/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkMatrix.h" #include "include/core/SkPoint3.h" #include "include/private/SkNx.h" #include "include/private/SkTPin.h" #include "include/private/SkVx.h" #include "src/core/SkGeometry.h" #include "src/core/SkPointPriv.h" #include #include static SkVector to_vector(const Sk2s& x) { SkVector vector; x.store(&vector); return vector; } //////////////////////////////////////////////////////////////////////// static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) { SkScalar ab = a - b; SkScalar bc = b - c; if (ab < 0) { bc = -bc; } return ab == 0 || bc < 0; } //////////////////////////////////////////////////////////////////////// static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) { SkASSERT(ratio); if (numer < 0) { numer = -numer; denom = -denom; } if (denom == 0 || numer == 0 || numer >= denom) { return 0; } SkScalar r = numer / denom; if (SkScalarIsNaN(r)) { return 0; } SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r); if (r == 0) { // catch underflow if numer <<<< denom return 0; } *ratio = r; return 1; } // Just returns its argument, but makes it easy to set a break-point to know when // SkFindUnitQuadRoots is going to return 0 (an error). static int return_check_zero(int value) { if (value == 0) { return 0; } return value; } /** From Numerical Recipes in C. Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) x1 = Q / A x2 = C / Q */ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { SkASSERT(roots); if (A == 0) { return return_check_zero(valid_unit_divide(-C, B, roots)); } SkScalar* r = roots; // use doubles so we don't overflow temporarily trying to compute R double dr = (double)B * B - 4 * (double)A * C; if (dr < 0) { return return_check_zero(0); } dr = sqrt(dr); SkScalar R = SkDoubleToScalar(dr); if (!SkScalarIsFinite(R)) { return return_check_zero(0); } SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; r += valid_unit_divide(Q, A, r); r += valid_unit_divide(C, Q, r); if (r - roots == 2) { if (roots[0] > roots[1]) { using std::swap; swap(roots[0], roots[1]); } else if (roots[0] == roots[1]) { // nearly-equal? r -= 1; // skip the double root } } return return_check_zero((int)(r - roots)); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) { SkASSERT(src); SkASSERT(t >= 0 && t <= SK_Scalar1); if (pt) { *pt = SkEvalQuadAt(src, t); } if (tangent) { *tangent = SkEvalQuadTangentAt(src, t); } } SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) { return to_point(SkQuadCoeff(src).eval(t)); } SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) { // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a // zero tangent vector when t is 0 or 1, and the control point is equal // to the end point. In this case, use the quad end points to compute the tangent. if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) { return src[2] - src[0]; } SkASSERT(src); SkASSERT(t >= 0 && t <= SK_Scalar1); Sk2s P0 = from_point(src[0]); Sk2s P1 = from_point(src[1]); Sk2s P2 = from_point(src[2]); Sk2s B = P1 - P0; Sk2s A = P2 - P1 - B; Sk2s T = A * Sk2s(t) + B; return to_vector(T + T); } static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) { return v0 + (v1 - v0) * t; } void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) { SkASSERT(t > 0 && t < SK_Scalar1); Sk2s p0 = from_point(src[0]); Sk2s p1 = from_point(src[1]); Sk2s p2 = from_point(src[2]); Sk2s tt(t); Sk2s p01 = interp(p0, p1, tt); Sk2s p12 = interp(p1, p2, tt); dst[0] = to_point(p0); dst[1] = to_point(p01); dst[2] = to_point(interp(p01, p12, tt)); dst[3] = to_point(p12); dst[4] = to_point(p2); } void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { SkChopQuadAt(src, dst, 0.5f); } float SkMeasureAngleBetweenVectors(SkVector a, SkVector b) { float cosTheta = sk_ieee_float_divide(a.dot(b), sqrtf(a.dot(a) * b.dot(b))); // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0. cosTheta = std::max(std::min(1.f, cosTheta), -1.f); return acosf(cosTheta); } SkVector SkFindBisector(SkVector a, SkVector b) { std::array v; if (a.dot(b) >= 0) { // a,b are within +/-90 degrees apart. v = {a, b}; } else if (a.cross(b) >= 0) { // a,b are >90 degrees apart. Find the bisector of their interior normals instead. (Above 90 // degrees, the original vectors start cancelling each other out which eventually becomes // unstable.) v[0].set(-a.fY, +a.fX); v[1].set(+b.fY, -b.fX); } else { // a,b are <-90 degrees apart. Find the bisector of their interior normals instead. (Below // -90 degrees, the original vectors start cancelling each other out which eventually // becomes unstable.) v[0].set(+a.fY, -a.fX); v[1].set(-b.fY, +b.fX); } // Return "normalize(v[0]) + normalize(v[1])". Sk2f x0_x1, y0_y1; Sk2f::Load2(v.data(), &x0_x1, &y0_y1); Sk2f invLengths = 1.0f / (x0_x1 * x0_x1 + y0_y1 * y0_y1).sqrt(); x0_x1 *= invLengths; y0_y1 *= invLengths; return SkPoint{x0_x1[0] + x0_x1[1], y0_y1[0] + y0_y1[1]}; } float SkFindQuadMidTangent(const SkPoint src[3]) { // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent: // // n dot midtangent = 0 // SkVector tan0 = src[1] - src[0]; SkVector tan1 = src[2] - src[1]; SkVector bisector = SkFindBisector(tan0, -tan1); // The midtangent can be found where (F' dot bisector) = 0: // // 0 = (F'(T) dot bisector) = |2*T 1| * |p0 - 2*p1 + p2| * |bisector.x| // |-2*p0 + 2*p1 | |bisector.y| // // = |2*T 1| * |tan1 - tan0| * |nx| // |2*tan0 | |ny| // // = 2*T * ((tan1 - tan0) dot bisector) + (2*tan0 dot bisector) // // T = (tan0 dot bisector) / ((tan0 - tan1) dot bisector) float T = sk_ieee_float_divide(tan0.dot(bisector), (tan0 - tan1).dot(bisector)); if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=nan will take this branch. T = .5; // The quadratic was a line or near-line. Just chop at .5. } return