/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkMask_DEFINED #define SkMask_DEFINED #include "include/core/SkRect.h" #include "include/private/SkColorData.h" #include "include/private/SkMacros.h" #include "include/private/SkTemplates.h" #include /** \class SkMask SkMask is used to describe alpha bitmaps, either 1bit, 8bit, or the 3-channel 3D format. These are passed to SkMaskFilter objects. */ struct SkMask { SkMask() : fImage(nullptr) {} enum Format : uint8_t { kBW_Format, //!< 1bit per pixel mask (e.g. monochrome) kA8_Format, //!< 8bits per pixel mask (e.g. antialiasing) k3D_Format, //!< 3 8bit per pixl planes: alpha, mul, add kARGB32_Format, //!< SkPMColor kLCD16_Format, //!< 565 alpha for r/g/b kSDF_Format, //!< 8bits representing signed distance field }; enum { kCountMaskFormats = kSDF_Format + 1 }; uint8_t* fImage; SkIRect fBounds; uint32_t fRowBytes; Format fFormat; static bool IsValidFormat(uint8_t format) { return format < kCountMaskFormats; } /** Returns true if the mask is empty: i.e. it has an empty bounds. */ bool isEmpty() const { return fBounds.isEmpty(); } /** Return the byte size of the mask, assuming only 1 plane. Does not account for k3D_Format. For that, use computeTotalImageSize(). If there is an overflow of 32bits, then returns 0. */ size_t computeImageSize() const; /** Return the byte size of the mask, taking into account any extra planes (e.g. k3D_Format). If there is an overflow of 32bits, then returns 0. */ size_t computeTotalImageSize() const; /** Returns the address of the byte that holds the specified bit. Asserts that the mask is kBW_Format, and that x,y are in range. x,y are in the same coordiate space as fBounds. */ uint8_t* getAddr1(int x, int y) const { SkASSERT(kBW_Format == fFormat); SkASSERT(fBounds.contains(x, y)); SkASSERT(fImage != nullptr); return fImage + ((x - fBounds.fLeft) >> 3) + (y - fBounds.fTop) * fRowBytes; } /** Returns the address of the specified byte. Asserts that the mask is kA8_Format, and that x,y are in range. x,y are in the same coordiate space as fBounds. */ uint8_t* getAddr8(int x, int y) const { SkASSERT(kA8_Format == fFormat || kSDF_Format == fFormat); SkASSERT(fBounds.contains(x, y)); SkASSERT(fImage != nullptr); return fImage + x - fBounds.fLeft + (y - fBounds.fTop) * fRowBytes; } /** * Return the address of the specified 16bit mask. In the debug build, * this asserts that the mask's format is kLCD16_Format, and that (x,y) * are contained in the mask's fBounds. */ uint16_t* getAddrLCD16(int x, int y) const { SkASSERT(kLCD16_Format == fFormat); SkASSERT(fBounds.contains(x, y)); SkASSERT(fImage != nullptr); uint16_t* row = (uint16_t*)(fImage + (y - fBounds.fTop) * fRowBytes); return row + (x - fBounds.fLeft); } /** * Return the address of the specified 32bit mask. In the debug build, * this asserts that the mask's format is 32bits, and that (x,y) * are contained in the mask's fBounds. */ uint32_t* getAddr32(int x, int y) const { SkASSERT(kARGB32_Format == fFormat); SkASSERT(fBounds.contains(x, y)); SkASSERT(fImage != nullptr); uint32_t* row = (uint32_t*)(fImage + (y - fBounds.fTop) * fRowBytes); return row + (x - fBounds.fLeft); } /** * Returns the address of the specified pixel, computing the pixel-size * at runtime based on the mask format. This will be slightly slower than * using one of the routines where the format is implied by the name * e.g. getAddr8 or getAddr32. * * x,y must be contained by the mask's bounds (this is asserted in the * debug build, but not checked in the release build.) * * This should not be called with kBW_Format, as it will give unspecified * results (and assert in the debug build). */ void* getAddr(int x, int y) const; enum AllocType { kUninit_Alloc, kZeroInit_Alloc, }; static uint8_t* AllocImage(size_t bytes, AllocType = kUninit_Alloc); static void FreeImage(void* image); enum CreateMode { kJustComputeBounds_CreateMode, //!< compute bounds and return kJustRenderImage_CreateMode, //!< render into preallocate mask kComputeBoundsAndRenderImage_CreateMode //!< compute bounds, alloc image and render into it }; /** Iterates over the coverage values along a scanline in a given SkMask::Format. Provides * constructor, copy constructor for creating * operator++, operator-- for iterating over the coverage values on a scanline * operator>>= to add row bytes * operator* to get the coverage value at the current location * operator< to compare two iterators */ template struct AlphaIter; /** * Returns initial destination mask data padded by radiusX and radiusY */ static SkMask PrepareDestination(int radiusX, int radiusY, const SkMask& src); }; template <> struct SkMask::AlphaIter { AlphaIter(const uint8_t* ptr, int offset) : fPtr(ptr), fOffset(7 - offset) {} AlphaIter(const AlphaIter& that) : fPtr(that.fPtr), fOffset(that.fOffset) {} AlphaIter& operator++() { if (0 < fOffset ) { --fOffset; } else { ++fPtr; fOffset = 7; } return *this; } AlphaIter& operator--() { if (fOffset < 7) { ++fOffset; } else { --fPtr; fOffset = 0; } return *this; } AlphaIter& operator>>=(uint32_t rb) { fPtr = SkTAddOffset(fPtr, rb); return *this; } uint8_t operator*() const { return ((*fPtr) >> fOffset) & 1 ? 0xFF : 0; } bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr || (fPtr == that.fPtr && fOffset > that.fOffset); } const uint8_t* fPtr; int fOffset; }; template <> struct SkMask::AlphaIter { AlphaIter(const uint8_t* ptr) : fPtr(ptr) {} AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {} AlphaIter& operator++() { ++fPtr; return *this; } AlphaIter& operator--() { --fPtr; return *this; } AlphaIter& operator>>=(uint32_t rb) { fPtr = SkTAddOffset(fPtr, rb); return *this; } uint8_t operator*() const { return *fPtr; } bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; } const uint8_t* fPtr; }; template <> struct SkMask::AlphaIter { AlphaIter(const uint32_t* ptr) : fPtr(ptr) {} AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {} AlphaIter& operator++() { ++fPtr; return *this; } AlphaIter& operator--() { --fPtr; return *this; } AlphaIter& operator>>=(uint32_t rb) { fPtr = SkTAddOffset(fPtr, rb); return *this; } uint8_t operator*() const { return SkGetPackedA32(*fPtr); } bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; } const uint32_t* fPtr; }; template <> struct SkMask::AlphaIter { AlphaIter(const uint16_t* ptr) : fPtr(ptr) {} AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {} AlphaIter& operator++() { ++fPtr; return *this; } AlphaIter& operator--() { --fPtr; return *this; } AlphaIter& operator>>=(uint32_t rb) { fPtr = SkTAddOffset(fPtr, rb); return *this; } uint8_t operator*() const { unsigned packed = *fPtr; unsigned r = SkPacked16ToR32(packed); unsigned g = SkPacked16ToG32(packed); unsigned b = SkPacked16ToB32(packed); return (r + g + b) / 3; } bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; } const uint16_t* fPtr; }; /////////////////////////////////////////////////////////////////////////////// /** * \using SkAutoMaskImage * * Stack class used to manage the fImage buffer in a SkMask. * When this object loses scope, the buffer is freed with SkMask::FreeImage(). */ using SkAutoMaskFreeImage = std::unique_ptr>; #endif