/* * Copyright 2005 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.geometry; /** * An S1Interval represents a closed interval on a unit circle (also known as a * 1-dimensional sphere). It is capable of representing the empty interval * (containing no points), the full interval (containing all points), and * zero-length intervals (containing a single point). * * Points are represented by the angle they make with the positive x-axis in * the range [-Pi, Pi]. An interval is represented by its lower and upper bounds * (both inclusive, since the interval is closed). The lower bound may be * greater than the upper bound, in which case the interval is "inverted" (i.e. * it passes through the point (-1, 0)). * * Note that the point (-1, 0) has two valid representations, Pi and -Pi. The * normalized representation of this point internally is Pi, so that endpoints * of normal intervals are in the range (-Pi, Pi]. However, we take advantage of * the point -Pi to construct two special intervals: the Full() interval is * [-Pi, Pi], and the Empty() interval is [Pi, -Pi]. * */ public final strictfp class S1Interval implements Cloneable { private final double lo; private final double hi; /** * Both endpoints must be in the range -Pi to Pi inclusive. The value -Pi is * converted internally to Pi except for the Full() and Empty() intervals. */ public S1Interval(double lo, double hi) { this(lo, hi, false); } /** * Copy constructor. Assumes that the given interval is valid. * * TODO(dbeaumont): Make this class immutable and remove this method. */ public S1Interval(S1Interval interval) { this.lo = interval.lo; this.hi = interval.hi; } /** * Internal constructor that assumes that both arguments are in the correct * range, i.e. normalization from -Pi to Pi is already done. */ private S1Interval(double lo, double hi, boolean checked) { double newLo = lo; double newHi = hi; if (!checked) { if (lo == -S2.M_PI && hi != S2.M_PI) { newLo = S2.M_PI; } if (hi == -S2.M_PI && lo != S2.M_PI) { newHi = S2.M_PI; } } this.lo = newLo; this.hi = newHi; } public static S1Interval empty() { return new S1Interval(S2.M_PI, -S2.M_PI, true); } public static S1Interval full() { return new S1Interval(-S2.M_PI, S2.M_PI, true); } /** Convenience method to construct an interval containing a single point. */ public static S1Interval fromPoint(double p) { if (p == -S2.M_PI) { p = S2.M_PI; } return new S1Interval(p, p, true); } /** * Convenience method to construct the minimal interval containing the two * given points. This is equivalent to starting with an empty interval and * calling AddPoint() twice, but it is more efficient. */ public static S1Interval fromPointPair(double p1, double p2) { // assert (Math.abs(p1) <= S2.M_PI && Math.abs(p2) <= S2.M_PI); if (p1 == -S2.M_PI) { p1 = S2.M_PI; } if (p2 == -S2.M_PI) { p2 = S2.M_PI; } if (positiveDistance(p1, p2) <= S2.M_PI) { return new S1Interval(p1, p2, true); } else { return new S1Interval(p2, p1, true); } } public double lo() { return lo; } public double hi() { return hi; } /** * An interval is valid if neither bound exceeds Pi in absolute value, and the * value -Pi appears only in the Empty() and Full() intervals. */ public boolean isValid() { return (Math.abs(lo()) <= S2.M_PI && Math.abs(hi()) <= S2.M_PI && !(lo() == -S2.M_PI && hi() != S2.M_PI) && !(hi() == -S2.M_PI && lo() != S2.M_PI)); } /** Return true if the interval contains all points on the unit circle. */ public boolean isFull() { return hi() - lo() == 2 * S2.M_PI; } /** Return true if the interval is empty, i.e. it contains no points. */ public boolean isEmpty() { return lo() - hi() == 2 * S2.M_PI; } /* Return true if lo() > hi(). (This is true for empty intervals.) */ public boolean isInverted() { return lo() > hi(); } /** * Return the midpoint of the interval. For full and empty intervals, the * result is arbitrary. */ public double getCenter() { double center = 0.5 * (lo() + hi()); if (!isInverted()) { return center; } // Return the center in the range (-Pi, Pi]. return (center <= 0) ? (center + S2.M_PI) : (center - S2.M_PI); } /** * Return the length of the interval. The length of an empty interval is * negative. */ public double getLength() { double length = hi() - lo(); if (length >= 0) { return length; } length += 2 * S2.M_PI; // Empty intervals have a negative length. return (length > 0) ? length : -1; } /** * Return the complement of the interior of the interval. An