T; } /** Quad'(t) = At + B, where A = 2(a - 2b + c) B = 2(b - a) Solve for t, only if it fits between 0 < t < 1 */ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) { /* At + B == 0 t = -B / A */ return valid_unit_divide(a - b, a - b - b + c, tValue); } static inline void flatten_double_quad_extrema(SkScalar coords[14]) { coords[2] = coords[6] = coords[4]; } /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is stored in dst[]. Guarantees that the 1/2 quads will be monotonic. */ int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) { SkASSERT(src); SkASSERT(dst); SkScalar a = src[0].fY; SkScalar b = src[1].fY; SkScalar c = src[2].fY; if (is_not_monotonic(a, b, c)) { SkScalar tValue; if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { SkChopQuadAt(src, dst, tValue); flatten_double_quad_extrema(&dst[0].fY); return 1; } // if we get here, we need to force dst to be monotonic, even though // we couldn't compute a unit_divide value (probably underflow). b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; } dst[0].set(src[0].fX, a); dst[1].set(src[1].fX, b); dst[2].set(src[2].fX, c); return 0; } /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is stored in dst[]. Guarantees that the 1/2 quads will be monotonic. */ int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) { SkASSERT(src); SkASSERT(dst); SkScalar a = src[0].fX; SkScalar b = src[1].fX; SkScalar c = src[2].fX; if (is_not_monotonic(a, b, c)) { SkScalar tValue; if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { SkChopQuadAt(src, dst, tValue); flatten_double_quad_extrema(&dst[0].fX); return 1; } // if we get here, we need to force dst to be monotonic, even though // we couldn't compute a unit_divide value (probably underflow). b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; } dst[0].set(a, src[0].fY); dst[1].set(b, src[1].fY); dst[2].set(c, src[2].fY); return 0; } // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t // F''(t) = 2 (a - 2b + c) // // A = 2 (b - a) // B = 2 (a - 2b + c) // // Maximum curvature for a quadratic means solving // Fx' Fx'' + Fy' Fy'' = 0 // // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) // SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) { SkScalar Ax = src[1].fX - src[0].fX; SkScalar Ay = src[1].fY - src[0].fY; SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; SkScalar numer = -(Ax * Bx + Ay * By); SkScalar denom = Bx * Bx + By * By; if (denom < 0) { numer = -numer; denom = -denom; } if (numer <= 0) { return 0; } if (numer >= denom) { // Also catches denom=0. return 1; } SkScalar t = numer / denom; SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t)); return t; } int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) { SkScalar t = SkFindQuadMaxCurvature(src); if (t > 0 && t < 1) { SkChopQuadAt(src, dst, t); return 2; } else { memcpy(dst, src, 3 * sizeof(SkPoint)); return 1; } } void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { Sk2s scale(SkDoubleToScalar(2.0 / 3.0)); Sk2s s0 = from_point(src[0]); Sk2s s1 = from_point(src[1]); Sk2s s2 = from_point(src[2]); dst[0] = to_point(s0); dst[1] = to_point(s0 + (s1 - s0) * scale); dst[2] = to_point(s2 + (s1 - s2) * scale); dst[3] = to_point(s2); } ////////////////////////////////////////////////////////////////////////////// ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// ////////////////////////////////////////////////////////////////////////////// static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) { SkQuadCoeff coeff; Sk2s P0 = from_point(src[0]); Sk2s P1 = from_point(src[1]); Sk2s P2 = from_point(src[2]); Sk2s P3 = from_point(src[3]); coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0; coeff.fB = times_2(P2 - times_2(P1) + P0); coeff.fC = P1 - P0; return to_vector(coeff.eval(t)); } static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) { Sk2s P0 = from_point(src[0]); Sk2s P1 = from_point(src[1]); Sk2s P2 = from_point(src[2]); Sk2s P3 = from_point(src[3]); Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0; Sk2s B = P2 - times_2(P1) + P0; return to_vector(A * Sk2s(t) + B); } void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature) { SkASSERT(src); SkASSERT(t >= 0 && t <= SK_Scalar1); if (loc) { *loc = to_point(SkCubicCoeff(src).eval(t)); } if (tangent) { // The derivative equation returns a zero tangent vector when t is 0 or 1, and the // adjacent control point is equal to the end point. In this case, use the // next control point or the end points to compute the tangent. if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) { if (t == 0) { *tangent = src[2] - src[0]; } else { *tangent = src[3] - src[1]; } if (!tangent->fX && !tangent->fY) { *tangent = src[3] - src[0]; } } else { *tangent = eval_cubic_derivative(src, t); } } if (curvature) { *curvature = eval_cubic_2ndDerivative(src, t); } } /** Cubic'(t) = At^2 + Bt + C, where A = 3(-a + 3(b - c) + d) B = 6(a - 2b + c) C = 3(b - a) Solve for t, keeping only those that fit betwee 0 < t < 1 */ int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]) { // we divide A,B,C by 3 to simplify SkScalar A = d - a + 3*(b - c); SkScalar B = 2*(a - b - b + c); SkScalar C = b - a; return SkFindUnitQuadRoots(A, B, C, tValues); } // This does not return b when t==1, but it otherwise seems to get better precision than // "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points. // The responsibility falls on the caller to check that t != 1 before calling. template inline static skvx::Vec unchecked_mix(const skvx::Vec& a, const skvx::Vec& b, const skvx::Vec& t) { return (b - a)*t + a; } void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { using float2 = skvx::Vec<2,float>; SkASSERT(0 <= t && t <= 1); if (t == 1) { memcpy(dst, src, sizeof(SkPoint) * 