/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkString.h" #include "include/private/SkTPin.h" #include "include/private/SkTo.h" #include "src/core/SkSafeMath.h" #include "src/core/SkUtils.h" #include "src/utils/SkUTF.h" #include #include #include #include // number of bytes (on the stack) to receive the printf result static const size_t kBufferSize = 1024; struct StringBuffer { char* fText; int fLength; }; template static StringBuffer apply_format_string(const char* format, va_list args, char (&stackBuffer)[SIZE], SkString* heapBuffer) { // First, attempt to print directly to the stack buffer. va_list argsCopy; va_copy(argsCopy, args); int outLength = std::vsnprintf(stackBuffer, SIZE, format, args); if (outLength < 0) { SkDebugf("SkString: vsnprintf reported error."); va_end(argsCopy); return {stackBuffer, 0}; } if (outLength < SIZE) { va_end(argsCopy); return {stackBuffer, outLength}; } // Our text was too long to fit on the stack! However, we now know how much space we need to // format it. Format the string into our heap buffer. `set` automatically reserves an extra // byte at the end of the buffer for a null terminator, so we don't need to add one here. heapBuffer->set(nullptr, outLength); char* heapBufferDest = heapBuffer->writable_str(); SkDEBUGCODE(int checkLength =) std::vsnprintf(heapBufferDest, outLength + 1, format, argsCopy); SkASSERT(checkLength == outLength); va_end(argsCopy); return {heapBufferDest, outLength}; } /////////////////////////////////////////////////////////////////////////////// bool SkStrEndsWith(const char string[], const char suffixStr[]) { SkASSERT(string); SkASSERT(suffixStr); size_t strLen = strlen(string); size_t suffixLen = strlen(suffixStr); return strLen >= suffixLen && !strncmp(string + strLen - suffixLen, suffixStr, suffixLen); } bool SkStrEndsWith(const char string[], const char suffixChar) { SkASSERT(string); size_t strLen = strlen(string); if (0 == strLen) { return false; } else { return (suffixChar == string[strLen-1]); } } int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { int index = 0; do { const char* limit = strchr(prefixes, '\0'); if (!strncmp(string, prefixes, limit - prefixes)) { return index; } prefixes = limit + 1; index++; } while (prefixes[0]); return -1; } char* SkStrAppendU32(char string[], uint32_t dec) { SkDEBUGCODE(char* start = string;) char buffer[kSkStrAppendU32_MaxSize]; char* p = buffer + sizeof(buffer); do { *--p = SkToU8('0' + dec % 10); dec /= 10; } while (dec != 0); SkASSERT(p >= buffer); char* stop = buffer + sizeof(buffer); while (p < stop) { *string++ = *p++; } SkASSERT(string - start <= kSkStrAppendU32_MaxSize); return string; } char* SkStrAppendS32(char string[], int32_t dec) { uint32_t udec = dec; if (dec < 0) { *string++ = '-'; udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful } return SkStrAppendU32(string, udec); } char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) { SkDEBUGCODE(char* start = string;) char buffer[kSkStrAppendU64_MaxSize]; char* p = buffer + sizeof(buffer); do { *--p = SkToU8('0' + (int32_t) (dec % 10)); dec /= 10; minDigits--; } while (dec != 0); while (minDigits > 0) { *--p = '0'; minDigits--; } SkASSERT(p >= buffer); size_t cp_len = buffer + sizeof(buffer) - p; memcpy(string, p, cp_len); string += cp_len; SkASSERT(string - start <= kSkStrAppendU64_MaxSize); return string; } char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { uint64_t udec = dec; if (dec < 0) { *string++ = '-'; udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful } return SkStrAppendU64(string, udec, minDigits); } char* SkStrAppendScalar(char string[], SkScalar value) { // Handle infinity and NaN ourselves to ensure consistent cross-platform results. // (e.g.: `inf` versus `1.