use crate::syntax::atom::Atom::{self, *}; use crate::syntax::report::Errors; use crate::syntax::visit::{self, Visit}; use crate::syntax::{ error, ident, trivial, Api, Array, Enum, ExternFn, ExternType, Impl, Lang, NamedType, Ptr, Receiver, Ref, Signature, SliceRef, Struct, Trait, Ty1, Type, TypeAlias, Types, }; use proc_macro2::{Delimiter, Group, Ident, TokenStream}; use quote::{quote, ToTokens}; use std::fmt::Display; pub(crate) struct Check<'a> { apis: &'a [Api], types: &'a Types<'a>, errors: &'a mut Errors, } pub(crate) fn typecheck(cx: &mut Errors, apis: &[Api], types: &Types) { do_typecheck(&mut Check { apis, types, errors: cx, }); } fn do_typecheck(cx: &mut Check) { ident::check_all(cx, cx.apis); for ty in cx.types { match ty { Type::Ident(ident) => check_type_ident(cx, ident), Type::RustBox(ptr) => check_type_box(cx, ptr), Type::RustVec(ty) => check_type_rust_vec(cx, ty), Type::UniquePtr(ptr) => check_type_unique_ptr(cx, ptr), Type::SharedPtr(ptr) => check_type_shared_ptr(cx, ptr), Type::WeakPtr(ptr) => check_type_weak_ptr(cx, ptr), Type::CxxVector(ptr) => check_type_cxx_vector(cx, ptr), Type::Ref(ty) => check_type_ref(cx, ty), Type::Ptr(ty) => check_type_ptr(cx, ty), Type::Array(array) => check_type_array(cx, array), Type::Fn(ty) => check_type_fn(cx, ty), Type::SliceRef(ty) => check_type_slice_ref(cx, ty), Type::Str(_) | Type::Void(_) => {} } } for api in cx.apis { match api { Api::Include(_) => {} Api::Struct(strct) => check_api_struct(cx, strct), Api::Enum(enm) => check_api_enum(cx, enm), Api::CxxType(ety) | Api::RustType(ety) => check_api_type(cx, ety), Api::CxxFunction(efn) | Api::RustFunction(efn) => check_api_fn(cx, efn), Api::TypeAlias(alias) => check_api_type_alias(cx, alias), Api::Impl(imp) => check_api_impl(cx, imp), } } } impl Check<'_> { pub(crate) fn error(&mut self, sp: impl ToTokens, msg: impl Display) { self.errors.error(sp, msg); } } fn check_type_ident(cx: &mut Check, name: &NamedType) { let ident = &name.rust; if Atom::from(ident).is_none() && !cx.types.structs.contains_key(ident) && !cx.types.enums.contains_key(ident) && !cx.types.cxx.contains(ident) && !cx.types.rust.contains(ident) { let msg = format!("unsupported type: {}", ident); cx.error(ident, &msg); } } fn check_type_box(cx: &mut Check, ptr: &Ty1) { if let Type::Ident(ident) = &ptr.inner { if cx.types.cxx.contains(&ident.rust) && !cx.types.aliases.contains_key(&ident.rust) && !cx.types.structs.contains_key(&ident.rust) && !cx.types.enums.contains_key(&ident.rust) { cx.error(ptr, error::BOX_CXX_TYPE.msg); } if Atom::from(&ident.rust).is_none() { return; } } cx.error(ptr, "unsupported target type of Box"); } fn check_type_rust_vec(cx: &mut Check, ty: &Ty1) { match &ty.inner { Type::Ident(ident) => { if cx.types.cxx.contains(&ident.rust) && !cx.types.aliases.contains_key(&ident.rust) && !cx.types.structs.contains_key(&ident.rust) && !cx.types.enums.contains_key(&ident.rust) { cx.error(ty, "Rust Vec containing C++ type is not supported yet"); return; } match Atom::from(&ident.rust) { None | Some(Char) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64) | Some(RustString) => return, Some(Bool) => { /* todo */ } Some(CxxString) => {} } } Type::Str(_) => return, _ => {} } cx.error(ty, "unsupported element type of Vec"); } fn check_type_unique_ptr(cx: &mut Check, ptr: &Ty1) { if let