interval and its * complement have the same boundary but do not share any interior values. The * complement operator is not a bijection, since the complement of a singleton * interval (containing a single value) is the same as the complement of an * empty interval. */ public S1Interval complement() { if (lo() == hi()) { return full(); // Singleton. } return new S1Interval(hi(), lo(), true); // Handles // empty and // full. } /** Return true if the interval (which is closed) contains the point 'p'. */ public boolean contains(double p) { // Works for empty, full, and singleton intervals. // assert (Math.abs(p) <= S2.M_PI); if (p == -S2.M_PI) { p = S2.M_PI; } return fastContains(p); } /** * Return true if the interval (which is closed) contains the point 'p'. Skips * the normalization of 'p' from -Pi to Pi. * */ public boolean fastContains(double p) { if (isInverted()) { return (p >= lo() || p <= hi()) && !isEmpty(); } else { return p >= lo() && p <= hi(); } } /** Return true if the interior of the interval contains the point 'p'. */ public boolean interiorContains(double p) { // Works for empty, full, and singleton intervals. // assert (Math.abs(p) <= S2.M_PI); if (p == -S2.M_PI) { p = S2.M_PI; } if (isInverted()) { return p > lo() || p < hi(); } else { return (p > lo() && p < hi()) || isFull(); } } /** * Return true if the interval contains the given interval 'y'. Works for * empty, full, and singleton intervals. */ public boolean contains(final S1Interval y) { // It might be helpful to compare the structure of these tests to // the simpler Contains(double) method above. if (isInverted()) { if (y.isInverted()) { return y.lo() >= lo() && y.hi() <= hi(); } return (y.lo() >= lo() || y.hi() <= hi()) && !isEmpty(); } else { if (y.isInverted()) { return isFull() || y.isEmpty(); } return y.lo() >= lo() && y.hi() <= hi(); } } /** * Returns true if the interior of this interval contains the entire interval * 'y'. Note that x.InteriorContains(x) is true only when x is the empty or * full interval, and x.InteriorContains(S1Interval(p,p)) is equivalent to * x.InteriorContains(p). */ public boolean interiorContains(final S1Interval y) { if (isInverted()) { if (!y.isInverted()) { return y.lo() > lo() || y.hi() < hi(); } return (y.lo() > lo() && y.hi() < hi()) || y.isEmpty(); } else { if (y.isInverted()) { return isFull() || y.isEmpty(); } return (y.lo() > lo() && y.hi() < hi()) || isFull(); } } /** * Return true if the two intervals contain any points in common. Note that * the point +/-Pi has two representations, so the intervals [-Pi,-3] and * [2,Pi] intersect, for example. */ public boolean intersects(final S1Interval y) { if (isEmpty() || y.isEmpty()) { return false; } if (isInverted()) { // Every non-empty inverted interval contains Pi. return y.isInverted() || y.lo() <= hi() || y.hi() >= lo(); } else { if (y.isInverted()) { return y.lo() <= hi() || y.hi() >= lo(); } return y.lo() <= hi() && y.hi() >= lo(); } } /** * Return true if the interior of this interval contains any point of the * interval 'y' (including its boundary). Works for empty, full, and singleton * intervals. */ public boolean interiorIntersects(final S1Interval y) { if (isEmpty() || y.isEmpty() || lo() == hi()) { return false; } if (isInverted()) { return y.isInverted() || y.lo() < hi() || y.hi() > lo(); } else { if (y.isInverted()) { return y.lo() < hi() || y.hi() > lo(); } return (y.lo() < hi() && y.hi() > lo()) || isFull(); } } /** * Expand the interval by the minimum amount necessary so that it contains the * given point "p" (an angle in the range [-Pi, Pi]). */ public S1Interval addPoint(double p) { // assert (Math.abs(p) <= S2.M_PI); if (p == -S2.M_PI) { p = S2.M_PI; } if (fastContains(p)) { return new S1Interval(this); } if (isEmpty()) { return S1Interval.fromPoint(p); } else { // Compute distance from p to each endpoint. double dlo = positiveDistance(p, lo()); double dhi = positiveDistance(hi(), p); if (dlo < dhi) { return new S1Interval(p, hi()); } else { return new S1Interval(lo(), p); } // Adding a point can never turn a non-full interval into a full one. } } /** * Return an interval that contains all points within a distance "radius" of * a point in this interval. Note that the expansion of an empty interval is * always empty. The radius must be non-negative. */ public S1Interval expanded(double radius) { // assert (radius >= 0); if (isEmpty()) { return this; } // Check