#INF00`, `nan` versus `-nan` for high-bit-set NaNs) if (SkScalarIsNaN(value)) { strcpy(string, "nan"); return string + 3; } if (!SkScalarIsFinite(value)) { if (value > 0) { strcpy(string, "inf"); return string + 3; } else { strcpy(string, "-inf"); return string + 4; } } // since floats have at most 8 significant digits, we limit our %g to that. static const char gFormat[] = "%.8g"; // make it 1 larger for the terminating 0 char buffer[kSkStrAppendScalar_MaxSize + 1]; int len = snprintf(buffer, sizeof(buffer), gFormat, value); memcpy(string, buffer, len); SkASSERT(len <= kSkStrAppendScalar_MaxSize); return string + len; } /////////////////////////////////////////////////////////////////////////////// const SkString::Rec SkString::gEmptyRec(0, 0); #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) static uint32_t trim_size_t_to_u32(size_t value) { if (sizeof(size_t) > sizeof(uint32_t)) { if (value > UINT32_MAX) { value = UINT32_MAX; } } return (uint32_t)value; } static size_t check_add32(size_t base, size_t extra) { SkASSERT(base <= UINT32_MAX); if (sizeof(size_t) > sizeof(uint32_t)) { if (base + extra > UINT32_MAX) { extra = UINT32_MAX - base; } } return extra; } sk_sp SkString::Rec::Make(const char text[], size_t len) { if (0 == len) { return sk_sp(const_cast(&gEmptyRec)); } SkSafeMath safe; // We store a 32bit version of the length uint32_t stringLen = safe.castTo(len); // Add SizeOfRec() for our overhead and 1 for null-termination size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char)); // Align up to a multiple of 4 allocationSize = safe.alignUp(allocationSize, 4); SkASSERT_RELEASE(safe.ok()); void* storage = ::operator new (allocationSize); sk_sp rec(new (storage) Rec(stringLen, 1)); if (text) { memcpy(rec->data(), text, len); } rec->data()[len] = 0; return rec; } void SkString::Rec::ref() const { if (this == &SkString::gEmptyRec) { return; } SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed)); } void SkString::Rec::unref() const { if (this == &SkString::gEmptyRec) { return; } int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel); SkASSERT(oldRefCnt); if (1 == oldRefCnt) { delete this; } } bool SkString::Rec::unique() const { return fRefCnt.load(std::memory_order_acquire) == 1; } #ifdef SK_DEBUG const SkString& SkString::validate() const { // make sure know one has written over our global SkASSERT(0 == gEmptyRec.fLength); SkASSERT(0 == gEmptyRec.fRefCnt.load(std::memory_order_relaxed)); SkASSERT(0 == gEmptyRec.data()[0]); if (fRec.get() != &gEmptyRec) { SkASSERT(fRec->fLength > 0); SkASSERT(fRec->fRefCnt.load(std::memory_order_relaxed) > 0); SkASSERT(0 == fRec->data()[fRec->fLength]); } return *this; } #endif /////////////////////////////////////////////////////////////////////////////// SkString::SkString() : fRec(const_cast(&gEmptyRec)) { } SkString::SkString(size_t len) { fRec = Rec::Make(nullptr, len); } SkString::SkString(const char text[]) { size_t len = text ? strlen(text) : 0; fRec = Rec::Make(text, len); } SkString::SkString(const char text[], size_t len) { fRec = Rec::Make(text, len); } SkString::SkString(const SkString& src) : fRec(src.validate().fRec) {} SkString::SkString(SkString&& src) : fRec(std::move(src.validate().fRec)) { src.fRec.reset(const_cast(&gEmptyRec)); } SkString::SkString(const std::string& src) { fRec = Rec::Make(src.c_str(), src.size()); } SkString::~SkString() { this->validate(); } bool SkString::equals(const SkString& src) const { return fRec == src.fRec || this->equals(src.c_str(), src.size()); } bool SkString::equals(const char text[]) const { return this->equals(text, text ? strlen(text) : 0); } bool SkString::equals(const char text[], size_t len) const { SkASSERT(len == 0 || text != nullptr); return fRec->fLength == len && !sk_careful_memcmp(fRec->data(), text, len); } SkString& SkString::operator=(const