Type::Ident(ident) = &ptr.inner { if cx.types.rust.contains(&ident.rust) { cx.error(ptr, "unique_ptr of a Rust type is not supported yet"); return; } match Atom::from(&ident.rust) { None | Some(CxxString) => return, _ => {} } } else if let Type::CxxVector(_) = &ptr.inner { return; } cx.error(ptr, "unsupported unique_ptr target type"); } fn check_type_shared_ptr(cx: &mut Check, ptr: &Ty1) { if let Type::Ident(ident) = &ptr.inner { if cx.types.rust.contains(&ident.rust) { cx.error(ptr, "shared_ptr of a Rust type is not supported yet"); return; } match Atom::from(&ident.rust) { None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64) | Some(CxxString) => return, Some(Char) | Some(RustString) => {} } } else if let Type::CxxVector(_) = &ptr.inner { cx.error(ptr, "std::shared_ptr is not supported yet"); return; } cx.error(ptr, "unsupported shared_ptr target type"); } fn check_type_weak_ptr(cx: &mut Check, ptr: &Ty1) { if let Type::Ident(ident) = &ptr.inner { if cx.types.rust.contains(&ident.rust) { cx.error(ptr, "weak_ptr of a Rust type is not supported yet"); return; } match Atom::from(&ident.rust) { None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64) | Some(CxxString) => return, Some(Char) | Some(RustString) => {} } } else if let Type::CxxVector(_) = &ptr.inner { cx.error(ptr, "std::weak_ptr is not supported yet"); return; } cx.error(ptr, "unsupported weak_ptr target type"); } fn check_type_cxx_vector(cx: &mut Check, ptr: &Ty1) { if let Type::Ident(ident) = &ptr.inner { if cx.types.rust.contains(&ident.rust) { cx.error( ptr, "C++ vector containing a Rust type is not supported yet", ); return; } match Atom::from(&ident.rust) { None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64) | Some(CxxString) => return, Some(Char) => { /* todo */ } Some(Bool) | Some(RustString) => {} } } cx.error(ptr, "unsupported vector element type"); } fn check_type_ref(cx: &mut Check, ty: &Ref) { if ty.mutable && !ty.pinned { if let Some(requires_pin) = match &ty.inner { Type::Ident(ident) if ident.rust == CxxString || is_opaque_cxx(cx, &ident.rust) => { Some(ident.rust.to_string()) } Type::CxxVector(_) => Some("CxxVector<...>".to_owned()), _ => None, } { cx.error( ty, format!( "mutable reference to C++ type requires a pin -- use Pin<&mut {}>", requires_pin, ), ); } } match ty.inner { Type::Fn(_) | Type::Void(_) => {} Type::Ref(_) => { cx.error(ty, "C++ does not allow references to references"); return; } _ => return, } cx.error(ty, "unsupported reference type"); } fn check_type_ptr(cx: &mut Check, ty: &Ptr) { match ty.inner { Type::Fn(_) | Type::Void(_) => {} Type::Ref(_) => { cx.error(ty, "C++ does not allow pointer to reference as a type"); return; } _ => return, } cx.error(ty, "unsupported pointer type"); } fn check_type_slice_ref(cx: &mut Check, ty: &SliceRef) { let supported = !is_unsized(cx, &ty.inner) || match &ty.inner { Type::Ident(ident) => cx.types.rust.contains(&ident.rust), _ => false, }; if !supported { let mutable = if ty.mutable { "mut " } else { "" }; let mut msg = format!