/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrGpu.h" #include "include/gpu/GrBackendSemaphore.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrDirectContext.h" #include "src/core/SkCompressedDataUtils.h" #include "src/core/SkMathPriv.h" #include "src/core/SkMipmap.h" #include "src/gpu/GrAttachment.h" #include "src/gpu/GrAuditTrail.h" #include "src/gpu/GrBackendUtils.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDataUtils.h" #include "src/gpu/GrDirectContextPriv.h" #include "src/gpu/GrGpuResourcePriv.h" #include "src/gpu/GrNativeRect.h" #include "src/gpu/GrPipeline.h" #include "src/gpu/GrRenderTarget.h" #include "src/gpu/GrResourceCache.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/GrRingBuffer.h" #include "src/gpu/GrSemaphore.h" #include "src/gpu/GrStagingBufferManager.h" #include "src/gpu/GrStencilSettings.h" #include "src/gpu/GrTextureProxyPriv.h" #include "src/gpu/GrTracing.h" #include "src/sksl/SkSLCompiler.h" #include "src/utils/SkJSONWriter.h" //////////////////////////////////////////////////////////////////////////////// GrGpu::GrGpu(GrDirectContext* direct) : fResetBits(kAll_GrBackendState), fContext(direct) {} GrGpu::~GrGpu() { this->callSubmittedProcs(false); } void GrGpu::initCapsAndCompiler(sk_sp caps) { fCaps = std::move(caps); fCompiler = std::make_unique(fCaps->shaderCaps()); } void GrGpu::disconnect(DisconnectType type) {} //////////////////////////////////////////////////////////////////////////////// static bool validate_texel_levels(SkISize dimensions, GrColorType texelColorType, const GrMipLevel* texels, int mipLevelCount, const GrCaps* caps) { SkASSERT(mipLevelCount > 0); bool hasBasePixels = texels[0].fPixels; int levelsWithPixelsCnt = 0; auto bpp = GrColorTypeBytesPerPixel(texelColorType); int w = dimensions.fWidth; int h = dimensions.fHeight; for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; ++currentMipLevel) { if (texels[currentMipLevel].fPixels) { const size_t minRowBytes = w * bpp; if (caps->writePixelsRowBytesSupport()) { if (texels[currentMipLevel].fRowBytes < minRowBytes) { return false; } if (texels[currentMipLevel].fRowBytes % bpp) { return false; } } else { if (texels[currentMipLevel].fRowBytes != minRowBytes) { return false; } } ++levelsWithPixelsCnt; } if (w == 1 && h == 1) { if (currentMipLevel != mipLevelCount - 1) { return false; } } else { w = std::max(w / 2, 1); h = std::max(h / 2, 1); } } // Either just a base layer or a full stack is required. if (mipLevelCount != 1 && (w != 1 || h != 1)) { return false; } // Can specify just the base, all levels, or no levels. if (!hasBasePixels) { return levelsWithPixelsCnt == 0; } return levelsWithPixelsCnt == 1 || levelsWithPixelsCnt == mipLevelCount; } sk_sp GrGpu::createTextureCommon(SkISize dimensions, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, SkBudgeted budgeted, GrProtected isProtected, int mipLevelCount, uint32_t levelClearMask) { if (this->caps()->isFormatCompressed(format)) { // Call GrGpu::createCompressedTexture. return nullptr; } GrMipmapped mipMapped = mipLevelCount > 1 ? GrMipmapped::kYes : GrMipmapped::kNo; if (!this->caps()->validateSurfaceParams(dimensions, format, renderable, renderTargetSampleCnt, mipMapped)) { return nullptr; } if (renderable == GrRenderable::kYes) { renderTargetSampleCnt = this->caps()->getRenderTargetSampleCount(renderTargetSampleCnt, format); } // Attempt to catch un- or wrongly initialized sample counts. SkASSERT(renderTargetSampleCnt > 0 && renderTargetSampleCnt <= 64); this->handleDirtyContext(); auto tex = this->onCreateTexture(dimensions, format, renderable, renderTargetSampleCnt, budgeted, isProtected, mipLevelCount, levelClearMask); if (tex) { SkASSERT(tex->backendFormat() == format); SkASSERT(GrRenderable::kNo == renderable || tex->asRenderTarget()); if (!this->caps()->reuseScratchTextures() && renderable == GrRenderable::kNo) { tex->resourcePriv().removeScratchKey(); } fStats.incTextureCreates(); if (renderTargetSampleCnt > 1 && !this->caps()->msaaResolvesAutomatically()) { SkASSERT(GrRenderable::kYes == renderable); tex->asRenderTarget()->setRequiresManualMSAAResolve(); } } return