4); dst[4] = dst[5] = dst[6] = src[3]; return; } float2 p0 = skvx::bit_pun(src[0]); float2 p1 = skvx::bit_pun(src[1]); float2 p2 = skvx::bit_pun(src[2]); float2 p3 = skvx::bit_pun(src[3]); float2 T = t; float2 ab = unchecked_mix(p0, p1, T); float2 bc = unchecked_mix(p1, p2, T); float2 cd = unchecked_mix(p2, p3, T); float2 abc = unchecked_mix(ab, bc, T); float2 bcd = unchecked_mix(bc, cd, T); float2 abcd = unchecked_mix(abc, bcd, T); dst[0] = skvx::bit_pun(p0); dst[1] = skvx::bit_pun(ab); dst[2] = skvx::bit_pun(abc); dst[3] = skvx::bit_pun(abcd); dst[4] = skvx::bit_pun(bcd); dst[5] = skvx::bit_pun(cd); dst[6] = skvx::bit_pun(p3); } void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1) { using float4 = skvx::Vec<4,float>; using float2 = skvx::Vec<2,float>; SkASSERT(0 <= t0 && t0 <= t1 && t1 <= 1); if (t1 == 1) { SkChopCubicAt(src, dst, t0); dst[7] = dst[8] = dst[9] = src[3]; return; } // Perform both chops in parallel using 4-lane SIMD. float4 p00, p11, p22, p33, T; p00.lo = p00.hi = skvx::bit_pun(src[0]); p11.lo = p11.hi = skvx::bit_pun(src[1]); p22.lo = p22.hi = skvx::bit_pun(src[2]); p33.lo = p33.hi = skvx::bit_pun(src[3]); T.lo = t0; T.hi = t1; float4 ab = unchecked_mix(p00, p11, T); float4 bc = unchecked_mix(p11, p22, T); float4 cd = unchecked_mix(p22, p33, T); float4 abc = unchecked_mix(ab, bc, T); float4 bcd = unchecked_mix(bc, cd, T); float4 abcd = unchecked_mix(abc, bcd, T); float4 middle = unchecked_mix(abc, bcd, skvx::shuffle<2,3,0,1>(T)); dst[0] = skvx::bit_pun(p00.lo); dst[1] = skvx::bit_pun(ab.lo); dst[2] = skvx::bit_pun(abc.lo); dst[3] = skvx::bit_pun(abcd.lo); middle.store(dst + 4); dst[6] = skvx::bit_pun(abcd.hi); dst[7] = skvx::bit_pun(bcd.hi); dst[8] = skvx::bit_pun(cd.hi); dst[9] = skvx::bit_pun(p33.hi); } void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int tCount) { using float2 = skvx::Vec<2,float>; #ifdef SK_DEBUG float lastT = 0; for (int i = 0; i < tCount; i++) { SkASSERT(lastT <= tValues[i] && tValues[i] <= 1); lastT = tValues[i]; } #endif if (dst) { if (tCount == 0) { // nothing to chop memcpy(dst, src, 4*sizeof(SkPoint)); } else { int i = 0; for (; i < tCount - 1; i += 2) { // Do two chops at once. float2 tt = float2::Load(tValues + i); if (i != 0) { float lastT = tValues[i - 1]; tt = skvx::pin((tt - lastT) / (1 - lastT), float2(0), float2(1)); } SkChopCubicAt(src, dst, tt[0], tt[1]); src = dst = dst + 6; } if (i < tCount) { // Chop the final cubic if there was an odd number of chops. SkASSERT(i + 1 == tCount); float t = tValues[i]; if (i != 0) { float lastT = tValues[i - 1]; t = SkTPin(sk_ieee_float_divide(t - lastT, 1 - lastT), 0.f, 1.f); } SkChopCubicAt(src, dst, t); } } } } void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) { SkChopCubicAt(src, dst, 0.5f); } float SkMeasureNonInflectCubicRotation(const SkPoint pts[4]) { SkVector a = pts[1] - pts[0]; SkVector b = pts[2] - pts[1]; SkVector c = pts[3] - pts[2]; if (a.isZero()) { return SkMeasureAngleBetweenVectors(b, c); } if (b.isZero()) { return SkMeasureAngleBetweenVectors(a, c); } if (c.isZero()) { return SkMeasureAngleBetweenVectors(a, b); } // Postulate: When no points are colocated and there are no inflection points in T=0..1, the // rotation is: 360 degrees, minus the angle [p0,p1,p2], minus the angle [p1,p2,p3]. return 2*SK_ScalarPI - SkMeasureAngleBetweenVectors(a,-b) - SkMeasureAngleBetweenVectors(b,-c); } static Sk4f fma(const Sk4f& f, float m, const Sk4f& a) { return SkNx_fma(f, Sk4f(m), a); } // Finds the root nearest 0.5. Returns 0.5 if the roots are undefined or outside 0..1. static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr) { // Quadratic formula from Numerical Recipes in C: float q = -.5f * (b + copysignf(sqrtf(discr), b)); // The roots are q/a and c/q. Pick the midtangent closer to T=.5. float _5qa = -.5f*q*a; float T = fabsf(q*q + _5qa) < fabsf(a*c + _5qa) ? sk_ieee_float_divide(q,a) : sk_ieee_float_divide(c,q); if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch. // Either the curve is a flat line with no rotation or FP precision failed us. Chop at .5. T = .5; } return T; } static float solve_quadratic_equation_for_midtangent(float a, float b, float c) { return solve_quadratic_equation_for_midtangent(a, b, c, b*b - 4*a*c); } float SkFindCubicMidTangent(const SkPoint src[4]) { // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent: // // bisector dot midtangent == 0 // SkVector tan0 = (src[0] == src[1]) ? src[2] - src[0] : src[1] - src[0]; SkVector tan1 = (src[2] == src[3]) ? src[3] - src[1] : src[3] - src[2]; SkVector bisector = SkFindBisector(tan0, -tan1); // Find the T value at the midtangent. This is a simple quadratic equation: // // midtangent dot bisector == 0, or using a tangent matrix C' in power basis form: // // |C'x C'y| // |T^2 T 1| * |. . | * |bisector.x| == 0 // |. . | |bisector.y| // // The coeffs for the quadratic equation we need to solve are therefore: C' * bisector static const Sk4f kM[4] = {Sk4f(-1, 2, -1, 0), Sk4f( 3, -4, 1, 0), Sk4f(-3, 2, 0, 0)}; Sk4f C_x = fma(kM[0], src[0].fX, fma(kM[1], src[1].fX, fma(kM[2], src[2].fX, Sk4f(src[3].fX, 0,0,0)))); Sk4f C_y = fma(kM[0], src[0].fY, fma(kM[1], src[1].fY, fma(kM[2], src[2].fY, Sk4f(src[3].fY, 0,0,0)))); Sk4f coeffs = C_x * bisector.x() + C_y * bisector.y(); // Now solve the quadratic for T. float T = 0; float a=coeffs[0], b=coeffs[1], c=coeffs[2]; float discr = b*b - 4*a*c; if (discr > 0) { // This will only be false if the curve is a line. return solve_quadratic_equation_for_midtangent(a, b, c, discr); } else { // This is a 0- or 360-degree flat line. It doesn't have single points of midtangent. // (tangent == midtangent at every point on the curve except the cusp points.) // Chop in between both cusps instead, if any. There