/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkEdge.h" #include "include/private/SkTo.h" #include "src/core/SkFDot6.h" #include "src/core/SkMathPriv.h" #include /* In setLine, setQuadratic, setCubic, the first thing we do is to convert the points into FDot6. This is modulated by the shift parameter, which will either be 0, or something like 2 for antialiasing. In the float case, we want to turn the float into .6 by saying pt * 64, or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). */ static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw // away data in value, so just perform a modify up-shift return SkLeftShift(value, 16 - 6 - 1); } ///////////////////////////////////////////////////////////////////////// int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, int shift) { SkFDot6 x0, y0, x1, y1; { #ifdef SK_RASTERIZE_EVEN_ROUNDING x0 = SkScalarRoundToFDot6(p0.fX, shift); y0 = SkScalarRoundToFDot6(p0.fY, shift); x1 = SkScalarRoundToFDot6(p1.fX, shift); y1 = SkScalarRoundToFDot6(p1.fY, shift); #else float scale = float(1 << (shift + 6)); x0 = int(p0.fX * scale); y0 = int(p0.fY * scale); x1 = int(p1.fX * scale); y1 = int(p1.fY * scale); #endif } int winding = 1; if (y0 > y1) { using std::swap; swap(x0, x1); swap(y0, y1); winding = -1; } int top = SkFDot6Round(y0); int bot = SkFDot6Round(y1); // are we a zero-height line? if (top == bot) { return 0; } // are we completely above or below the clip? if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { return 0; } SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); const SkFDot6 dy = SkEdge_Compute_DY(top, y0); fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 fDX = slope; fFirstY = top; fLastY = bot - 1; fCurveCount = 0; fWinding = SkToS8(winding); fCurveShift = 0; if (clip) { this->chopLineWithClip(*clip); } return 1; } // called from a curve subclass int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) { SkASSERT(fWinding == 1 || fWinding == -1); SkASSERT(fCurveCount != 0); // SkASSERT(fCurveShift != 0); y0 >>= 10; y1 >>= 10; SkASSERT(y0 <= y1); int top = SkFDot6Round(y0); int bot = SkFDot6Round(y1); // SkASSERT(top >= fFirstY); // are we a zero-height line? if (top == bot) return 0; x0 >>= 10; x1 >>= 10; SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); const SkFDot6 dy = SkEdge_Compute_DY(top, y0); fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 fDX = slope; fFirstY = top; fLastY = bot - 1; return 1; } void SkEdge::chopLineWithClip(const SkIRect& clip) { int top = fFirstY; SkASSERT(top < clip.fBottom); // clip the line to the top if (top < clip.fTop) { SkASSERT(fLastY >= clip.fTop); fX += fDX * (clip.fTop - top); fFirstY = clip.fTop; } } /////////////////////////////////////////////////////////////////////////////// /* We store 1< dy) dx += dy >> 1; else dx = dy + (dx >> 1); return dx; } static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2) { // cheap calc of distance from center of p0-p2 to the center of the curve SkFDot6 dist = cheap_distance(dx, dy); // shift down dist (it is currently in dot6) // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) // this is chosen by heuristic: make it as big as possible (to minimize segments) // ... but small enough so that our curves still look smooth // When shift > 0, we're using AA and everything is scaled up so we can // lower the accuracy. dist = (dist + (1 << 4)) >> (3 + shiftAA); // each subdivision (shift value) cuts this dist (error) by 1/4 return (32 - SkCLZ(dist)) >> 1; } bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { SkFDot6 x0, y0, x1, y1, x2, y2; { #ifdef SK_RASTERIZE_EVEN_ROUNDING x0 = SkScalarRoundToFDot6(pts[0].fX, shift); y0 = SkScalarRoundToFDot6(pts[0].fY, shift); x1 = SkScalarRoundToFDot6(pts[1].fX, shift); y1 = SkScalarRoundToFDot6(pts[1].fY, shift); x2 = SkScalarRoundToFDot6(pts[2].fX, shift); y2 = SkScalarRoundToFDot6(pts[2].fY, shift); #else float scale = float(1 << (shift + 6)); x0 = int(pts[0].fX * scale); y0 = int(pts[0].fY * scale); x1 = int(pts[1].fX * scale); y1 = int(pts[1].fY * scale); x2 = int(pts[2].fX * scale); y2 = int(pts[2].fY * scale); #endif } int winding = 1; if (y0 > y2) { using std::swap; swap(x0, x2); swap(y0, y2); winding = -1; } SkASSERT(y0 <= y1 && y1 <= y2); int top = SkFDot6Round(y0); int bot = SkFDot6Round(y2); // are we a zero-height quad (line)? if (top == bot) return 0; // compute number of steps needed (1 << shift) { SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; // This is a little confusing: // before this line, shift is the scale up factor for AA; // after this line, shift is the fCurveShift. shift = diff_to_shift(dx, dy, shift); SkASSERT(shift >= 0); } // need at least 1 subdivision for our bias trick if (shift == 0) { shift = 1; } else if (shift > MAX_COEFF_SHIFT) { shift = MAX_COEFF_SHIFT; } fWinding = SkToS8(winding); //fCubicDShift only set for cubics fCurveCount = SkToS8(1 << shift); /* * We want to reformulate into polynomial form, to make it clear how we * should forward-difference. * * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C * * A = p0 - 2p1 + p2 * B = 2(p1 - p0) * C = p0 * * Our caller must have constrained our inputs (p0..p2) to all fit into * 16.16. However, as seen above, we sometimes compute values that can be * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store * A and B at 1/2 of their actual value, and just apply a 2x scale during * application in