tex; } sk_sp GrGpu::createTexture(SkISize dimensions, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, GrMipmapped mipMapped, SkBudgeted budgeted, GrProtected isProtected) { int mipLevelCount = 1; if (mipMapped == GrMipmapped::kYes) { mipLevelCount = 32 - SkCLZ(static_cast(std::max(dimensions.fWidth, dimensions.fHeight))); } uint32_t levelClearMask = this->caps()->shouldInitializeTextures() ? (1 << mipLevelCount) - 1 : 0; auto tex = this->createTextureCommon(dimensions, format, renderable, renderTargetSampleCnt, budgeted, isProtected, mipLevelCount, levelClearMask); if (tex && mipMapped == GrMipmapped::kYes && levelClearMask) { tex->markMipmapsClean(); } return tex; } sk_sp GrGpu::createTexture(SkISize dimensions, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, SkBudgeted budgeted, GrProtected isProtected, GrColorType textureColorType, GrColorType srcColorType, const GrMipLevel texels[], int texelLevelCount) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); if (texelLevelCount) { if (!validate_texel_levels(dimensions, srcColorType, texels, texelLevelCount, this->caps())) { return nullptr; } } int mipLevelCount = std::max(1, texelLevelCount); uint32_t levelClearMask = 0; if (this->caps()->shouldInitializeTextures()) { if (texelLevelCount) { for (int i = 0; i < mipLevelCount; ++i) { if (!texels->fPixels) { levelClearMask |= static_cast(1 << i); } } } else { levelClearMask = static_cast((1 << mipLevelCount) - 1); } } auto tex = this->createTextureCommon(dimensions, format, renderable, renderTargetSampleCnt, budgeted, isProtected, texelLevelCount, levelClearMask); if (tex) { bool markMipLevelsClean = false; // Currently if level 0 does not have pixels then no other level may, as enforced by // validate_texel_levels. if (texelLevelCount && texels[0].fPixels) { if (!this->writePixels(tex.get(), 0, 0, dimensions.fWidth, dimensions.fHeight, textureColorType, srcColorType, texels, texelLevelCount)) { return nullptr; } // Currently if level[1] of mip map has pixel data then so must all other levels. // as enforced by validate_texel_levels. markMipLevelsClean = (texelLevelCount > 1 && !levelClearMask && texels[1].fPixels); fStats.incTextureUploads(); } else if (levelClearMask && mipLevelCount > 1) { markMipLevelsClean = true; } if (markMipLevelsClean) { tex->markMipmapsClean(); } } return tex; } sk_sp GrGpu::createCompressedTexture(SkISize dimensions, const GrBackendFormat& format, SkBudgeted budgeted, GrMipmapped mipMapped, GrProtected isProtected, const void* data, size_t dataSize) { this->handleDirtyContext(); if (dimensions.width() < 1 || dimensions.width() > this->caps()->maxTextureSize() || dimensions.height() < 1 || dimensions.height() > this->caps()->maxTextureSize()) { return nullptr; } // Note if we relax the requirement that data must be provided then we must check // caps()->shouldInitializeTextures() here. if (!data) { return nullptr; } if (!this->caps()->isFormatTexturable(format)) { return nullptr; } // TODO: expand CompressedDataIsCorrect to work here too SkImage::CompressionType compressionType = GrBackendFormatToCompressionType(format); if (dataSize < SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped == GrMipmapped::kYes)) { return nullptr; } return this->onCreateCompressedTexture(dimensions, format, budgeted, mipMapped, isProtected, data, dataSize); } sk_sp GrGpu::wrapBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership, GrWrapCacheable cacheable, GrIOType ioType) { SkASSERT(ioType != kWrite_GrIOType); this->handleDirtyContext(); const GrCaps* caps = this->caps(); SkASSERT(caps); if (!caps->isFormatTexturable(backendTex.getBackendFormat())) { return nullptr; } if (backendTex.width() > caps->maxTextureSize() || backendTex.height() > caps->maxTextureSize()) { return nullptr; } return this->onWrapBackendTexture(backendTex, ownership, cacheable, ioType); } sk_sp GrGpu::wrapCompressedBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership, GrWrapCacheable cacheable) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); SkASSERT(caps); if (!caps->isFormatTexturable(backendTex.getBackendFormat())) { return nullptr; } if (backendTex.width() > caps->maxTextureSize() || backendTex.height() > caps->maxTextureSize()) { return nullptr; } return this->onWrapCompressedBackendTexture(backendTex, ownership, cacheable); } sk_sp GrGpu::wrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrWrapOwnership ownership, GrWrapCacheable cacheable) { this->handleDirtyContext(); if (sampleCnt < 1) { return nullptr; } const GrCaps* caps = this->caps(); if (!caps->isFormatTexturable(backendTex.getBackendFormat()) || !caps->isFormatRenderable(backendTex.getBackendFormat(), sampleCnt)) { return nullptr; } if (backendTex.width() > caps->maxRenderTargetSize() || backendTex.height() > caps->maxRenderTargetSize()) { return nullptr; } sk_sp tex = this->onWrapRenderableBackendTexture(backendTex, sampleCnt, ownership, cacheable); SkASSERT(!tex || tex->asRenderTarget()); if (tex && sampleCnt > 1 && !caps->msaaResolvesAutomatically()) { tex->asRenderTarget()->setRequiresManualMSAAResolve(); } return tex; } sk_sp GrGpu::wrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { this->handleDirtyContext(); const GrCaps* caps = this->caps(); if (!caps->isFormatRenderable(backendRT.getBackendFormat(), backendRT.sampleCnt())) { return nullptr; } sk_sp rt = this->onWrapBackendRenderTarget(backendRT); if (backendRT.isFramebufferOnly()) { rt->setFramebufferOnly(); } return rt; } sk_sp GrGpu::wrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { return this->onWrapVulkanSecondaryCBAsRenderTarget(imageInfo, vkInfo); } sk_sp GrGpu::onWrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { // This is only supported on Vulkan so we default to returning nullptr here return nullptr; } sk_sp GrGpu::createBuffer(size_t size, GrGpuBufferType intendedType, GrAccessPattern accessPattern, const void* data) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); this->handleDirtyContext(); sk_sp buffer = this->onCreateBuffer(size, intendedType, accessPattern, data); if (!this->caps()->reuseScratchBuffers()) { buffer->resourcePriv().removeScratchKey(); } return buffer; } bool GrGpu::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(dst && src); SkASSERT(!src->framebufferOnly()); if (dst->readOnly()) { return false; } this->handleDirtyContext(); return this->onCopySurface(dst, src, srcRect, dstPoint); } bool GrGpu::readPixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType dstColorType, void* buffer, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(!surface->framebufferOnly()); SkASSERT(this->caps()->isFormatTexturable(surface->backendFormat())); auto subRect = SkIRect::MakeXYWH(left, top, width, height); auto bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } size_t minRowBytes = SkToSizeT(GrColorTypeBytesPerPixel(dstColorType) * width); if (!this->caps()->readPixelsRowBytesSupport()) { if (rowBytes != minRowBytes) { return false; } } else { if (rowBytes < minRowBytes) { return false; } if (rowBytes % GrColorTypeBytesPerPixel(dstColorType)) { return false; } } this->handleDirtyContext(); return this->onReadPixels(surface, left, top, width, height, surfaceColorType, dstColorType, buffer, rowBytes); } bool GrGpu::writePixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount, bool prepForTexSampling) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); ATRACE_ANDROID_FRAMEWORK_ALWAYS("Texture upload(%u) %ix%i", surface->uniqueID().asUInt(), width, height); SkASSERT(surface); SkASSERT(!surface->framebufferOnly()); if (surface->readOnly()) { return false; } if (mipLevelCount == 0) { return false; } else if (mipLevelCount == 1) { // We require that if we are not mipped, then the write region is contained in the surface auto subRect = SkIRect::MakeXYWH(left, top, width, height); auto bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } } else if (0 != left || 0 != top || width != surface->width() || height != surface->height()) { // We require that if the texels are mipped, than the write region is the entire surface return false; } if (!validate_texel_levels({width, height}, srcColorType, texels, mipLevelCount, this->caps())) { return false; } this->handleDirtyContext(); if (this->onWritePixels(surface, left, top, width, height, surfaceColorType, srcColorType, texels, mipLevelCount, prepForTexSampling)) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(surface, kTopLeft_GrSurfaceOrigin, &rect, mipLevelCount); fStats.incTextureUploads(); return true; } return false; } bool GrGpu::transferPixelsTo(GrTexture* texture, int left, int top, int width, int height, GrColorType textureColorType, GrColorType bufferColorType, sk_sp transferBuffer, size_t offset, size_t rowBytes) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(transferBuffer); if (texture->readOnly()) { return false; } // We require that the write region is contained in the texture SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); if (!bounds.contains(subRect)) { return false; } size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); if (this->caps()->writePixelsRowBytesSupport()) { if (rowBytes < SkToSizeT(bpp * width)) { return false; } if (rowBytes % bpp) { return false; } } else { if (rowBytes != SkToSizeT(bpp * width)) { return false; } } this->handleDirtyContext(); if (this->onTransferPixelsTo(texture, left, top, width, height, textureColorType, bufferColorType, std::move(transferBuffer), offset, rowBytes)) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(texture, kTopLeft_GrSurfaceOrigin, &rect); fStats.incTransfersToTexture(); return true; } return false; } bool GrGpu::transferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType bufferColorType, sk_sp transferBuffer, size_t offset) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(surface); SkASSERT(transferBuffer); SkASSERT(this->caps()->isFormatTexturable(surface->backendFormat())); #ifdef SK_DEBUG auto supportedRead = this->caps()->supportedReadPixelsColorType( surfaceColorType, surface->backendFormat(), bufferColorType); SkASSERT(supportedRead.fOffsetAlignmentForTransferBuffer); SkASSERT(offset % supportedRead.fOffsetAlignmentForTransferBuffer == 0); #endif // We require that the write region is contained in the texture SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(surface->width(), surface->height()); if (!bounds.contains(subRect)) { return false; } this->handleDirtyContext(); if (this->onTransferPixelsFrom(surface, left, top, width, height, surfaceColorType, bufferColorType, std::move(transferBuffer), offset)) { fStats.incTransfersFromSurface(); return true; } return false; } bool GrGpu::regenerateMipMapLevels(GrTexture* texture) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(texture); SkASSERT(this->caps()->mipmapSupport()); SkASSERT(texture->mipmapped() == GrMipmapped::kYes); if (!texture->mipmapsAreDirty()) { // This can happen when the proxy expects mipmaps to be dirty, but they are not dirty on the // actual target. This may be caused by things that the drawingManager could not predict, // i.e., ops that don't draw anything, aborting a draw for exceptional circumstances, etc. // NOTE: This goes away once we quit tracking mipmap state on the actual texture. return true; } if (texture->readOnly()) { return false; } if (this->onRegenerateMipMapLevels(texture)) { texture->markMipmapsClean(); return true; } return false; } void GrGpu::resetTextureBindings() { this->handleDirtyContext(); this->onResetTextureBindings(); } void GrGpu::resolveRenderTarget(GrRenderTarget* target, const SkIRect& resolveRect) { SkASSERT(target); this->handleDirtyContext(); this->onResolveRenderTarget(target, resolveRect); } void GrGpu::didWriteToSurface(GrSurface* surface, GrSurfaceOrigin origin, const SkIRect* bounds, uint32_t mipLevels) const { SkASSERT(surface); SkASSERT(!surface->readOnly()); // Mark any MIP chain and resolve buffer as dirty if and only if there is a non-empty bounds. if (nullptr == bounds || !bounds->isEmpty()) { GrTexture* texture = surface->asTexture(); if (texture) { if (mipLevels == 1) { texture->markMipmapsDirty(); } else { texture->markMipmapsClean(); } } } } void GrGpu::executeFlushInfo(SkSpan proxies, SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info, const GrBackendSurfaceMutableState* newState) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); GrResourceProvider* resourceProvider = fContext->priv().resourceProvider(); std::unique_ptr[]> semaphores( new std::unique_ptr[info.fNumSemaphores]); if (this->caps()->semaphoreSupport() && info.fNumSemaphores) { for (int i = 0; i < info.fNumSemaphores; ++i) { if (info.fSignalSemaphores[i].isInitialized()) { semaphores[i] = resourceProvider->wrapBackendSemaphore( info.fSignalSemaphores[i], GrResourceProvider::SemaphoreWrapType::kWillSignal, kBorrow_GrWrapOwnership); // If we failed to wrap the semaphore it means the client didn't give us a valid // semaphore to begin with. Therefore, it is fine to not signal it. if (semaphores[i]) { this->insertSemaphore(semaphores[i].get()); } } else { semaphores[i] = resourceProvider->makeSemaphore(false); if (semaphores[i]) { this->insertSemaphore(semaphores[i].get()); info.fSignalSemaphores[i] = semaphores[i]->backendSemaphore(); } } } } if (info.fFinishedProc) { this->addFinishedProc(info.fFinishedProc, info.fFinishedContext); } if (info.fSubmittedProc) { fSubmittedProcs.emplace_back(info.fSubmittedProc, info.fSubmittedContext); } // We currently don't support passing in new surface state for multiple proxies here. The only // time we have multiple proxies is if we are flushing a yuv SkImage which won't have state // updates anyways. SkASSERT(!newState || proxies.size() == 1); SkASSERT(!newState || access == SkSurface::BackendSurfaceAccess::kNoAccess); this->prepareSurfacesForBackendAccessAndStateUpdates(proxies, access, newState); } GrOpsRenderPass* GrGpu::getOpsRenderPass( GrRenderTarget* renderTarget, bool useMSAASurface, GrAttachment* stencil, GrSurfaceOrigin origin, const SkIRect& bounds, const GrOpsRenderPass::LoadAndStoreInfo& colorInfo, const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo, const SkTArray& sampledProxies, GrXferBarrierFlags renderPassXferBarriers) { #if SK_HISTOGRAMS_ENABLED fCurrentSubmitRenderPassCount++; #endif fStats.incRenderPasses(); return this->onGetOpsRenderPass(renderTarget, useMSAASurface, stencil, origin, bounds, colorInfo, stencilInfo, sampledProxies, renderPassXferBarriers); } bool GrGpu::submitToGpu(bool syncCpu) { this->stats()->incNumSubmitToGpus(); if (auto manager = this->stagingBufferManager()) { manager->detachBuffers(); } if (auto uniformsBuffer = this->uniformsRingBuffer()) { uniformsBuffer->startSubmit(this); } bool submitted = this->onSubmitToGpu(syncCpu); this->callSubmittedProcs(submitted); this->reportSubmitHistograms(); return submitted; } void GrGpu::reportSubmitHistograms() { #if SK_HISTOGRAMS_ENABLED // The max allowed value for SK_HISTOGRAM_EXACT_LINEAR is 100. If we want to support higher // values we can add SK_HISTOGRAM_CUSTOM_COUNTS but this has a number of buckets that is less // than the number of actual values static constexpr int kMaxRenderPassBucketValue = 100; SK_HISTOGRAM_EXACT_LINEAR("SubmitRenderPasses", std::min(fCurrentSubmitRenderPassCount, kMaxRenderPassBucketValue), kMaxRenderPassBucketValue); fCurrentSubmitRenderPassCount = 0; #endif this->onReportSubmitHistograms(); } bool GrGpu::checkAndResetOOMed() { if (fOOMed) { fOOMed = false; return true; } return false; } void GrGpu::callSubmittedProcs(bool success) { for (int i = 0; i < fSubmittedProcs.count(); ++i) { fSubmittedProcs[i].fProc(fSubmittedProcs[i].fContext, success); } fSubmittedProcs.reset(); } #ifdef SK_ENABLE_DUMP_GPU void GrGpu::dumpJSON(SkJSONWriter* writer) const { writer->beginObject(); // TODO: Is there anything useful in the base class to dump here? this->onDumpJSON(writer); writer->endObject(); } #else void GrGpu::dumpJSON(SkJSONWriter* writer) const { } #endif #if GR_TEST_UTILS #if GR_GPU_STATS void GrGpu::Stats::dump(SkString* out) { out->appendf("Textures Created: %d\n", fTextureCreates); out->appendf("Texture Uploads: %d\n", fTextureUploads); out->appendf("Transfers to Texture: %d\n", fTransfersToTexture); out->appendf("Transfers from Surface: %d\n", fTransfersFromSurface); out->appendf("Stencil Buffer Creates: %d\n", fStencilAttachmentCreates); out->appendf("MSAA Attachment Creates: %d\n", fMSAAAttachmentCreates); out->appendf("Number of draws: %d\n", fNumDraws); out->appendf("Number of Scratch Textures reused %d\n", fNumScratchTexturesReused); out->appendf("Number of Scratch MSAA Attachments reused %d\n", fNumScratchMSAAAttachmentsReused); out->appendf("Number of Render Passes: %d\n", fRenderPasses); out->appendf("Reordered DAGs Over Budget: %d\n", fNumReorderedDAGsOverBudget); // enable this block to output CSV-style stats for program pre-compilation #if 0 SkASSERT(fNumInlineCompilationFailures == 0); SkASSERT(fNumPreCompilationFailures == 0); SkASSERT(fNumCompilationFailures == 0); SkASSERT(fNumPartialCompilationSuccesses == 0); SkDebugf("%d, %d, %d, %d, %d\n", fInlineProgramCacheStats[(int) Stats::ProgramCacheResult::kHit], fInlineProgramCacheStats[(int) Stats::ProgramCacheResult::kMiss], fPreProgramCacheStats[(int) Stats::ProgramCacheResult::kHit], fPreProgramCacheStats[(int) Stats::ProgramCacheResult::kMiss], fNumCompilationSuccesses); #endif } void GrGpu::Stats::dumpKeyValuePairs(SkTArray* keys, SkTArray* values) { keys->push_back(SkString("render_passes")); values->push_back(fRenderPasses); keys->push_back(SkString("reordered_dags_over_budget")); values->push_back(fNumReorderedDAGsOverBudget); } #endif // GR_GPU_STATS #endif // GR_TEST_UTILS bool GrGpu::CompressedDataIsCorrect(SkISize dimensions, SkImage::CompressionType compressionType, GrMipmapped mipMapped, const void* data, size_t length) { size_t computedSize = SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped == GrMipmapped::kYes); return computedSize == length; } GrBackendTexture GrGpu::createBackendTexture(SkISize dimensions, const GrBackendFormat& format, GrRenderable renderable, GrMipmapped mipMapped, GrProtected isProtected) { const GrCaps* caps = this->caps(); if (!format.isValid()) { return {}; } if (caps->isFormatCompressed(format)) { // Compressed formats must go through the createCompressedBackendTexture API return {}; } if (dimensions.isEmpty() || dimensions.width() > caps->maxTextureSize() || dimensions.height() > caps->maxTextureSize()) { return {}; } if (mipMapped == GrMipmapped::kYes && !this->caps()->mipmapSupport()) { return {}; } return this->onCreateBackendTexture(dimensions, format, renderable, mipMapped, isProtected); } bool GrGpu::clearBackendTexture(const GrBackendTexture& backendTexture, sk_sp finishedCallback, std::array color) { if (!backendTexture.isValid()) { return false; } if (backendTexture.hasMipmaps() && !this->caps()->mipmapSupport()) { return false; } return this->onClearBackendTexture(backendTexture, std::move(finishedCallback), color); } GrBackendTexture GrGpu::createCompressedBackendTexture(SkISize dimensions, const GrBackendFormat& format, GrMipmapped mipMapped, GrProtected isProtected) { const GrCaps* caps = this->caps(); if (!format.isValid()) { return {}; } SkImage::CompressionType compressionType = GrBackendFormatToCompressionType(format); if (compressionType == SkImage::CompressionType::kNone) { // Uncompressed formats must go through the createBackendTexture API return {}; } if (dimensions.isEmpty() || dimensions.width() > caps->maxTextureSize() || dimensions.height() > caps->maxTextureSize()) { return {}; } if (mipMapped == GrMipmapped::kYes && !this->caps()->mipmapSupport()) { return {}; } return this->onCreateCompressedBackendTexture(dimensions, format, mipMapped, isProtected); } bool GrGpu::updateCompressedBackendTexture(const GrBackendTexture& backendTexture, sk_sp finishedCallback, const void* data, size_t length) { SkASSERT(data); if (!backendTexture.isValid()) { return false; } GrBackendFormat format = backendTexture.getBackendFormat(); SkImage::CompressionType compressionType = GrBackendFormatToCompressionType(format); if (compressionType == SkImage::CompressionType::kNone) { // Uncompressed formats must go through the createBackendTexture API return false; } if (backendTexture.hasMipmaps() && !this->caps()->mipmapSupport()) { return false; } GrMipmapped mipMapped = backendTexture.hasMipmaps() ? GrMipmapped::kYes : GrMipmapped::kNo; if (!CompressedDataIsCorrect(backendTexture.dimensions(), compressionType, mipMapped, data, length)) { return false; } return this->onUpdateCompressedBackendTexture(backendTexture, std::move(finishedCallback), data, length); }