whether this interval will be full after expansion, allowing // for a 1-bit rounding error when computing each endpoint. if (getLength() + 2 * radius >= 2 * S2.M_PI - 1e-15) { return full(); } // NOTE(dbeaumont): Should this remainder be 2 * M_PI or just M_PI ?? double lo = Math.IEEEremainder(lo() - radius, 2 * S2.M_PI); double hi = Math.IEEEremainder(hi() + radius, 2 * S2.M_PI); if (lo == -S2.M_PI) { lo = S2.M_PI; } return new S1Interval(lo, hi); } /** * Return the smallest interval that contains this interval and the given * interval "y". */ public S1Interval union(final S1Interval y) { // The y.is_full() case is handled correctly in all cases by the code // below, but can follow three separate code paths depending on whether // this interval is inverted, is non-inverted but contains Pi, or neither. if (y.isEmpty()) { return this; } if (fastContains(y.lo())) { if (fastContains(y.hi())) { // Either this interval contains y, or the union of the two // intervals is the Full() interval. if (contains(y)) { return this; // is_full() code path } return full(); } return new S1Interval(lo(), y.hi(), true); } if (fastContains(y.hi())) { return new S1Interval(y.lo(), hi(), true); } // This interval contains neither endpoint of y. This means that either y // contains all of this interval, or the two intervals are disjoint. if (isEmpty() || y.fastContains(lo())) { return y; } // Check which pair of endpoints are closer together. double dlo = positiveDistance(y.hi(), lo()); double dhi = positiveDistance(hi(), y.lo()); if (dlo < dhi) { return new S1Interval(y.lo(), hi(), true); } else { return new S1Interval(lo(), y.hi(), true); } } /** * Return the smallest interval that contains the intersection of this * interval with "y". Note that the region of intersection may consist of two * disjoint intervals. */ public S1Interval intersection(final S1Interval y) { // The y.is_full() case is handled correctly in all cases by the code // below, but can follow three separate code paths depending on whether // this interval is inverted, is non-inverted but contains Pi, or neither. if (y.isEmpty()) { return empty(); } if (fastContains(y.lo())) { if (fastContains(y.hi())) { // Either this interval contains y, or the region of intersection // consists of two disjoint subintervals. In either case, we want // to return the shorter of the two original intervals. if (y.getLength() < getLength()) { return y; // is_full() code path } return this; } return new S1Interval(y.lo(), hi(), true); } if (fastContains(y.hi())) { return new S1Interval(lo(), y.hi(), true); } // This interval contains neither endpoint of y. This means that either y // contains all of this interval, or the two intervals are disjoint. if (y.fastContains(lo())) { return this; // is_empty() okay here } // assert (!intersects(y)); return empty(); } /** * Return true if the length of the symmetric difference between the two * intervals is at most the given tolerance. */ public boolean approxEquals(final S1Interval y, double maxError) { if (isEmpty()) { return y.getLength() <= maxError; } if (y.isEmpty()) { return getLength() <= maxError; } return (Math.abs(Math.IEEEremainder(y.lo() - lo(), 2 * S2.M_PI)) + Math.abs(Math.IEEEremainder(y.hi() - hi(), 2 * S2.M_PI))) <= maxError; } public boolean approxEquals(final S1Interval y) { return approxEquals(y, 1e-9); } /** * Return true if two intervals contains the same set of points. */ @Override public boolean equals(Object that) { if (that instanceof S1Interval) { S1Interval thatInterval = (S1Interval) that; return lo() == thatInterval.lo() && hi() == thatInterval.hi(); } return false; } @Override public int hashCode() { long value = 17; value = 37 * value + Double.doubleToLongBits(lo()); value = 37 * value + Double.doubleToLongBits(hi()); return (int) ((value >>> 32) ^ value); } @Override public String toString() { return "[" + this.lo() + ", " + this.hi() + "]"; } /** * Compute the distance from "a" to "b" in the range [0, 2*Pi). This is * equivalent to (drem(b - a - S2.M_PI, 2 * S2.M_PI) + S2.M_PI), except that * it is more numerically stable (it does not lose precision for very small * positive distances). */ public static double positiveDistance(double a, double b) { double d = b - a; if (d >= 0) { return d; } // We want to ensure that if b == Pi and a == (-Pi + eps), // the return result is approximately 2*Pi and not zero. return (b + S2.M_PI) - (a - S2.M_PI); } }