SkString& src) { this->validate(); fRec = src.fRec; // sk_sp::operator=(const sk_sp&) checks for self-assignment. return *this; } SkString& SkString::operator=(SkString&& src) { this->validate(); if (fRec != src.fRec) { this->swap(src); } return *this; } SkString& SkString::operator=(const char text[]) { this->validate(); return *this = SkString(text); } void SkString::reset() { this->validate(); fRec.reset(const_cast(&gEmptyRec)); } char* SkString::writable_str() { this->validate(); if (fRec->fLength) { if (!fRec->unique()) { fRec = Rec::Make(fRec->data(), fRec->fLength); } } return fRec->data(); } void SkString::resize(size_t len) { len = trim_size_t_to_u32(len); if (0 == len) { this->reset(); } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { // Use less of the buffer we have without allocating a smaller one. char* p = this->writable_str(); p[len] = '\0'; fRec->fLength = SkToU32(len); } else { SkString newString(len); char* dest = newString.writable_str(); int copyLen = std::min(len, this->size()); memcpy(dest, this->c_str(), copyLen); dest[copyLen] = '\0'; this->swap(newString); } } void SkString::set(const char text[]) { this->set(text, text ? strlen(text) : 0); } void SkString::set(const char text[], size_t len) { len = trim_size_t_to_u32(len); if (0 == len) { this->reset(); } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { // Use less of the buffer we have without allocating a smaller one. char* p = this->writable_str(); if (text) { memcpy(p, text, len); } p[len] = '\0'; fRec->fLength = SkToU32(len); } else { SkString tmp(text, len); this->swap(tmp); } } void SkString::insert(size_t offset, const char text[]) { this->insert(offset, text, text ? strlen(text) : 0); } void SkString::insert(size_t offset, const char text[], size_t len) { if (len) { size_t length = fRec->fLength; if (offset > length) { offset = length; } // Check if length + len exceeds 32bits, we trim len len = check_add32(length, len); if (0 == len) { return; } /* If we're the only owner, and we have room in our allocation for the insert, do it in place, rather than allocating a new buffer. To know we have room, compare the allocated sizes beforeAlloc = SkAlign4(length + 1) afterAlloc = SkAligh4(length + 1 + len) but SkAlign4(x) is (x + 3) >> 2 << 2 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 and we can then eliminate the +1+3 since that doesn't affec the answer */ if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) { char* dst = this->writable_str(); if (offset < length) { memmove(dst + offset + len, dst + offset, length - offset); } memcpy(dst + offset, text, len); dst[length + len] = 0; fRec->fLength = SkToU32(length + len); } else { /* Seems we should use realloc here, since that is safe if it fails (we have the original data), and might be faster than alloc/copy/free. */ SkString tmp(fRec->fLength + len); char* dst = tmp.writable_str(); if (offset > 0) { memcpy(dst, fRec->data(), offset); } memcpy(dst + offset, text, len); if (offset < fRec->fLength) { memcpy(dst + offset + len, fRec->data() + offset, fRec->fLength - offset); } this->swap(tmp); } } } void SkString::insertUnichar(size_t offset, SkUnichar uni) { char buffer[SkUTF::kMaxBytesInUTF8Sequence]; size_t len = SkUTF::ToUTF8(uni, buffer); if (len) { this->insert(offset, buffer, len); } } void SkString::insertS32(size_t offset, int32_t dec) { char buffer[kSkStrAppendS32_MaxSize]; char* stop = SkStrAppendS32(buffer, dec); this->insert(offset, buffer, stop - buffer); } void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { char buffer[kSkStrAppendS64_MaxSize]; char* stop = SkStrAppendS64(buffer, dec, minDigits); this->insert(offset, buffer, stop - buffer); } void SkString::insertU32(size_t offset, uint32_t