use crate::time::driver::{Handle, TimerEntry}; use crate::time::{error::Error, Duration, Instant}; use pin_project_lite::pin_project; use std::future::Future; use std::pin::Pin; use std::task::{self, Poll}; /// Waits until `deadline` is reached. /// /// No work is performed while awaiting on the sleep future to complete. `Sleep` /// operates at millisecond granularity and should not be used for tasks that /// require high-resolution timers. /// /// # Cancellation /// /// Canceling a sleep instance is done by dropping the returned future. No additional /// cleanup work is required. // Alias for old name in 0.x #[cfg_attr(docsrs, doc(alias = "delay_until"))] pub fn sleep_until(deadline: Instant) -> Sleep { Sleep::new_timeout(deadline) } /// Waits until `duration` has elapsed. /// /// Equivalent to `sleep_until(Instant::now() + duration)`. An asynchronous /// analog to `std::thread::sleep`. /// /// No work is performed while awaiting on the sleep future to complete. `Sleep` /// operates at millisecond granularity and should not be used for tasks that /// require high-resolution timers. /// /// To run something regularly on a schedule, see [`interval`]. /// /// The maximum duration for a sleep is 68719476734 milliseconds (approximately 2.2 years). /// /// # Cancellation /// /// Canceling a sleep instance is done by dropping the returned future. No additional /// cleanup work is required. /// /// # Examples /// /// Wait 100ms and print "100 ms have elapsed". /// /// ``` /// use tokio::time::{sleep, Duration}; /// /// #[tokio::main] /// async fn main() { /// sleep(Duration::from_millis(100)).await; /// println!("100 ms have elapsed"); /// } /// ``` /// /// [`interval`]: crate::time::interval() // Alias for old name in 0.x #[cfg_attr(docsrs, doc(alias = "delay_for"))] pub fn sleep(duration: Duration) -> Sleep { match Instant::now().checked_add(duration) { Some(deadline) => sleep_until(deadline), None => sleep_until(Instant::far_future()), } } pin_project! { /// Future returned by [`sleep`](sleep) and [`sleep_until`](sleep_until). /// /// This type does not implement the `Unpin` trait, which means that if you /// use it with [`select!`] or by calling `poll`, you have to pin it first. /// If you use it with `.await`, this does not apply. /// /// # Examples /// /// Wait 100ms and print "100 ms have elapsed". /// /// ``` /// use tokio::time::{sleep, Duration}; /// /// #[tokio::main] /// async fn main() { /// sleep(Duration::from_millis(100)).await; /// println!("100 ms have elapsed"); /// } /// ``` /// /// Use with [`select!`]. Pinning the `Sleep` with [`tokio::pin!`] is /// necessary when the same `Sleep` is selected on multiple times. /// ```no_run /// use tokio::time::{self, Duration, Instant}; /// /// #[tokio::main] /// async fn main() { /// let sleep = time::sleep(Duration::from_millis(10)); /// tokio::pin!(sleep); /// /// loop { /// tokio::select! { /// () = &mut sleep => { /// println!("timer elapsed"); /// sleep.as_mut().reset(Instant::now() + Duration::from_millis(50)); /// }, /// } /// } /// } /// ``` /// Use in a struct with boxing. By pinning the `Sleep` with a `Box`, the /// `HasSleep` struct implements `Unpin`, even though `Sleep` does not. /// ``` /// use std::future::Future; /// use std::pin::Pin; /// use std::task::{Context, Poll}; /// use tokio::time::Sleep; /// /// struct HasSleep { /// sleep: Pin>, /// } /// /// impl Future for HasSleep { /// type Output = (); /// /// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> { /// self.sleep.as_mut().poll(cx) /// } /// } /// ``` /// Use in a struct with pin projection. This method avoids the `Box`, but /// the `HasSleep` struct will not be `Unpin` as a consequence. /// ``` /// use std::future::Future; /// use std::pin::Pin; /// use std::task::{Context, Poll}; /// use tokio::time::Sleep; /// use pin_project_lite::pin_project; /// /// pin_project! { /// struct HasSleep { /// #[pin] /// sleep: Sleep, /// } /// } /// /// impl Future for HasSleep { /// type Output = (); /// /// fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> { /// self.project().sleep.poll(cx) /// } /// } /// ``` /// /// [`select!`]: ../macro.select.html /// [`tokio::pin!`]: ../macro.pin.html // Alias for old name in 0.2 #[cfg_attr(docsrs, doc(alias = "Delay"))] #[derive(Debug)] #[must_use = "futures do nothing unless you `.await` or poll them"] pub struct Sleep { deadline: Instant, // The link between the `Sleep` instance and the timer that drives it. #[pin] entry: TimerEntry, } } impl Sleep { pub(crate) fn new_timeout(deadline: Instant) -> Sleep { let handle = Handle::current(); let entry = TimerEntry::new(&handle, deadline); Sleep { deadline, entry } } pub(crate) fn far_future() -> Sleep { Self::new_timeout(Instant::far_future()) } /// Returns the instant at which the future will complete. pub fn deadline(&self) -> Instant { self.deadline } /// Returns `true` if `Sleep` has elapsed. /// /// A `Sleep` instance is elapsed when the requested duration has elapsed. pub fn is_elapsed(&self) -> bool { self.entry.is_elapsed() } /// Resets the `Sleep` instance to a new deadline. /// /// Calling this function allows changing the instant at which the `Sleep` /// future completes without having to create new associated state. /// /// This function can be called both before and after the future has /// completed. /// /// To call this method, you will usually combine the call with /// [`Pin::as_mut`], which lets you call the method without consuming the /// `Sleep` itself. /// /// # Example /// /// ``` /// use tokio::time::{Duration, Instant}; /// /// # #[tokio::main(flavor = "current_thread")] /// # async fn main() { /// let sleep = tokio::time::sleep(Duration::from_millis(10)); /// tokio::pin!(sleep); /// /// sleep.as_mut().reset(Instant::now() + Duration::from_millis(20)); /// # } /// ``` /// /// [`Pin::as_mut`]: fn@std::pin::Pin::as_mut pub fn reset(self: Pin<&mut Self>, deadline: Instant) { let me = self.project(); me.entry.reset(deadline); *me.deadline = deadline; } fn poll_elapsed(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll> { let me = self.project(); // Keep track of task budget let coop = ready!(crate::coop::poll_proceed(cx)); me.entry.poll_elapsed(cx).map(move |r| { coop.made_progress(); r }) } } impl Future for Sleep { type Output = (); fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll { // `poll_elapsed` can return an error in two cases: // // - AtCapacity: this is a pathological case where far too many // sleep instances have been scheduled. // - Shutdown: No timer has been setup, which is a mis-use error. // // Both cases are extremely rare, and pretty accurately fit into // "logic errors", so we just panic in this case. A user couldn't // really do much better if we passed the error onwards. match ready!(self.as_mut().poll_elapsed(cx)) { Ok(()) => Poll::Ready(()), Err(e) => panic!("timer error: {}", e), } } }