can be up to two cusps on a flat line, // both where the tangent is perpendicular to the starting tangent: // // tangent dot tan0 == 0 // coeffs = C_x * tan0.x() + C_y * tan0.y(); a = coeffs[0]; b = coeffs[1]; if (a != 0) { // We want the point in between both cusps. The midpoint of: // // (-b +/- sqrt(b^2 - 4*a*c)) / (2*a) // // Is equal to: // // -b / (2*a) T = -b / (2*a); } if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch. // Either the curve is a flat line with no rotation or FP precision failed us. Chop at // .5. T = .5; } return T; } } static void flatten_double_cubic_extrema(SkScalar coords[14]) { coords[4] = coords[8] = coords[6]; } /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that the resulting beziers are monotonic in Y. This is called by the scan converter. Depending on what is returned, dst[] is treated as follows: 0 dst[0..3] is the original cubic 1 dst[0..3] and dst[3..6] are the two new cubics 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics If dst == null, it is ignored and only the count is returned. */ int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) { SkScalar tValues[2]; int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues); SkChopCubicAt(src, dst, tValues, roots); if (dst && roots > 0) { // we do some cleanup to ensure our Y extrema are flat flatten_double_cubic_extrema(&dst[0].fY); if (roots == 2) { flatten_double_cubic_extrema(&dst[3].fY); } } return roots; } int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) { SkScalar tValues[2]; int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, src[3].fX, tValues); SkChopCubicAt(src, dst, tValues, roots); if (dst && roots > 0) { // we do some cleanup to ensure our Y extrema are flat flatten_double_cubic_extrema(&dst[0].fX); if (roots == 2) { flatten_double_cubic_extrema(&dst[3].fX); } } return roots; } /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html Inflection means that curvature is zero. Curvature is [F' x F''] / [F'^3] So we solve F'x X F''y - F'y X F''y == 0 After some canceling of the cubic term, we get A = b - a B = c - 2b + a C = d - 3c + 3b - a (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 */ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) { SkScalar Ax = src[1].fX - src[0].fX; SkScalar Ay = src[1].fY - src[0].fY; SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues); } int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) { SkScalar tValues[2]; int count = SkFindCubicInflections(src, tValues); if (dst) { if (count == 0) { memcpy(dst, src, 4 * sizeof(SkPoint)); } else { SkChopCubicAt(src, dst, tValues, count); } } return count + 1; } // Assumes the third component of points is 1. // Calcs p0 . (p1 x p2) static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY); const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX); const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX; return (xComp + yComp + wComp); } // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2). // Returns 2^1023 if abs(n) < 2^-1022 (including 0). // Returns NaN if n is Inf or NaN. inline static double previous_inverse_pow2(double n) { uint64_t bits; memcpy(&bits, &n, sizeof(double)); bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0 memcpy(&n, &bits, sizeof(double)); return n; } inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1, double* t, double* s) { t[0] = t0; s[0] = s0; // This copysign/abs business orients the implicit function so positive values are always on the // "left" side of the curve. t[1] = -copysign(t1, t1 * s1); s[1] = -fabs(s1); // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above). if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) { using std::swap; swap(t[0], t[1]); swap(s[0], s[1]); } } SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) { // Find the cubic's inflection function, I = [T^3 -3T^2 3T -1] dot D. (D0 will always be 0 // for integral cubics.) // // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", // 4.2 Curve Categorization: // // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]); double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]); double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]); double D3 = 3 * A3; double D2 = D3 - A2; double D1 = D2 - A2 + A1; // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us // from overflow down the road while solving for roots and KLM functionals. double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3)); double norm = previous_inverse_pow2(Dmax); D1 *= norm; D2 *= norm; D3 *= norm; if (d) { d[3] = D3; d[2] = D2; d[1] = D1; d[0] = 0; } // Now use the inflection function to classify the cubic. // // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", // 4.4 Integral Cubics: // // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf if (0 != D1) { double discr = 3*D2*D2 - 4*D1*D3; if (discr > 0) { // Serpentine. if (t && s) { double q = 3*D2 + copysign(sqrt(3*discr), D2); write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s); } return SkCubicType::kSerpentine; } else if (discr < 0) { // Loop. if (t && s) { double q = D2 + copysign(sqrt(-discr), D2); write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s); } return SkCubicType::kLoop; } else { // Cusp. if (t && s) { write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s); } return SkCubicType::kLocalCusp; } } else { if (0 != D2) { // Cusp at T=infinity. if (t && s) { write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity. } return SkCubicType::kCuspAtInfinity; } else { // Degenerate. if (t && s) { write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity. } return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint; } } } template void bubble_sort(T array[], int count) { for (int i = count - 1; i > 0; --i) for (int j = i; j > 0; --j) if (array[j] < array[j-1]) { T tmp(array[j]); array[j] = array[j-1]; array[j-1] = tmp; } } /** * Given an array and count, remove all pair-wise duplicates from the array, * keeping the existing sorting, and return the new count */ static int collaps_duplicates(SkScalar array[], int count) { for (int n = count; n > 1; --n) { if (array[0] == array[1]) { for (int i = 1; i < n; ++i) { array[i - 1] = array[i]; } count -= 1; } else { array += 1; } } return count; } #ifdef SK_DEBUG #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array) static void test_collaps_duplicates() { static bool gOnce; if (gOnce) { return; } gOnce = true; const SkScalar src0[] = { 0 }; const SkScalar src1[] = { 0, 0 }; const SkScalar src2[] = { 0, 1 }; const SkScalar src3[] = { 0, 0, 0 }; const SkScalar src4[] = { 0, 0, 1 }; const SkScalar src5[] = { 0, 1, 1 }; const SkScalar src6[] = { 0, 1, 2 }; const struct { const SkScalar* fData; int fCount; int fCollapsedCount; } data[] = { { TEST_COLLAPS_ENTRY(src0), 1 }, { TEST_COLLAPS_ENTRY(src1), 1 }, { TEST_COLLAPS_ENTRY(src2), 2 }, { TEST_COLLAPS_ENTRY(src3), 1 }, { TEST_COLLAPS_ENTRY(src4), 2 }, { TEST_COLLAPS_ENTRY(src5), 2 }, { TEST_COLLAPS_ENTRY(src6), 3 }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { SkScalar dst[3]; memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0])); int count = collaps_duplicates(dst, data[i].fCount); SkASSERT(data[i].fCollapsedCount == count); for (int j = 1; j < count; ++j) { SkASSERT(dst[j-1] < dst[j]); } } } #endif static SkScalar SkScalarCubeRoot(SkScalar x) { return SkScalarPow(x, 0.3333333f); } /* Solve coeff(t) == 0, returning the number of roots that lie withing 0 < t < 1. coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] Eliminates repeated roots (so that all tValues are distinct, and are always in increasing order. */ static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) { if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); } SkScalar a, b, c, Q, R; { SkASSERT(coeff[0] != 0); SkScalar inva = SkScalarInvert(coeff[0]); a = coeff[1] * inva; b = coeff[2] * inva; c = coeff[3] * inva; } Q = (a*a - b*3) / 9; R = (2*a*a*a - 9*a*b + 27*c) / 54; SkScalar Q3 = Q * Q * Q; SkScalar R2MinusQ3 = R * R - Q3; SkScalar adiv3 = a / 3; if (R2MinusQ3 < 0) { // we have 3 real roots // the divide/root can, due to finite precisions, be slightly outside of -1...1 SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f)); SkScalar neg2RootQ = -2 * SkScalarSqrt(Q); tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f); tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f); tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f); SkDEBUGCODE(test_collaps_duplicates();) // now sort the roots bubble_sort(tValues, 3); return collaps_duplicates(tValues, 3); } else { // we have 1 real root SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3); A = SkScalarCubeRoot(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f); return 1; } } /* Looking for F' dot F'' == 0 A = b - a B = c - 2b + a C = d - 3c + 3b - a F' = 3Ct^2 + 6Bt + 3A F'' = 6Ct + 6B F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB */ static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) { SkScalar a = src[2] - src[0]; SkScalar b = src[4] - 2 * src[2] + src[0]; SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; coeff[0] = c * c; coeff[1] = 3 * b * c; coeff[2] = 2 * b * b + c * a; coeff[3] = a * b; } /* Looking for F' dot F'' == 0 A = b - a B = c - 2b + a C = d - 3c + 3b - a F' = 3Ct^2 + 6Bt + 3A F'' = 6Ct + 6B F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB */ int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) { SkScalar coeffX[4], coeffY[4]; int i; formulate_F1DotF2(&src[0].fX, coeffX); formulate_F1DotF2(&src[0].fY, coeffY); for (i = 0; i < 4; i++) { coeffX[i] += coeffY[i]; } int numRoots = solve_cubic_poly(coeffX, tValues); // now remove extrema where the curvature is zero (mins) // !!!! need a test for this !!!! return numRoots; } int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3]) { SkScalar t_storage[3]; if (tValues == nullptr) { tValues = t_storage; } SkScalar roots[3]; int rootCount = SkFindCubicMaxCurvature(src, roots); // Throw out values not inside 0..1. int count = 0; for (int i = 0; i < rootCount; ++i) { if (0 < roots[i] && roots[i] < 1) { tValues[count++] = roots[i]; } } if (dst) { if (count == 0) { memcpy(dst, src, 4 * sizeof(SkPoint)); } else { SkChopCubicAt(src, dst, tValues, count); } } return count + 1; } // Returns a constant proportional to the dimensions of the cubic. // Constant found through experimentation -- maybe there's a better way.... static SkScalar calc_cubic_precision(const SkPoint src[4]) { return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1]) + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f; } // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined // by the line segment src[lineIndex], src[lineIndex+1]. static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) { SkPoint origin = src[lineIndex]; SkVector line = src[lineIndex + 1] - origin; SkScalar crosses[2]; for (int index = 0; index < 2; ++index) { SkVector testLine = src[testIndex + index] - origin; crosses[index] = line.cross(testLine); } return crosses[0] * crosses[1] >= 0; } // Return location (in t) of cubic cusp, if there is one. // Note that classify cubic code does not reliably return all cusp'd cubics, so // it is not called here. SkScalar SkFindCubicCusp(const SkPoint src[4]) { // When the adjacent control point matches the end point, it behaves as if // the cubic has a cusp: there's a point of max curvature where the derivative // goes to zero. Ideally, this would be where t is zero or one, but math // error