #[inline] pub fn split_off(&mut self, at: usize) -> Self { // FIXME: should this just use drain into the output? if at > self.len() { panic!( "ArrayVec::split_off> at value {} exceeds length of {}", at, self.len ); } let mut new = Self::default(); let moves = &mut self.as_mut_slice()[at..]; let split_len = moves.len(); let targets = &mut new.data.as_slice_mut()[..split_len]; moves.swap_with_slice(targets); /* moves.len() <= u16::MAX, so these are surely in u16 range */ new.len = split_len as u16; self.len = at as u16; new } /// Creates a splicing iterator that removes the specified range in the /// vector, yields the removed items, and replaces them with elements from /// the provided iterator. /// /// `splice` fuses the provided iterator, so elements after the first `None` /// are ignored. /// /// ## Panics /// * If the start is greater than the end. /// * If the end is past the edge of the vec. /// * If the provided iterator panics. /// * If the new length would overflow the capacity of the array. Because /// `ArrayVecSplice` adds elements to this vec in its destructor when /// necessary, this panic would occur when it is dropped. /// /// ## Example /// ```rust /// use tinyvec::*; /// let mut av = array_vec!([i32; 4] => 1, 2, 3); /// let av2: ArrayVec<[i32; 4]> = av.splice(1.., 4..=6).collect(); /// assert_eq!(av.as_slice(), &[1, 4, 5, 6][..]); /// assert_eq!(av2.as_slice(), &[2, 3][..]); /// /// av.splice(.., None); /// assert_eq!(av.as_slice(), &[]); /// ``` #[inline] pub fn splice( &mut self, range: R, replacement: I, ) -> ArrayVecSplice<'_, A, core::iter::Fuse> where R: RangeBounds, I: IntoIterator, { use core::ops::Bound; let start = match range.start_bound() { Bound::Included(x) => *x, Bound::Excluded(x) => x.saturating_add(1), Bound::Unbounded => 0, }; let end = match range.end_bound() { Bound::Included(x) => x.saturating_add(1), Bound::Excluded(x) => *x, Bound::Unbounded => self.len(), }; assert!( start <= end, "ArrayVec::splice> Illegal range, {} to {}", start, end ); assert!( end <= self.len(), "ArrayVec::splice> Range ends at {} but length is only {}!", end, self.len() ); ArrayVecSplice { removal_start: start, removal_end: end, parent: self, replacement: replacement.into_iter().fuse(), } } /// Remove an element, swapping the end of the vec into its place. /// /// ## Panics /// * If the index is out of bounds. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([&str; 4] => "foo", "bar", "quack", "zap"); /// /// assert_eq!(av.swap_remove(1), "bar"); /// assert_eq!(&av[..], ["foo", "zap", "quack"]); /// /// assert_eq!(av.swap_remove(0), "foo"); /// assert_eq!(&av[..], ["quack", "zap"]); /// ``` #[inline] pub fn swap_remove(&mut self, index: usize) -> A::Item { assert!( index < self.len(), "ArrayVec::swap_remove> index {} is out of bounds {}", index, self.len ); if index == self.len() - 1 { self.pop().unwrap() } else { let i = self.pop().unwrap(); replace(&mut self[index], i) } } /// Reduces the vec's length to the given value. /// /// If the vec is already shorter than the input, nothing happens. #[inline] pub fn truncate(&mut self, new_len: usize) { if new_len >= self.len as usize { return; } if needs_drop::() { let len = self.len as usize; self.data.as_slice_mut()[new_len..len] .iter_mut() .map(take) .for_each(drop); } /* new_len is less than self.len */ self.len = new_len as u16; } /// Wraps an array, using the given length as the starting length. /// /// If you want to use the whole length of the array, you can just use the /// `From` impl. /// /// ## Failure /// /// If the given length is greater than the capacity of the array this will /// error, and you'll get the array back in the `Err`. #[inline] pub fn try_from_array_len(data: A, len: usize) -> Result { /* Note(Soveu): Should we allow A::CAPACITY > u16::MAX for now? */ if len <= A::CAPACITY { Ok(Self { data, len: len as u16 }) } else { Err(data) } } } #[cfg(feature = "grab_spare_slice")] impl ArrayVec { /// Obtain the shared slice of the array _after_ the active memory. