/* * Copyright 2019 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "samplecode/Sample.h" #include "src/gpu/geometry/GrQuad.h" #include "src/gpu/ops/GrQuadPerEdgeAA.h" #include "include/core/SkCanvas.h" #include "include/core/SkPaint.h" #include "include/effects/SkDashPathEffect.h" #include "include/pathops/SkPathOps.h" #include "include/private/SkTPin.h" // Draw a line through the two points, outset by a fixed length in screen space static void draw_extended_line(SkCanvas* canvas, const SkPaint paint, const SkPoint& p0, const SkPoint& p1) { SkVector v = p1 - p0; v.setLength(v.length() + 3.f); canvas->drawLine(p1 - v, p0 + v, paint); // Draw normal vector too SkPaint normalPaint = paint; normalPaint.setPathEffect(nullptr); normalPaint.setStrokeWidth(paint.getStrokeWidth() / 4.f); SkVector n = {v.fY, -v.fX}; n.setLength(.25f); SkPoint m = (p0 + p1) * 0.5f; canvas->drawLine(m, m + n, normalPaint); } static void make_aa_line(const SkPoint& p0, const SkPoint& p1, bool aaOn, bool outset, SkPoint line[2]) { SkVector n = {0.f, 0.f}; if (aaOn) { SkVector v = p1 - p0; n = outset ? SkVector::Make(v.fY, -v.fX) : SkVector::Make(-v.fY, v.fX); n.setLength(0.5f); } line[0] = p0 + n; line[1] = p1 + n; } // To the line through l0-l1, not capped at the end points of the segment static SkScalar signed_distance(const SkPoint& p, const SkPoint& l0, const SkPoint& l1) { SkVector v = l1 - l0; v.normalize(); SkVector n = {v.fY, -v.fX}; SkScalar c = -n.dot(l0); return n.dot(p) + c; } static SkScalar get_area_coverage(const bool edgeAA[4], const SkPoint corners[4], const SkPoint& point) { SkPath shape; shape.addPoly(corners, 4, true); SkPath pixel; pixel.addRect(SkRect::MakeXYWH(point.fX - 0.5f, point.fY - 0.5f, 1.f, 1.f)); SkPath intersection; if (!Op(shape, pixel, kIntersect_SkPathOp, &intersection) || intersection.isEmpty()) { return 0.f; } // Calculate area of the convex polygon SkScalar area = 0.f; for (int i = 0; i < intersection.countPoints(); ++i) { SkPoint p0 = intersection.getPoint(i); SkPoint p1 = intersection.getPoint((i + 1) % intersection.countPoints()); SkScalar det = p0.fX * p1.fY - p1.fX * p0.fY; area += det; } // Scale by 1/2, then take abs value (this area formula is signed based on point winding, but // since it's convex, just make it positive). area = SkScalarAbs(0.5f * area); // Now account for the edge AA. If the pixel center is outside of a non-AA edge, turn of its // coverage. If the pixel only intersects non-AA edges, then set coverage to 1. bool needsNonAA = false; SkScalar edgeD[4]; for (int i = 0; i < 4; ++i) { SkPoint e0 = corners[i]; SkPoint e1 = corners[(i + 1) % 4]; edgeD[i] = -signed_distance(point, e0, e1); if (!edgeAA[i]) { if (edgeD[i] < -1e-4f) { return 0.f; // Outside of non-AA line } needsNonAA = true; } } // Otherwise inside the shape, so check if any AA edge exerts influence over nonAA if (needsNonAA) { for (int i = 0; i < 4; i++) { if (edgeAA[i] && edgeD[i] < 0.5f) { needsNonAA = false; break; } } } return needsNonAA ? 