makes not so. It is not uncommon to create cubics this way; skip them. if (src[0] == src[1]) { return -1; } if (src[2] == src[3]) { return -1; } // Cubics only have a cusp if the line segments formed by the control and end points cross. // Detect crossing if line ends are on opposite sides of plane formed by the other line. if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) { return -1; } // Cubics may have multiple points of maximum curvature, although at most only // one is a cusp. SkScalar maxCurvature[3]; int roots = SkFindCubicMaxCurvature(src, maxCurvature); for (int index = 0; index < roots; ++index) { SkScalar testT = maxCurvature[index]; if (0 >= testT || testT >= 1) { // no need to consider max curvature on the end continue; } // A cusp is at the max curvature, and also has a derivative close to zero. // Choose the 'close to zero' meaning by comparing the derivative length // with the overall cubic size. SkVector dPt = eval_cubic_derivative(src, testT); SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt); SkScalar precision = calc_cubic_precision(src); if (dPtMagnitude < precision) { // All three max curvature t values may be close to the cusp; // return the first one. return testT; } } return -1; } #include "src/pathops/SkPathOpsCubic.h" typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const; static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7], InterceptProc method) { SkDCubic cubic; double roots[3]; int count = (cubic.set(src).*method)(intercept, roots); if (count > 0) { SkDCubicPair pair = cubic.chopAt(roots[0]); for (int i = 0; i < 7; ++i) { dst[i] = pair.pts[i].asSkPoint(); } return true; } return false; } bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) { return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect); } bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) { return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect); } /////////////////////////////////////////////////////////////////////////////// // // NURB representation for conics. Helpful explanations at: // // http://citeseerx.ist.psu.edu/viewdoc/ // download?doi=10.1.1.44.5740&rep=rep1&type=ps // and // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html // // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) // ------------------------------------------ // ((1 - t)^2 + t^2 + 2 (1 - t) t w) // // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} // ------------------------------------------------ // {t^2 (2 - 2 w), t (-2 + 2 w), 1} // // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) // // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) // t^0 : -2 P0 w + 2 P1 w // // We disregard magnitude, so we can freely ignore the denominator of F', and // divide the numerator by 2 // // coeff[0] for t^2 // coeff[1] for t^1 // coeff[2] for t^0 // static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) { const SkScalar P20 = src[4] - src[0]; const SkScalar P10 = src[2] - src[0]; const SkScalar wP10 = w * P10; coeff[0] = w * P20 - P20; coeff[1] = P20 - 2 * wP10; coeff[2] = wP10; } static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) { SkScalar coeff[3]; conic_deriv_coeff(src, w, coeff); SkScalar tValues[2]; int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues); SkASSERT(0 == roots || 1 == roots); if (1 == roots) { *t = tValues[0]; return true; } return false; } // We only interpolate one dimension at a time (the first, at +0, +3, +6). static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) { SkScalar ab = SkScalarInterp(src[0], src[3], t); SkScalar bc = SkScalarInterp(src[3], src[6], t); dst[0] = ab; dst[3] = SkScalarInterp(ab, bc, t); dst[6] = bc; } static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) { dst[0].set(src[0].fX * 1, src[0].fY * 1, 1); dst[1].set(src[1].fX * w, src[1].fY * w, w); dst[2].set(src[2].fX * 1, src[2].fY * 1, 1); } static SkPoint project_down(const SkPoint3& src) { return {src.fX / src.fZ, src.fY / src.fZ}; } // return false if infinity or NaN is generated; caller must check bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const { SkPoint3 tmp[3], tmp2[3]; ratquad_mapTo3D(fPts, fW, tmp); p3d_interp(&tmp[0].fX, &tmp2[0].fX, t); p3d_interp(&tmp[0].fY, &tmp2[0].fY, t); p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t); dst[0].fPts[0] = fPts[0]; dst[0].fPts[1] = project_down(tmp2[0]); dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2]; dst[1].fPts[1] = project_down(tmp2[2]); dst[1].fPts[2] = fPts[2]; // to put in "standard form", where w0 and w2 are both 1, we compute the // new w1 as sqrt(w1*w1/w0*w2) // or // w1 /= sqrt(w0*w2) // // However, in our case, we know that for dst[0]: // w0 == 1, and for dst[1], w2 == 1 // SkScalar root = SkScalarSqrt(tmp2[1].fZ); dst[0].fW = tmp2[0].fZ / root; dst[1].fW = tmp2[2].fZ / root; SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7); SkASSERT(0 == offsetof(SkConic, fPts[0].fX)); return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2); } void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const { if (0 == t1 || 1 == t2) { if (0 == t1 && 1 == t2) { *dst = *this; return; } else { SkConic pair[2]; if (this->chopAt(t1 ? t1 : t2, pair)) { *dst = pair[SkToBool(t1)]; return; } } } SkConicCoeff coeff(*this); Sk2s tt1(t1); Sk2s aXY = coeff.fNumer.eval(tt1); Sk2s aZZ = coeff.fDenom.eval(tt1); Sk2s midTT((t1 + t2) / 2); Sk2s dXY = coeff.fNumer.eval(midTT); Sk2s dZZ = coeff.fDenom.eval(midTT); Sk2s tt2(t2); Sk2s cXY = coeff.fNumer.eval(tt2); Sk2s cZZ = coeff.fDenom.eval(tt2); Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f); Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f); dst->fPts[0] = to_point(aXY / aZZ); dst->fPts[1] = to_point(bXY / bZZ); dst->fPts[2] = to_point(cXY / cZZ); Sk2s ww = bZZ / (aZZ * cZZ).sqrt(); dst->fW = ww[0]; } SkPoint SkConic::evalAt(SkScalar t) const { return to_point(SkConicCoeff(*this).eval(t)); } SkVector SkConic::evalTangentAt(SkScalar t) const { // The derivative equation returns a zero tangent vector when t is 0 or 1, // and the control point is equal to the end point. // In this case, use the conic endpoints to compute the tangent. if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) { return fPts[2] - fPts[0]; } Sk2s p0 = from_point(fPts[0]); Sk2s p1 = from_point(fPts[1]); Sk2s p2 = from_point(fPts[2]); Sk2s ww(fW); Sk2s p20 = p2 - p0; Sk2s p10 = p1 - p0; Sk2s C = ww * p10; Sk2s A = ww * p20 - p20; Sk2s B = p20 - C - C; return to_vector(SkQuadCoeff(A, B, C).eval(t)); } void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const { SkASSERT(t >= 0 && t <= SK_Scalar1); if (pt) { *pt = this->evalAt(t); } if (tangent) { *tangent = this->evalTangentAt(t); } } static SkScalar subdivide_w_value(SkScalar w) { return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf); } void SkConic::chop(SkConic * SK_RESTRICT dst) const { Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW)); SkScalar newW = subdivide_w_value(fW); Sk2s p0 = from_point(fPts[0]); Sk2s p1 = from_point(fPts[1]); Sk2s p2 = from_point(fPts[2]); Sk2s ww(fW); Sk2s wp1 = ww * p1; Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f); SkPoint mPt = to_point(m); if (!mPt.isFinite()) { double w_d = fW; double w_2 = w_d * 2; double scale_half = 1 / (1 + w_d) * 0.5; mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half); mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half); } dst[0].fPts[0] = fPts[0]; dst[0].fPts[1] = to_point((p0 + wp1) * scale); dst[0].fPts[2] = dst[1].fPts[0] = mPt; dst[1].fPts[1] = to_point((wp1 + p2) * scale); dst[1].fPts[2] = fPts[2]; dst[0].fW = dst[1].fW = newW; } /* * "High order approximation of conic sections by quadratic splines" * by Michael Floater, 1993 */ #define AS_QUAD_ERROR_SETUP \ SkScalar a = fW - 1; \ SkScalar k = a / (4 * (2 + a)); \ SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \ SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY); void SkConic::computeAsQuadError(SkVector* err) const { AS_QUAD_ERROR_SETUP err->set(x, y); } bool SkConic::asQuadTol(SkScalar tol) const { AS_QUAD_ERROR_SETUP return (x * x + y * y) <= tol * tol; } // Limit the number of suggested quads to approximate a conic #define kMaxConicToQuadPOW2 5 int SkConic::computeQuadPOW2(SkScalar tol) const { if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) { return 0; } AS_QUAD_ERROR_SETUP SkScalar error = SkScalarSqrt(x * x + y * y); int pow2; for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) { if (error <= tol) { break; } error *= 0.25f; } // float version -- using ceil gives the same results as the above. if (false) { SkScalar err = SkScalarSqrt(x * x + y * y); if (err <= tol) { return 0; } SkScalar tol2 = tol * tol; if (tol2 == 0) { return kMaxConicToQuadPOW2; } SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f; int altPow2 = SkScalarCeilToInt(fpow2); if (altPow2 != pow2) { SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol); } pow2 = altPow2; } return pow2; } // This was originally developed and tested for pathops: see SkOpTypes.h // returns true if (a <= b <= c) || (a >= b >= c) static bool between(SkScalar a, SkScalar b, SkScalar c) { return (a - b) * (c - b) <= 0; } static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) { SkASSERT(level >= 0); if (0 == level) { memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint)); return pts + 2; } else { SkConic dst[2]; src.chop(dst); const SkScalar startY = src.fPts[0].fY; SkScalar endY = src.fPts[2].fY; if (between(startY, src.fPts[1].fY, endY)) { // If the input is monotonic and the output is not, the scan converter hangs. // Ensure that the chopped conics maintain their y-order. SkScalar midY = dst[0].fPts[2].fY; if (!between(startY, midY, endY)) { // If the computed midpoint is outside the ends, move it to the closer one. SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY; dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY; } if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) { // If the 1st control is not between the start and end, put it at the start. // This also reduces the quad to a line. dst[0].fPts[1].fY = startY; } if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) { // If the 2nd control is not between the start and end, put it at the end. // This also reduces the quad to a line. dst[1].fPts[1].fY = endY; } // Verify that all five points are in order. SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)); SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY)); SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY)); } --level; pts = subdivide(dst[0], pts, level); return subdivide(dst[1], pts, level); } } int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const { SkASSERT(pow2 >= 0); *pts = fPts[0]; SkDEBUGCODE(SkPoint* endPts); if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ... SkConic dst[2]; this->chop(dst); // check to see if the first chop generates a pair of lines if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) && SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) { pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines pts[4] = dst[1].fPts[2]; pow2 = 1; SkDEBUGCODE(endPts = &pts[5]); goto commonFinitePtCheck; } } SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2); commonFinitePtCheck: const int quadCount = 1 << pow2; const int ptCount = 2 * quadCount + 1; SkASSERT(endPts - pts == ptCount); if (!SkPointPriv::AreFinite(pts, ptCount)) { // if we generated a non-finite, pin ourselves to the middle of the hull, // as our first and last are already on the first/last pts of the hull. for (int i = 1; i < ptCount - 1; ++i) { pts[i] = fPts[1]; } } return 1 << pow2; } float SkConic::findMidTangent() const { // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent: // // bisector dot midtangent = 0 // SkVector tan0 = fPts[1] - fPts[0]; SkVector tan1 = fPts[2] - fPts[1]; SkVector bisector = SkFindBisector(tan0, -tan1); // Start by finding the tangent function's power basis coefficients. These define a tangent // direction (scaled by some uniform value) as: // |T^2| // Tangent_Direction(T) = dx,dy = |A B C| * |T | // |. . .