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// assert_eq!(av.grab_spare_slice().len(), 4); /// av.push(10); /// av.push(11); /// av.push(12); /// av.push(13); /// assert_eq!(av.grab_spare_slice().len(), 0); /// ``` #[inline(always)] pub fn grab_spare_slice(&self) -> &[A::Item] { &self.data.as_slice()[self.len as usize..] } /// Obtain the mutable slice of the array _after_ the active memory. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// assert_eq!(av.grab_spare_slice_mut().len(), 4); /// av.push(10); /// av.push(11); /// assert_eq!(av.grab_spare_slice_mut().len(), 2); /// ``` #[inline(always)] pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] { &mut self.data.as_slice_mut()[self.len as usize..] } } #[cfg(feature = "nightly_slice_partition_dedup")] impl ArrayVec { /// De-duplicates the vec contents. #[inline(always)] pub fn dedup(&mut self) where A::Item: PartialEq, { self.dedup_by(|a, b| a == b) } /// De-duplicates the vec according to the predicate given. #[inline(always)] pub fn dedup_by(&mut self, same_bucket: F) where F: FnMut(&mut A::Item, &mut A::Item) -> bool, { let len = { let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); dedup.len() }; self.truncate(len); } /// De-duplicates the vec according to the key selector given. #[inline(always)] pub fn dedup_by_key(&mut self, mut key: F) where F: FnMut(&mut A::Item) -> K, K: PartialEq, { self.dedup_by(|a, b| key(a) == key(b)) } } /// Splicing iterator for `ArrayVec` /// See [`ArrayVec::splice`](ArrayVec::::splice) pub struct ArrayVecSplice<'p, A: Array, I: Iterator> { parent: &'p mut ArrayVec, removal_start: usize, removal_end: usize, replacement: I, } impl<'p, A: Array, I: Iterator> Iterator for ArrayVecSplice<'p, A, I> { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.removal_start < self.removal_end { match self.replacement.next() { Some(replacement) => { let removed = core::mem::replace( &mut self.parent[self.removal_start], replacement, ); self.removal_start += 1; Some(removed) } None => { let removed = self.parent.remove(self.removal_start); self.removal_end -= 1; Some(removed) } } } else { None } } #[inline] fn size_hint(&self) -> (usize, Option) { let len = self.len(); (len, Some(len)) } } impl<'p, A, I> ExactSizeIterator for ArrayVecSplice<'p, A, I> where A: Array, I: Iterator, { #[inline] fn len(&self) -> usize { self.removal_end - self.removal_start } } impl<'p, A, I> FusedIterator for ArrayVecSplice<'p, A, I> where A: Array, I: Iterator, { } impl<'p, A, I> DoubleEndedIterator for ArrayVecSplice<'p, A, I> where A: Array, I: Iterator + DoubleEndedIterator, { #[inline] fn next_back(&mut self) -> Option { if self.removal_start < self.removal_end { match self.replacement.next_back() { Some(replacement) => { let removed = core::mem::replace( &mut self.parent[self.removal_end - 1], replacement, ); self.removal_end -= 1; Some(removed) } None => { let removed = self.parent.remove(self.removal_end - 1); self.removal_end -= 1; Some(removed) } } } else { None } } } impl<'p, A: Array, I: Iterator> Drop for ArrayVecSplice<'p, A, I> { fn drop(&mut self) { for _ in self.by_ref() {} // FIXME: reserve lower bound of size_hint for replacement in self.replacement.by_ref() { self.parent.insert(self.removal_end, replacement); self.removal_end += 1; } } } impl AsMut<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn as_mut(&mut self) -> &mut [A::Item] { &mut *self } } impl AsRef<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn as_ref(&self) -> &[A::Item] { &*self } } impl Borrow<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn borrow(&self) -> &[A::Item] { &*self } } impl BorrowMut<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn borrow_mut(&mut self) -> &mut [A::Item] { &mut *self } } impl Extend for ArrayVec { #[inline] fn extend>(&mut self, iter: T) { for t in iter { self.push(t) } } } impl From for ArrayVec { #[inline(always)] #[must_use] /// The output has a length equal to the full array. /// /// If you want to select a length, use /// [`from_array_len`](ArrayVec::from_array_len) fn from(data: A) -> Self { let len: u16 = data .as_slice() .len() .try_into() .expect("ArrayVec::from> lenght must be in range 0..