updateQuadratic(). Hence we store (shift - 1) in * fCurveShift. */ fCurveShift = SkToU8(shift - 1); SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value fQx = SkFDot6ToFixed(x0); fQDx = B + (A >> shift); // biased by shift fQDDx = A >> (shift - 1); // biased by shift A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value fQy = SkFDot6ToFixed(y0); fQDy = B + (A >> shift); // biased by shift fQDDy = A >> (shift - 1); // biased by shift fQLastX = SkFDot6ToFixed(x2); fQLastY = SkFDot6ToFixed(y2); return true; } int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) { if (!setQuadraticWithoutUpdate(pts, shift)) { return 0; } return this->updateQuadratic(); } int SkQuadraticEdge::updateQuadratic() { int success; int count = fCurveCount; SkFixed oldx = fQx; SkFixed oldy = fQy; SkFixed dx = fQDx; SkFixed dy = fQDy; SkFixed newx, newy; int shift = fCurveShift; SkASSERT(count > 0); do { if (--count > 0) { newx = oldx + (dx >> shift); dx += fQDDx; newy = oldy + (dy >> shift); dy += fQDDy; } else // last segment { newx = fQLastX; newy = fQLastY; } success = this->updateLine(oldx, oldy, newx, newy); oldx = newx; oldy = newy; } while (count > 0 && !success); fQx = newx; fQy = newy; fQDx = dx; fQDy = dy; fCurveCount = SkToS8(count); return success; } ///////////////////////////////////////////////////////////////////////// static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); return SkLeftShift(x, upShift); } /* f(1/3) = (8a + 12b + 6c + d) / 27 f(2/3) = (a + 6b + 12c + 8d) / 27 f(1/3)-b = (8a - 15b + 6c + d) / 27 f(2/3)-c = (a + 6b - 15c + 8d) / 27 use 16/512 to approximate 1/27 */ static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) { // since our parameters may be negative, we don't use << to avoid ASAN warnings SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; return std::max(SkAbs32(oneThird), SkAbs32(twoThird)); } bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) { SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; { #ifdef SK_RASTERIZE_EVEN_ROUNDING x0 = SkScalarRoundToFDot6(pts[0].fX, shift); y0 = SkScalarRoundToFDot6(pts[0].fY, shift); x1 = SkScalarRoundToFDot6(pts[1].fX, shift); y1 = SkScalarRoundToFDot6(pts[1].fY, shift); x2 = SkScalarRoundToFDot6(pts[2].fX, shift); y2 = SkScalarRoundToFDot6(pts[2].fY, shift); x3 = SkScalarRoundToFDot6(pts[3].fX, shift); y3 = SkScalarRoundToFDot6(pts[3].fY, shift); #else float scale = float(1 << (shift + 6)); x0 = int(pts[0].fX * scale); y0 = int(pts[0].fY * scale); x1 = int(pts[1].fX * scale); y1 = int(pts[1].fY * scale); x2 = int(pts[2].fX * scale); y2 = int(pts[2].fY * scale); x3 = int(pts[3].fX * scale); y3 = int(pts[3].fY * scale); #endif } int winding = 1; if (sortY && y0 > y3) { using std::swap; swap(x0, x3); swap(x1, x2); swap(y0, y3); swap(y1, y2); winding = -1; } int top = SkFDot6Round(y0); int bot = SkFDot6Round(y3); // are we a zero-height cubic (line)? if (sortY && top == bot) return 0; // compute number of steps needed (1 << shift) { // Can't use (center of curve - center of baseline), since center-of-curve // need not be the max delta from the baseline (it could even be coincident) // so we try just looking at the two off-curve points SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); // add 1 (by observation) shift = diff_to_shift(dx, dy) + 1; } // need at least 1 subdivision for our bias trick SkASSERT(shift > 0); if (shift > MAX_COEFF_SHIFT) { shift = MAX_COEFF_SHIFT; } /* Since our in coming data is initially shifted down by 10 (or 8 in antialias). That means the most we can shift up is 8. However, we compute coefficients with a 3*, so the safest upshift is really 6 */ int upShift = 6; // largest safe value int downShift = shift + upShift - 10; if (downShift < 0) { downShift = 0; upShift = 10 - shift; } fWinding = SkToS8(winding); fCurveCount = SkToS8(SkLeftShift(-1, shift)); fCurveShift = SkToU8(shift); fCubicDShift = SkToU8(downShift); SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); fCx = SkFDot6ToFixed(x0); fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift fCDDDx = 3*D >> (shift - 1); // biased by 2*shift B = SkFDot6UpShift(3 * (y1 - y0), upShift); C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); fCy = SkFDot6ToFixed(y0); fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift fCDDDy = 3*D >> (shift - 1); // biased by 2*shift fCLastX = SkFDot6ToFixed(x3); fCLastY = SkFDot6ToFixed(y3); return true; } int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) { if (!this->setCubicWithoutUpdate(pts, shift)) { return 0; } return this->updateCubic(); } int SkCubicEdge::updateCubic() { int success; int count = fCurveCount; SkFixed oldx = fCx; SkFixed oldy = fCy; SkFixed newx, newy; const int ddshift = fCurveShift; const int dshift = fCubicDShift; SkASSERT(count < 0); do { if (++count < 0) { newx = oldx + (fCDx >> dshift); fCDx += fCDDx >> ddshift; fCDDx += fCDDDx; newy = oldy + (fCDy >> dshift); fCDy += fCDDy >> ddshift; fCDDy += fCDDDy; } else // last segment { // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); newx = fCLastX; newy = fCLastY; } // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint // doesn't always achieve that, so we have to explicitly pin it here. if (newy < oldy) { newy = oldy; } success = this->updateLine(oldx, oldy, newx, newy); oldx = newx; oldy = newy; } while (count < 0 && !success); fCx = newx; fCy = newy; fCurveCount = SkToS8(count); return success; }