("unsupported &{}[T] element type", mutable); if let Type::Ident(ident) = &ty.inner { if is_opaque_cxx(cx, &ident.rust) { msg += ": opaque C++ type is not supported yet"; } } cx.error(ty, msg); } } fn check_type_array(cx: &mut Check, ty: &Array) { let supported = !is_unsized(cx, &ty.inner); if !supported { cx.error(ty, "unsupported array element type"); } } fn check_type_fn(cx: &mut Check, ty: &Signature) { if ty.throws { cx.error(ty, "function pointer returning Result is not supported yet"); } for arg in &ty.args { if let Type::Ptr(_) = arg.ty { if ty.unsafety.is_none() { cx.error( arg, "pointer argument requires that the function pointer be marked unsafe", ); } } } } fn check_api_struct(cx: &mut Check, strct: &Struct) { let name = &strct.name; check_reserved_name(cx, &name.rust); if strct.fields.is_empty() { let span = span_for_struct_error(strct); cx.error(span, "structs without any fields are not supported"); } if cx.types.cxx.contains(&name.rust) { if let Some(ety) = cx.types.untrusted.get(&name.rust) { let msg = "extern shared struct must be declared in an `unsafe extern` block"; cx.error(ety, msg); } } for derive in &strct.derives { if derive.what == Trait::ExternType { let msg = format!("derive({}) on shared struct is not supported", derive); cx.error(derive, msg); } } for field in &strct.fields { if let Type::Fn(_) = field.ty { cx.error( field, "function pointers in a struct field are not implemented yet", ); } else if is_unsized(cx, &field.ty) { let desc = describe(cx, &field.ty); let msg = format!("using {} by value is not supported", desc); cx.error(field, msg); } } } fn check_api_enum(cx: &mut Check, enm: &Enum) { check_reserved_name(cx, &enm.name.rust); if enm.variants.is_empty() && !enm.explicit_repr { let span = span_for_enum_error(enm); cx.error( span, "explicit #[repr(...)] is required for enum without any variants", ); } for derive in &enm.derives { if derive.what == Trait::Default || derive.what == Trait::ExternType { let msg = format!("derive({}) on shared enum is not supported", derive); cx.error(derive, msg); } } } fn check_api_type(cx: &mut Check, ety: &ExternType) { check_reserved_name(cx, &ety.name.rust); for derive in &ety.derives { if derive.what == Trait::ExternType && ety.lang == Lang::Rust { continue; } let lang = match ety.lang { Lang::Rust => "Rust", Lang::Cxx => "C++", }; let msg = format!( "derive({}) on opaque {} type is not supported yet", derive, lang, ); cx.error(derive, msg); } if !ety.bounds.is_empty() { let bounds = &ety.bounds; let span = quote!(#(#bounds)*); cx.error(span, "extern type bounds are not implemented yet"); } if let Some(reasons) = cx.types.required_trivial.get(&ety.name.rust) { let msg = format!( "needs a cxx::ExternType impl in order to be used as {}", trivial::as_what(&ety.name, reasons), ); cx.error(ety, msg); } } fn check_api_fn(cx: &mut Check, efn: &ExternFn) { match efn.lang { Lang::Cxx => { if !efn.generics.params.is_empty() && !efn.trusted { let ref span = span_for_generics_error(efn); cx.error(span, "extern C++ function with lifetimes must be declared in `unsafe extern \"C++\"` block"); } } Lang::Rust => { if !efn.generics.params.is_empty() && efn.unsafety.is_none() { let ref span = span_for_generics_error(efn); let message = format!( "must be `unsafe fn {}` in order to expose explicit lifetimes to C++", efn.name.rust, ); cx.error(span, message); } } } if let Some(receiver) = &efn.receiver { let ref span = span_for_receiver_error(receiver); if receiver.ty.rust == "Self" { let mutability = match receiver.mutable { true => "mut ", false => "", }; let msg = format!