1.f : area; } // FIXME take into account max coverage properly, static SkScalar get_edge_dist_coverage(const bool edgeAA[4], const SkPoint corners[4], const SkPoint outsetLines[8], const SkPoint insetLines[8], const SkPoint& point) { bool flip = false; // If the quad has been inverted, the original corners will not all be on the negative side of // every outset line. When that happens, calculate coverage using the "inset" lines and flip // the signed distance for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { SkScalar d = signed_distance(corners[i], outsetLines[j * 2], outsetLines[j * 2 + 1]); if (d > 1e-4f) { flip = true; break; } } if (flip) { break; } } const SkPoint* lines = flip ? insetLines : outsetLines; SkScalar minCoverage = 1.f; for (int i = 0; i < 4; ++i) { // Multiply by negative 1 so that outside points have negative distances SkScalar d = (flip ? 1 : -1) * signed_distance(point, lines[i * 2], lines[i * 2 + 1]); if (!edgeAA[i] && d >= -1e-4f) { d = 1.f; } if (d < minCoverage) { minCoverage = d; if (minCoverage < 0.f) { break; // Outside the shape } } } return minCoverage < 0.f ? 0.f : minCoverage; } static bool inside_triangle(const SkPoint& point, const SkPoint& t0, const SkPoint& t1, const SkPoint& t2, SkScalar bary[3]) { // Check sign of t0 to (t1,t2). If it is positive, that means the normals point into the // triangle otherwise the normals point outside the triangle so update edge distances as // necessary bool flip = signed_distance(t0, t1, t2) < 0.f; SkScalar d0 = (flip ? -1 : 1) * signed_distance(point, t0, t1); SkScalar d1 = (flip ? -1 : 1) * signed_distance(point, t1, t2); SkScalar d2 = (flip ? -1 : 1) * signed_distance(point, t2, t0); // Be a little forgiving if (d0 < -1e-4f || d1 < -1e-4f || d2 < -1e-4f) { return false; } // Inside, so calculate barycentric coords from the sideline distances SkScalar d01 = (t0 - t1).length(); SkScalar d12 = (t1 - t2).length(); SkScalar d20 = (t2 - t0).length(); if (SkScalarNearlyZero(d12) || SkScalarNearlyZero(d20) || SkScalarNearlyZero(d01)) { // Empty degenerate triangle return false; } // Coordinates for a vertex use distances to the opposite edge bary[0] = d1 * d12; bary[1] = d2 * d20; bary[2] = d0 * d01; // And normalize SkScalar sum = bary[0] + bary[1] + bary[2]; bary[0] /= sum; bary[1] /= sum; bary[2] /= sum; return true; } static SkScalar get_framed_coverage(const SkPoint outer[4], const SkScalar outerCoverages[4], const SkPoint inner[4], const SkScalar innerCoverages[4], const SkRect& geomDomain, const SkPoint& point) { // Triangles are ordered clock wise. Indices >= 4 refer to inner[i - 4]. Otherwise its outer[i]. static const int kFrameTris[] = { 0, 1, 4, 4, 1, 5, 1, 2, 5, 5, 2, 6, 2, 3, 6, 6, 3, 7, 3, 0, 7, 7, 0, 4, 4, 5, 7, 7, 5, 6 }; static const int kNumTris = 10; SkScalar bary[3]; for (int i = 0; i < kNumTris; ++i) { int i0 = kFrameTris[i * 3]; int i1 = kFrameTris[i * 3 + 1]; int i2 = kFrameTris[i * 3 + 2]; SkPoint t0 = i0 >= 4 ? inner[i0 - 4] : outer[i0]; SkPoint t1 = i1 >= 4 ? inner[i1 - 4] : outer[i1]; SkPoint t2 = i2 >= 4 ? inner[i2 - 4] : outer[i2]; if (inside_triangle(point, t0, t1, t2, bary)) { // Calculate coverage by barycentric interpolation of coverages SkScalar c0 = i0 >= 4 ? innerCoverages[i0 - 4] : outerCoverages[i0]; SkScalar c1 = i1 >= 4 ? innerCoverages[i1 - 4] : outerCoverages[i1]; SkScalar c2 = i2 >= 4 ? innerCoverages[i2 - 4] : outerCoverages[i2]; SkScalar coverage = bary[0] * c0 + bary[1] * c1 + bary[2] * c2; if (coverage < 0.5f) { // Check distances to domain SkScalar l = SkTPin(point.fX - geomDomain.fLeft, 0.f, 1.f); SkScalar t = SkTPin(point.fY - geomDomain.fTop, 0.f, 1.f); SkScalar r = SkTPin(geomDomain.fRight - point.fX, 0.f, 1.f); SkScalar b = SkTPin(geomDomain.fBottom - point.fY, 0.f, 1.f); coverage = std::min(coverage, l * t * r * b); } return coverage; } } // Not inside any triangle return 0.f; } static constexpr SkScalar kViewScale = 100.f; static constexpr SkScalar kViewOffset = 200.f; class DegenerateQuadSample : public Sample { public: DegenerateQuadSample(const SkRect& rect) : fOuterRect(rect) , fCoverageMode(CoverageMode::kArea) { fOuterRect.toQuad(fCorners); for (int i = 0; i < 4; ++i) { fEdgeAA[i] = true; } } void onDrawContent(SkCanvas* canvas) override { static const SkScalar kDotParams[2] = {1.f / kViewScale, 12.f / kViewScale}; sk_sp dots = SkDashPathEffect::Make(kDotParams, 2, 0.f); static const SkScalar kDashParams[2] = {8.f / kViewScale, 12.f / kViewScale}; sk_sp dashes = SkDashPathEffect::Make(kDashParams, 2, 0.f); SkPaint circlePaint; circlePaint.setAntiAlias(true); SkPaint linePaint; linePaint.setAntiAlias(true); linePaint.setStyle(SkPaint::kStroke_Style); linePaint.setStrokeWidth(4.f / kViewScale); linePaint.setStrokeJoin(SkPaint::kRound_Join); linePaint.setStrokeCap(SkPaint::kRound_Cap); canvas->translate(kViewOffset, kViewOffset); canvas->scale(kViewScale, kViewScale); // Draw the outer rectangle as a dotted line linePaint.setPathEffect(dots); canvas->drawRect(fOuterRect, linePaint); bool valid = this->isValid(); if (valid) { SkPoint outsets[8]; SkPoint insets[8]; // Calculate inset and outset lines for edge-distance visualization for (int i = 0; i < 4; ++i) { make_aa_line(fCorners[i], fCorners[(i + 1) % 4], fEdgeAA[i], true, outsets + i * 2); make_aa_line(fCorners[i], fCorners[(i + 1) % 4], fEdgeAA[i], false, insets + i * 2); } // Calculate inner and outer meshes for GPU visualization SkPoint gpuOutset[4]; SkScalar gpuOutsetCoverage[4]; SkPoint gpuInset[4]; SkScalar gpuInsetCoverage[4]; SkRect gpuDomain; this->getTessellatedPoints(gpuInset, gpuInsetCoverage, gpuOutset, gpuOutsetCoverage, &gpuDomain); // Visualize the coverage values across the clamping rectangle, but test pixels outside // of the "outer" rect since some quad edges can be outset extra far. SkPaint pixelPaint; pixelPaint.setAntiAlias(true); SkRect covRect = fOuterRect.makeOutset(2.f, 2.f); for (SkScalar py = covRect.fTop; py < covRect.fBottom; py += 1.f) { for (SkScalar px = covRect.fLeft; px < covRect.fRight; px += 1.f) { // px and py are the top-left corner of the current pixel, so get center's // coordinate SkPoint pixelCenter = {px + 0.5f, py + 0.5f}; SkScalar coverage; if (fCoverageMode == CoverageMode::kArea) { coverage = get_area_coverage(fEdgeAA, fCorners, pixelCenter); } else if (fCoverageMode == CoverageMode::kEdgeDistance) { coverage = get_edge_dist_coverage(fEdgeAA, fCorners, outsets, insets, pixelCenter); } else { SkASSERT(fCoverageMode == CoverageMode::kGPUMesh); coverage = get_framed_coverage(gpuOutset, gpuOutsetCoverage, gpuInset, gpuInsetCoverage, gpuDomain, pixelCenter); } SkRect