| |1 | // // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary // if we are only interested in a vector in the same *direction* as a given tangent line. Since // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating // the derivative with the standard quotient rule. This leaves us with a simpler quadratic // function that we use to find a tangent. SkVector A = (fPts[2] - fPts[0]) * (fW - 1); SkVector B = (fPts[2] - fPts[0]) - (fPts[1] - fPts[0]) * (fW*2); SkVector C = (fPts[1] - fPts[0]) * fW; // Now solve for "bisector dot midtangent = 0": // // |T^2| // bisector * |A B C| * |T | = 0 // |. . .| |1 | // float a = bisector.dot(A); float b = bisector.dot(B); float c = bisector.dot(C); return solve_quadratic_equation_for_midtangent(a, b, c); } bool SkConic::findXExtrema(SkScalar* t) const { return conic_find_extrema(&fPts[0].fX, fW, t); } bool SkConic::findYExtrema(SkScalar* t) const { return conic_find_extrema(&fPts[0].fY, fW, t); } bool SkConic::chopAtXExtrema(SkConic dst[2]) const { SkScalar t; if (this->findXExtrema(&t)) { if (!this->chopAt(t, dst)) { // if chop can't return finite values, don't chop return false; } // now clean-up the middle, since we know t was meant to be at // an X-extrema SkScalar value = dst[0].fPts[2].fX; dst[0].fPts[1].fX = value; dst[1].fPts[0].fX = value; dst[1].fPts[1].fX = value; return true; } return false; } bool SkConic::chopAtYExtrema(SkConic dst[2]) const { SkScalar t; if (this->findYExtrema(&t)) { if (!this->chopAt(t, dst)) { // if chop can't return finite values, don't chop return false; } // now clean-up the middle, since we know t was meant to be at // an Y-extrema SkScalar value = dst[0].fPts[2].fY; dst[0].fPts[1].fY = value; dst[1].fPts[0].fY = value; dst[1].fPts[1].fY = value; return true; } return false; } void SkConic::computeTightBounds(SkRect* bounds) const { SkPoint pts[4]; pts[0] = fPts[0]; pts[1] = fPts[2]; int count = 2; SkScalar t; if (this->findXExtrema(&t)) { this->evalAt(t, &pts[count++]); } if (this->findYExtrema(&t)) { this->evalAt(t, &pts[count++]); } bounds->setBounds(pts, count); } void SkConic::computeFastBounds(SkRect* bounds) const { bounds->setBounds(fPts, 3); } #if 0 // unimplemented bool SkConic::findMaxCurvature(SkScalar* t) const { // TODO: Implement me return false; } #endif SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) { if (!matrix.hasPerspective()) { return w; } SkPoint3 src[3], dst[3]; ratquad_mapTo3D(pts, w, src); matrix.mapHomogeneousPoints(dst, src, 3); // w' = sqrt(w1*w1/w0*w2) // use doubles temporarily, to handle small numer/denom double w0 = dst[0].fZ; double w1 = dst[1].fZ; double w2 = dst[2].fZ; return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2))); } int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir, const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) { // rotate by x,y so that uStart is (1.0) SkScalar x = SkPoint::DotProduct(uStart, uStop); SkScalar y = SkPoint::CrossProduct(uStart, uStop); SkScalar absY = SkScalarAbs(y); // check for (effectively) coincident vectors // this can happen if our angle is nearly 0 or nearly 180 (y == 0) // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) || (y <= 0 && kCCW_SkRotationDirection == dir))) { return 0; } if (dir == kCCW_SkRotationDirection) { y = -y; } // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in? // 0 == [0 .. 90) // 1 == [90 ..180) // 2 == [180..270) // 3 == [270..360) // int quadrant = 0; if (0 == y) { quadrant = 2; // 180 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); } else if (0 == x) { SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); quadrant = y > 0 ? 1 : 3; // 90 : 270 } else { if (y < 0) { quadrant += 2; } if ((x < 0) != (y < 0)) { quadrant += 1; } } const SkPoint quadrantPts[] = { { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 } }; const SkScalar quadrantWeight = SK_ScalarRoot2Over2; int conicCount = quadrant; for (int i = 0; i < conicCount; ++i) { dst[i].set(&quadrantPts[i * 2], quadrantWeight); } // Now compute any remaing (sub-90-degree) arc for the last conic const SkPoint finalP = { x, y }; const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector const SkScalar dot = SkVector::DotProduct(lastQ, finalP); SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero); if (dot < 1) { SkVector offCurve = { lastQ.x() + x, lastQ.y() + y }; // compute the bisector vector, and then rescale to be the off-curve point. // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot. // This is nice, since our computed weight is cos(theta/2) as well! // const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2); offCurve.setLength(SkScalarInvert(cosThetaOver2)); if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) { dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2); conicCount += 1; } } // now handle counter-clockwise and the initial unitStart rotation SkMatrix matrix; matrix.setSinCos(uStart.fY, uStart.fX); if (dir == kCCW_SkRotationDirection) { matrix.preScale(SK_Scalar1, -SK_Scalar1); } if (userMatrix) { matrix.postConcat(*userMatrix); } for (int i = 0; i < conicCount; ++i) { matrix.mapPoints(dst[i].fPts, 3); } return conicCount; }