/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkWriter32_DEFINED #define SkWriter32_DEFINED #include "include/core/SkData.h" #include "include/core/SkMatrix.h" #include "include/core/SkPath.h" #include "include/core/SkPoint.h" #include "include/core/SkPoint3.h" #include "include/core/SkRRect.h" #include "include/core/SkRect.h" #include "include/core/SkRegion.h" #include "include/core/SkScalar.h" #include "include/core/SkStream.h" #include "include/core/SkTypes.h" #include "include/private/SkNoncopyable.h" #include "include/private/SkTemplates.h" #include "include/private/SkTo.h" class SkWriter32 : SkNoncopyable { public: /** * The caller can specify an initial block of storage, which the caller manages. * * SkWriter32 will try to back reserve and write calls with this external storage until the * first time an allocation doesn't fit. From then it will use dynamically allocated storage. * This used to be optional behavior, but pipe now relies on it. */ SkWriter32(void* external = nullptr, size_t externalBytes = 0) { this->reset(external, externalBytes); } // return the current offset (will always be a multiple of 4) size_t bytesWritten() const { return fUsed; } // Returns true iff all of the bytes written so far are stored in the initial storage // buffer provided in the constructor or the most recent call to reset. bool usingInitialStorage() const { return fData == fExternal; } void reset(void* external = nullptr, size_t externalBytes = 0) { // we cast this pointer to int* and float* at times, so assert that it is aligned. SkASSERT(SkIsAlign4((uintptr_t)external)); // we always write multiples of 4-bytes, so truncate down the size to match that externalBytes &= ~3; fData = (uint8_t*)external; fCapacity = externalBytes; fUsed = 0; fExternal = external; } // size MUST be multiple of 4 uint32_t* reserve(size_t size) { SkASSERT(SkAlign4(size) == size); size_t offset = fUsed; size_t totalRequired = fUsed + size; if (totalRequired > fCapacity) { this->growToAtLeast(totalRequired); } fUsed = totalRequired; return (uint32_t*)(fData + offset); } /** * Read a T record at offset, which must be a multiple of 4. Only legal if the record * was written atomically using the write methods below. */ template const T& readTAt(size_t offset) const { SkASSERT(SkAlign4(offset) == offset); SkASSERT(offset < fUsed); return *(T*)(fData + offset); } /** * Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record * was written atomically using the write methods below. */ template void overwriteTAt(size_t offset, const T& value) { SkASSERT(SkAlign4(offset) == offset); SkASSERT(offset < fUsed); *(T*)(fData + offset) = value; } bool writeBool(bool value) { this->write32(value); return value; } void writeInt(int32_t value) { this->write32(value); } void write8(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF; } void write16(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF; } void write32(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value; } void writeScalar(SkScalar value) { *(SkScalar*)this->reserve(sizeof(value)) = value; } void writePoint(const SkPoint& pt) { *(SkPoint*)this->reserve(sizeof(pt)) = pt; } void writePoint3(const SkPoint3& pt) { *(SkPoint3*)this->reserve(sizeof(pt)) = pt; } void writeRect(const SkRect& rect) { *(SkRect*)this->reserve(sizeof(rect)) = rect; } void writeIRect(const SkIRect& rect) { *(SkIRect*)this->reserve(sizeof(rect)) = rect; } void writeRRect(const SkRRect& rrect) { rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory)); } void writePath(const SkPath& path) { size_t size = path.writeToMemory(nullptr); SkASSERT(SkAlign4(size) == size); path.writeToMemory(this->reserve(size)); } void writeMatrix(const SkMatrix& matrix); void writeRegion(const SkRegion& rgn) { size_t size = rgn.writeToMemory(nullptr); SkASSERT(SkAlign4(size) == size); rgn.writeToMemory(this->reserve(size)); } // write count bytes (must be a multiple of 4) void writeMul4(const void* values, size_t size) { this->write(values, size); } /** * Write size bytes from values. size must be a multiple of 4, though * values need not be 4-byte aligned. */ void write(const void* values, size_t size) { SkASSERT(SkAlign4(size) == size); sk_careful_memcpy(this->reserve(size), values, size); } /** * Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be * filled in with zeroes. */ uint32_t* reservePad(size_t size) { size_t alignedSize = SkAlign4(size); uint32_t* p = this->reserve(alignedSize); if (alignedSize != size) { SkASSERT(alignedSize >= 4); p[alignedSize / 4 - 1] = 0; } return p; } /** * Write size bytes from src, and pad to 4 byte alignment with zeroes. */ void writePad(const void* src, size_t size) { sk_careful_memcpy(this->reservePad(size), src, size); } /** * Writes a string to the writer, which can be retrieved with SkReadBuffer::readString(). * The length can be specified, or if -1 is passed, it will be computed by calling strlen(). * The length must be < max size_t. * * If you write NULL, it will be read as "". */ void writeString(const char* str, size_t len = (size_t)-1); /** * Computes the size (aligned to multiple of 4) need to write the string * in a call to writeString(). If the length is not specified, it will be * computed by calling strlen(). */ static size_t WriteStringSize(const char* str, size_t len = (size_t)-1); void writeData(const SkData* data) { uint32_t len = data ? SkToU32(data->size()) : 0; this->write32(len); if (data) { this->writePad(data->data(), len); } } static size_t WriteDataSize(const SkData* data) { return 4 + SkAlign4(data ? data->size() : 0); } /** * Move the cursor back to offset bytes from the beginning. * offset must be a multiple of 4 no greater than size(). */ void rewindToOffset(size_t offset) { SkASSERT(SkAlign4(offset) == offset); SkASSERT(offset <= bytesWritten()); fUsed = offset; } // copy into a single buffer (allocated by caller). Must be at least size() void flatten(void* dst) const { memcpy(dst, fData, fUsed); } bool writeToStream(SkWStream* stream) const { return stream->write(fData, fUsed); } // read from the stream, and write up to length bytes. Return the actual // number of bytes written. size_t readFromStream(SkStream* stream, size_t length) { return stream->read(this->reservePad(length), length); } /** * Captures a snapshot of the data as it is right now, and return it. */ sk_sp snapshotAsData() const; private: void growToAtLeast(size_t size); uint8_t* fData; // Points to either fInternal or fExternal. size_t fCapacity; // Number of bytes we can write to fData. size_t fUsed; // Number of bytes written. void* fExternal; // Unmanaged memory block. SkAutoTMalloc fInternal; // Managed memory block. }; /** * Helper class to allocated SIZE bytes as part of the writer, and to provide * that storage to the constructor as its initial storage buffer. * * This wrapper ensures proper alignment rules are met for the storage. */ template class SkSWriter32 : public SkWriter32 { public: SkSWriter32() { this->reset(); } void reset() {this->INHERITED::reset(fData.fStorage, SIZE); } private: union { void* fPtrAlignment; double fDoubleAlignment; char fStorage[SIZE]; } fData; using INHERITED = SkWriter32; }; #endif