dec) { char buffer[kSkStrAppendU32_MaxSize]; char* stop = SkStrAppendU32(buffer, dec); this->insert(offset, buffer, stop - buffer); } void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) { char buffer[kSkStrAppendU64_MaxSize]; char* stop = SkStrAppendU64(buffer, dec, minDigits); this->insert(offset, buffer, stop - buffer); } void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { minDigits = SkTPin(minDigits, 0, 8); char buffer[8]; char* p = buffer + sizeof(buffer); do { *--p = SkHexadecimalDigits::gUpper[hex & 0xF]; hex >>= 4; minDigits -= 1; } while (hex != 0); while (--minDigits >= 0) { *--p = '0'; } SkASSERT(p >= buffer); this->insert(offset, p, buffer + sizeof(buffer) - p); } void SkString::insertScalar(size_t offset, SkScalar value) { char buffer[kSkStrAppendScalar_MaxSize]; char* stop = SkStrAppendScalar(buffer, value); this->insert(offset, buffer, stop - buffer); } /////////////////////////////////////////////////////////////////////////////// void SkString::printf(const char format[], ...) { va_list args; va_start(args, format); this->printVAList(format, args); va_end(args); } void SkString::printVAList(const char format[], va_list args) { char stackBuffer[kBufferSize]; StringBuffer result = apply_format_string(format, args, stackBuffer, this); if (result.fText == stackBuffer) { this->set(result.fText, result.fLength); } } void SkString::appendf(const char format[], ...) { va_list args; va_start(args, format); this->appendVAList(format, args); va_end(args); } void SkString::appendVAList(const char format[], va_list args) { if (this->isEmpty()) { this->printVAList(format, args); return; } SkString overflow; char stackBuffer[kBufferSize]; StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); this->append(result.fText, result.fLength); } void SkString::prependf(const char format[], ...) { va_list args; va_start(args, format); this->prependVAList(format, args); va_end(args); } void SkString::prependVAList(const char format[], va_list args) { if (this->isEmpty()) { this->printVAList(format, args); return; } SkString overflow; char stackBuffer[kBufferSize]; StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); this->prepend(result.fText, result.fLength); } /////////////////////////////////////////////////////////////////////////////// void SkString::remove(size_t offset, size_t length) { size_t size = this->size(); if (offset < size) { if (length > size - offset) { length = size - offset; } SkASSERT(length <= size); SkASSERT(offset <= size - length); if (length > 0) { SkString tmp(size - length); char* dst = tmp.writable_str(); const char* src = this->c_str(); if (offset) { memcpy(dst, src, offset); } size_t tail = size - (offset + length); if (tail) { memcpy(dst + offset, src + (offset + length), tail); } SkASSERT(dst[tmp.size()] == 0); this->swap(tmp); } } } void SkString::swap(SkString& other) { this->validate(); other.validate(); using std::swap; swap(fRec, other.fRec); } /////////////////////////////////////////////////////////////////////////////// SkString SkStringPrintf(const char* format, ...) { SkString formattedOutput; va_list args; va_start(args, format); formattedOutput.printVAList(format, args); va_end(args); return formattedOutput; } void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, SkTArray* out) { if (splitMode == kCoalesce_SkStrSplitMode) { // Skip any delimiters. str += strspn(str, delimiters); } if (!*str) { return; } while (true) { // Find a token. const size_t len = strcspn(str, delimiters); if (splitMode == kStrict_SkStrSplitMode || len > 0) { out->push_back().set(str, len); str += len; } if (!*str) { return; } if (splitMode == kCoalesce_SkStrSplitMode) { // Skip any delimiters. str += strspn(str, delimiters); } else { // Skip one delimiter. str += 1; } } }