( "unnamed receiver type is only allowed if the surrounding extern block contains exactly one extern type; use `self: &{mutability}TheType`", mutability = mutability, ); cx.error(span, msg); } else if cx.types.enums.contains_key(&receiver.ty.rust) { cx.error( span, "unsupported receiver type; C++ does not allow member functions on enums", ); } else if !cx.types.structs.contains_key(&receiver.ty.rust) && !cx.types.cxx.contains(&receiver.ty.rust) && !cx.types.rust.contains(&receiver.ty.rust) { cx.error(span, "unrecognized receiver type"); } else if receiver.mutable && !receiver.pinned && is_opaque_cxx(cx, &receiver.ty.rust) { cx.error( span, format!( "mutable reference to opaque C++ type requires a pin -- use `self: Pin<&mut {}>`", receiver.ty.rust, ), ); } } for arg in &efn.args { if let Type::Fn(_) = arg.ty { if efn.lang == Lang::Rust { cx.error( arg, "passing a function pointer from C++ to Rust is not implemented yet", ); } } else if let Type::Ptr(_) = arg.ty { if efn.sig.unsafety.is_none() { cx.error( arg, "pointer argument requires that the function be marked unsafe", ); } } else if is_unsized(cx, &arg.ty) { let desc = describe(cx, &arg.ty); let msg = format!("passing {} by value is not supported", desc); cx.error(arg, msg); } } if let Some(ty) = &efn.ret { if let Type::Fn(_) = ty { cx.error(ty, "returning a function pointer is not implemented yet"); } else if is_unsized(cx, ty) { let desc = describe(cx, ty); let msg = format!("returning {} by value is not supported", desc); cx.error(ty, msg); } } if efn.lang == Lang::Cxx { check_mut_return_restriction(cx, efn); } } fn check_api_type_alias(cx: &mut Check, alias: &TypeAlias) { for derive in &alias.derives { let msg = format!("derive({}) on extern type alias is not supported", derive); cx.error(derive, msg); } } fn check_api_impl(cx: &mut Check, imp: &Impl) { let ty = &imp.ty; if let Some(negative) = imp.negative_token { let span = quote!(#negative #ty); cx.error(span, "negative impl is not supported yet"); return; } match ty { Type::RustBox(ty) | Type::RustVec(ty) | Type::UniquePtr(ty) | Type::SharedPtr(ty) | Type::WeakPtr(ty) | Type::CxxVector(ty) => { if let Type::Ident(inner) = &ty.inner { if Atom::from(&inner.rust).is_none() { return; } } } _ => {} } cx.error(imp, "unsupported Self type of explicit impl"); } fn check_mut_return_restriction(cx: &mut Check, efn: &ExternFn) { if efn.sig.unsafety.is_some() { // Unrestricted as long as the function is made unsafe-to-call. return; } match &efn.ret { Some(Type::Ref(ty)) if ty.mutable => {} Some(Type::SliceRef(slice)) if slice.mutable => {} _ => return, } if let Some(receiver) = &efn.receiver { if receiver.mutable { return; } let resolve = match cx.types.try_resolve(&receiver.ty) { Some(resolve) => resolve, None => return, }; if !resolve.generics.lifetimes.is_empty() { return; } } struct FindLifetimeMut<'a> { cx: &'a Check<'a>, found: bool, } impl<'t, 'a> Visit<'t> for FindLifetimeMut<'a> { fn visit_type(&mut self, ty: &'t Type) { self.found |= match ty { Type::Ref(ty) => ty.mutable, Type::SliceRef(slice) => slice.mutable, Type::Ident(ident) if Atom::from(&ident.rust).is_none() => { match self.cx.types.try_resolve(ident) { Some(resolve) => !resolve.generics.lifetimes.is_empty(), None => true, } } _ => false, }; visit::visit_type(self, ty); } } let mut visitor = FindLifetimeMut { cx, found: false }; for arg in &efn.args { visitor.visit_type(&arg.ty); } if visitor.found { return; } cx.error( efn, "&mut return type is not allowed unless there is a &mut argument", ); } fn check_reserved_name(cx: &mut Check, ident: &Ident) { if ident == "Box" || ident == "UniquePtr" || ident == "SharedPtr" || ident == "WeakPtr" || ident == "Vec" || ident == "CxxVector" || ident == "str" || Atom::from(ident).is_some() { cx.error(ident, "reserved name"); } } fn is_unsized(cx: &mut Check, ty: &Type) -> bool { match ty { Type::Ident(ident) => { let ident = &ident.rust; ident == CxxString || is_opaque_cxx(cx, ident) || cx.types.rust.contains(ident) } Type::Array(array) => is_unsized(cx, &array.inner), Type::CxxVector(_) | Type::Fn(_) | Type::Void(_) => true, Type::RustBox(_) | Type::RustVec(_) | Type::UniquePtr(_) | Type::SharedPtr(_) | Type::WeakPtr(_) | Type::Ref(_) | Type::Ptr(_) | Type::Str(_) | Type::SliceRef(_) => false, } } fn is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool { cx.types.cxx.contains(ty) && !cx.types.structs.contains_key(ty) && !cx.types.enums.contains_key(ty) && !(cx.types.aliases.contains_key(ty) && cx.types.required_trivial.contains_key(ty)) } fn span_for_struct_error(strct: &Struct) -> TokenStream { let struct_token = strct.struct_token; let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new()); brace_token.set_span(strct.brace_token.span); quote!(#struct_token #brace_token) } fn span_for_enum_error(enm: &Enum) -> TokenStream { let enum_token = enm.enum_token; let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new()); brace_token.set_span(enm.brace_token.span); quote!(#enum_token #brace_token) } fn span_for_receiver_error(receiver: &Receiver) -> TokenStream { let ampersand = receiver.ampersand; let lifetime = &receiver.lifetime; let mutability = receiver.mutability; if receiver.shorthand { let var = receiver.var; quote!(#ampersand #lifetime #mutability #var) } else { let ty = &receiver.ty; quote!(#ampersand #lifetime #mutability #ty) } } fn span_for_generics_error(efn: &ExternFn) -> TokenStream { let unsafety = efn.unsafety; let fn_token = efn.fn_token; let generics = &efn.generics; quote!(#unsafety #fn_token #generics) } fn describe(cx: &mut Check, ty: &Type) -> String { match ty { Type::Ident(ident) => { if cx.types.structs.contains_key(&ident.rust) { "struct".to_owned() } else if cx.types.enums.contains_key(&ident.rust) { "enum".to_owned() } else if cx.types.aliases.contains_key(&ident.rust) { "C++ type".to_owned() } else if cx.types.cxx.contains(&ident.rust) { "opaque C++ type".to_owned() } else if cx.types.rust.contains(&ident.rust) { "opaque Rust type".to_owned() } else if Atom::from(&ident.rust) == Some(CxxString) { "C++ string".to_owned() } else if Atom::from(&ident.rust) == Some(Char) { "C char".to_owned() } else { ident.rust.to_string() } } Type::RustBox(_) => "Box".to_owned(), Type::RustVec(_) => "Vec".to_owned(), Type::UniquePtr(_) => "unique_ptr".to_owned(), Type::SharedPtr(_) => "shared_ptr".to_owned(), Type::WeakPtr(_) => "weak_ptr".to_owned(), Type::Ref(_) => "reference".to_owned(), Type::Ptr(_) => "raw pointer".to_owned(), Type::Str(_) => "&str".to_owned(), Type::CxxVector(_) => "C++ vector".to_owned(), Type::SliceRef(_) => "slice".to_owned(), Type::Fn(_) => "function pointer".to_owned(), Type::Void(_) => "()".to_owned(), Type::Array(_) => "array".to_owned(), } }