=u16::MAX"); Self { len, data } } } impl FromIterator for ArrayVec { #[inline] #[must_use] fn from_iter>(iter: T) -> Self { let mut av = Self::default(); for i in iter { av.push(i) } av } } /// Iterator for consuming an `ArrayVec` and returning owned elements. pub struct ArrayVecIterator { base: u16, tail: u16, data: A, } impl ArrayVecIterator { /// Returns the remaining items of this iterator as a slice. #[inline] #[must_use] pub fn as_slice(&self) -> &[A::Item] { &self.data.as_slice()[self.base as usize..self.tail as usize] } } impl FusedIterator for ArrayVecIterator {} impl Iterator for ArrayVecIterator { type Item = A::Item; #[inline] fn next(&mut self) -> Option { let slice = &mut self.data.as_slice_mut()[self.base as usize..self.tail as usize]; let itemref = slice.first_mut()?; self.base += 1; return Some(take(itemref)); } #[inline(always)] #[must_use] fn size_hint(&self) -> (usize, Option) { let s = self.tail - self.base; let s = s as usize; (s, Some(s)) } #[inline(always)] fn count(self) -> usize { self.size_hint().0 } #[inline] fn last(mut self) -> Option { self.next_back() } #[inline] fn nth(&mut self, n: usize) -> Option { let slice = &mut self.data.as_slice_mut(); let slice = &mut slice[self.base as usize..self.tail as usize]; if let Some(x) = slice.get_mut(n) { /* n is in range [0 .. self.tail - self.base) so in u16 range */ self.base += n as u16 + 1; return Some(take(x)); } self.base = self.tail; return None; } } impl DoubleEndedIterator for ArrayVecIterator { #[inline] fn next_back(&mut self) -> Option { let slice = &mut self.data.as_slice_mut()[self.base as usize..self.tail as usize]; let item = slice.last_mut()?; self.tail -= 1; return Some(take(item)); } #[cfg(feature = "rustc_1_40")] #[inline] fn nth_back(&mut self, n: usize) -> Option { let base = self.base as usize; let tail = self.tail as usize; let slice = &mut self.data.as_slice_mut()[base..tail]; let n = n.saturating_add(1); if let Some(n) = slice.len().checked_sub(n) { let item = &mut slice[n]; /* n is in [0..self.tail - self.base] range, so in u16 range */ self.tail = self.base + n as u16; return Some(take(item)); } self.tail = self.base; return None; } } impl Debug for ArrayVecIterator where A::Item: Debug, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish() } } impl IntoIterator for ArrayVec { type Item = A::Item; type IntoIter = ArrayVecIterator; #[inline(always)] #[must_use] fn into_iter(self) -> Self::IntoIter { ArrayVecIterator { base: 0, tail: self.len, data: self.data } } } impl<'a, A: Array> IntoIterator for &'a mut ArrayVec { type Item = &'a mut A::Item; type IntoIter = core::slice::IterMut<'a, A::Item>; #[inline(always)] #[must_use] fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } impl<'a, A: Array> IntoIterator for &'a ArrayVec { type Item = &'a A::Item; type IntoIter = core::slice::Iter<'a, A::Item>; #[inline(always)] #[must_use] fn into_iter(self) -> Self::IntoIter { self.iter() } } impl PartialEq for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &Self) -> bool { self.as_slice().eq(other.as_slice()) } } impl Eq for ArrayVec where A::Item: Eq {} impl PartialOrd for ArrayVec where A::Item: PartialOrd, { #[inline] #[must_use] fn partial_cmp(&self, other: &Self) -> Option { self.as_slice().partial_cmp(other.as_slice()) } } impl Ord for ArrayVec where A::Item: Ord, { #[inline] #[must_use] fn cmp(&self, other: &Self) -> core::cmp::Ordering { self.as_slice().cmp(other.as_slice()) } } impl PartialEq<&A> for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &&A) -> bool { self.as_slice().eq(other.as_slice()) } } impl PartialEq<&[A::Item]> for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &&[A::Item]) -> bool { self.as_slice().eq(*other) } } impl Hash for ArrayVec where A::Item: Hash, { #[inline] fn hash(&self, state: &mut H) { self.as_slice().hash(state) } } #[cfg(feature = "experimental_write_impl")] impl> core::fmt::Write for ArrayVec { fn write_str(&mut self, s: &str) -> core::fmt::Result { let my_len = self.len(); let str_len = s.as_bytes().len(); if my_len + str_len <= A::CAPACITY { let remainder = &mut self.data.as_slice_mut()[my_len..]; let target = &mut remainder[..str_len]; target.copy_from_slice(s.as_bytes()); Ok(()) } else { Err(core::fmt::Error) } } } // // // // // // // // // Formatting impls // // // // // // // // impl Binary for ArrayVec where A::Item: Binary, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Binary::fmt(elem, f)?; } write!(f, "]") } } impl Debug for ArrayVec where A::Item: Debug, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Debug::fmt(elem, f)?; } write!(f, "]") } } impl Display for ArrayVec where A::Item: Display, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Display::fmt(elem, f)?; } write!(f, "]") } } impl LowerExp for ArrayVec where A::Item: LowerExp, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } LowerExp::fmt(elem, f)?; } write!(f, "]") } } impl LowerHex for ArrayVec where A::Item: LowerHex, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } LowerHex::fmt(elem, f)?; } write!(f, "]") } } impl Octal for ArrayVec where A::Item: Octal, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Octal::fmt(elem, f)?; } write!(f, "]") } } impl Pointer for ArrayVec where A::Item: Pointer, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Pointer::fmt(elem, f)?; } write!(f, "]") } } impl UpperExp for ArrayVec where A::Item: UpperExp, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } UpperExp::fmt(elem, f)?; } write!(f, "]") } } impl UpperHex for ArrayVec where A::Item: UpperHex, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } UpperHex::fmt(elem, f)?; } write!(f, "]") } } #[cfg(feature = "alloc")] use alloc::vec::Vec; #[cfg(feature = "alloc")] impl ArrayVec { /// Drains all elements to a Vec, but reserves additional space /// ``` /// # use tinyvec::*; /// let mut av = array_vec!([i32; 7] => 1, 2, 3); /// let v = av.drain_to_vec_and_reserve(10); /// assert_eq!(v, &[1, 2, 3]); /// assert_eq!(v.capacity(), 13); /// ``` pub fn drain_to_vec_and_reserve(&mut self, n: usize) -> Vec { let cap = n + self.len(); let mut v = Vec::with_capacity(cap); let iter = self.iter_mut().map(take); v.extend(iter); self.set_len(0); return v; } /// Drains all elements to a Vec /// ``` /// # use tinyvec::*; /// let mut av = array_vec!([i32; 7] => 1, 2, 3); /// let v = av.drain_to_vec(); /// assert_eq!(v, &[1, 2, 3]); /// assert_eq!(v.capacity(), 3); /// ``` pub fn drain_to_vec(&mut self) -> Vec { self.drain_to_vec_and_reserve(0) } } #[cfg(feature = "serde")] struct ArrayVecVisitor(PhantomData); #[cfg(feature = "serde")] impl<'de, A: Array> Visitor<'de> for ArrayVecVisitor where A::Item: Deserialize<'de>, { type Value = ArrayVec; fn expecting( &self, formatter: &mut core::fmt::Formatter, ) -> core::fmt::Result { formatter.write_str("a sequence") } fn visit_seq(self, mut seq: S) -> Result where S: SeqAccess<'de>, { let mut new_arrayvec: ArrayVec = Default::default(); let mut idx = 0usize; while let Some(value) = seq.next_element()? { if new_arrayvec.len() >= new_arrayvec.capacity() { return Err(DeserializeError::invalid_length(idx, &self)); } new_arrayvec.push(value); idx = idx + 1; } Ok(new_arrayvec) } }