pixelRect = SkRect::MakeXYWH(px, py, 1.f, 1.f); pixelRect.inset(0.1f, 0.1f); SkScalar a = 1.f - 0.5f * coverage; pixelPaint.setColor4f({a, a, a, 1.f}, nullptr); canvas->drawRect(pixelRect, pixelPaint); pixelPaint.setColor(coverage > 0.f ? SK_ColorGREEN : SK_ColorRED); pixelRect.inset(0.38f, 0.38f); canvas->drawRect(pixelRect, pixelPaint); } } linePaint.setPathEffect(dashes); // Draw the inset/outset "infinite" lines if (fCoverageMode == CoverageMode::kEdgeDistance) { for (int i = 0; i < 4; ++i) { if (fEdgeAA[i]) { linePaint.setColor(SK_ColorBLUE); draw_extended_line(canvas, linePaint, outsets[i * 2], outsets[i * 2 + 1]); linePaint.setColor(SK_ColorGREEN); draw_extended_line(canvas, linePaint, insets[i * 2], insets[i * 2 + 1]); } else { // Both outset and inset are the same line, so only draw one in cyan linePaint.setColor(SK_ColorCYAN); draw_extended_line(canvas, linePaint, outsets[i * 2], outsets[i * 2 + 1]); } } } linePaint.setPathEffect(nullptr); // What is tessellated using GrQuadPerEdgeAA if (fCoverageMode == CoverageMode::kGPUMesh) { SkPath outsetPath; outsetPath.addPoly(gpuOutset, 4, true); linePaint.setColor(SK_ColorBLUE); canvas->drawPath(outsetPath, linePaint); SkPath insetPath; insetPath.addPoly(gpuInset, 4, true); linePaint.setColor(SK_ColorGREEN); canvas->drawPath(insetPath, linePaint); SkPaint domainPaint = linePaint; domainPaint.setStrokeWidth(2.f / kViewScale); domainPaint.setPathEffect(dashes); domainPaint.setColor(SK_ColorMAGENTA); canvas->drawRect(gpuDomain, domainPaint); } // Draw the edges of the true quad as a solid line SkPath path; path.addPoly(fCorners, 4, true); linePaint.setColor(SK_ColorBLACK); canvas->drawPath(path, linePaint); } else { // Draw the edges of the true quad as a solid *red* line SkPath path; path.addPoly(fCorners, 4, true); linePaint.setColor(SK_ColorRED); linePaint.setPathEffect(nullptr); canvas->drawPath(path, linePaint); } // Draw the four clickable corners as circles circlePaint.setColor(valid ? SK_ColorBLACK : SK_ColorRED); for (int i = 0; i < 4; ++i) { canvas->drawCircle(fCorners[i], 5.f / kViewScale, circlePaint); } } Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override; bool onClick(Sample::Click*) override; bool onChar(SkUnichar) override; SkString name() override { return SkString("DegenerateQuad"); } private: class Click; enum class CoverageMode { kArea, kEdgeDistance, kGPUMesh }; const SkRect fOuterRect; SkPoint fCorners[4]; // TL, TR, BR, BL bool fEdgeAA[4]; // T, R, B, L CoverageMode fCoverageMode; bool isValid() const { SkPath path; path.addPoly(fCorners, 4, true); return path.isConvex(); } void getTessellatedPoints(SkPoint inset[4], SkScalar insetCoverage[4], SkPoint outset[4], SkScalar outsetCoverage[4], SkRect* domain) const { // Fixed vertex spec for extracting the picture frame geometry static const GrQuadPerEdgeAA::VertexSpec kSpec = {GrQuad::Type::kGeneral, GrQuadPerEdgeAA::ColorType::kNone, GrQuad::Type::kAxisAligned, false, GrQuadPerEdgeAA::Subset::kNo, GrAAType::kCoverage, false, GrQuadPerEdgeAA::IndexBufferOption::kPictureFramed}; static const GrQuad kIgnored(SkRect::MakeEmpty()); GrQuadAAFlags flags = GrQuadAAFlags::kNone; flags |= fEdgeAA[0] ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone; flags |= fEdgeAA[1] ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone; flags |= fEdgeAA[2] ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone; flags |= fEdgeAA[3] ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone; GrQuad quad = GrQuad::MakeFromSkQuad(fCorners, SkMatrix::I()); float vertices[56]; // 2 quads, with x, y, coverage, and geometry domain (7 floats x 8 vert) GrQuadPerEdgeAA::Tessellator tessellator(kSpec, (char*) vertices); tessellator.append(&quad, nullptr, {1.f, 1.f, 1.f, 1.f}, SkRect::MakeEmpty(), flags); // The first quad in vertices is the inset, then the outset, but they // are ordered TL, BL, TR, BR so un-interleave coverage and re-arrange inset[0] = {vertices[0], vertices[1]}; // TL insetCoverage[0] = vertices[2]; inset[3] = {vertices[7], vertices[8]}; // BL insetCoverage[3] = vertices[9]; inset[1] = {vertices[14], vertices[15]}; // TR insetCoverage[1] = vertices[16]; inset[2] = {vertices[21], vertices[22]}; // BR insetCoverage[2] = vertices[23]; outset[0] = {vertices[28], vertices[29]}; // TL outsetCoverage[0] = vertices[30]; outset[3] = {vertices[35], vertices[36]}; // BL outsetCoverage[3] = vertices[37]; outset[1] = {vertices[42], vertices[43]}; // TR outsetCoverage[1] = vertices[44]; outset[2] = {vertices[49], vertices[50]}; // BR outsetCoverage[2] = vertices[51]; *domain = {vertices[52], vertices[53], vertices[54], vertices[55]}; } using INHERITED = Sample; }; class DegenerateQuadSample::Click : public Sample::Click { public: Click(const SkRect& clamp, int index) : fOuterRect(clamp) , fIndex(index) {} void doClick(SkPoint points[4]) { if (fIndex >= 0) { this->drag(&points[fIndex]); } else { for (int i = 0; i < 4; ++i) { this->drag(&points[i]); } } } private: SkRect fOuterRect; int fIndex; void drag(SkPoint* point) { SkPoint delta = fCurr - fPrev; *point += SkPoint::Make(delta.x() / kViewScale, delta.y() / kViewScale); point->fX = std::min(fOuterRect.fRight, std::max(point->fX, fOuterRect.fLeft)); point->fY = std::min(fOuterRect.fBottom, std::max(point->fY, fOuterRect.fTop)); } }; Sample::Click* DegenerateQuadSample::onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) { SkPoint inCTM = SkPoint::Make((x - kViewOffset) / kViewScale, (y - kViewOffset) / kViewScale); for (int i = 0; i < 4; ++i) { if ((fCorners[i] - inCTM).length() < 10.f / kViewScale) { return new Click(fOuterRect, i); } } return new Click(fOuterRect, -1); } bool DegenerateQuadSample::onClick(Sample::Click* click) { Click* myClick = (Click*) click; myClick->doClick(fCorners); return true; } bool DegenerateQuadSample::onChar(SkUnichar code) { switch(code) { case '1': fEdgeAA[0] = !fEdgeAA[0]; return true; case '2': fEdgeAA[1] = !fEdgeAA[1]; return true; case '3': fEdgeAA[2] = !fEdgeAA[2]; return true; case '4': fEdgeAA[3] = !fEdgeAA[3]; return true; case 'q': fCoverageMode = CoverageMode::kArea; return true; case 'w': fCoverageMode = CoverageMode::kEdgeDistance; return true; case 'e': fCoverageMode = CoverageMode::kGPUMesh; return true; } return false; } DEF_SAMPLE(return new DegenerateQuadSample(SkRect::MakeWH(4.f, 4.f));)