/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /************************************************************************************************** *** This file was autogenerated from GrConfigConversionEffect.fp; do not modify. **************************************************************************************************/ #include "GrConfigConversionEffect.h" #include "src/core/SkUtils.h" #include "src/gpu/GrTexture.h" #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/sksl/SkSLCPP.h" #include "src/sksl/SkSLUtil.h" class GrGLSLConfigConversionEffect : public GrGLSLFragmentProcessor { public: GrGLSLConfigConversionEffect() {} void emitCode(EmitArgs& args) override { GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const GrConfigConversionEffect& _outer = args.fFp.cast(); (void)_outer; auto pmConversion = _outer.pmConversion; (void)pmConversion; fragBuilder->forceHighPrecision(); SkString _sample0 = this->invokeChild(0, args); fragBuilder->codeAppendf( R"SkSL(half4 color = floor(%s * 255.0 + 0.5) / 255.0; @switch (%d) { case 0: color.xyz = floor((color.xyz * color.w) * 255.0 + 0.5) / 255.0; break; case 1: color.xyz = color.w <= 0.0 ? half3(0.0) : floor((color.xyz / color.w) * 255.0 + 0.5) / 255.0; break; } return color; )SkSL", _sample0.c_str(), (int)_outer.pmConversion); } private: void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& _proc) override {} }; std::unique_ptr GrConfigConversionEffect::onMakeProgramImpl() const { return std::make_unique(); } void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { b->addBits(1, (uint32_t)pmConversion, "pmConversion"); } bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& other) const { const GrConfigConversionEffect& that = other.cast(); (void)that; if (pmConversion != that.pmConversion) return false; return true; } GrConfigConversionEffect::GrConfigConversionEffect(const GrConfigConversionEffect& src) : INHERITED(kGrConfigConversionEffect_ClassID, src.optimizationFlags()) , pmConversion(src.pmConversion) { this->cloneAndRegisterAllChildProcessors(src); } std::unique_ptr GrConfigConversionEffect::clone() const { return std::make_unique(*this); } #if GR_TEST_UTILS SkString GrConfigConversionEffect::onDumpInfo() const { return SkStringPrintf("(pmConversion=%d)", (int)pmConversion); } #endif GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect); #if GR_TEST_UTILS std::unique_ptr GrConfigConversionEffect::TestCreate( GrProcessorTestData* data) { PMConversion pmConv = static_cast(data->fRandom->nextRangeU(0, (int)PMConversion::kLast)); return std::unique_ptr( new GrConfigConversionEffect(GrProcessorUnitTest::MakeChildFP(data), pmConv)); } #endif bool GrConfigConversionEffect::TestForPreservingPMConversions(GrDirectContext* dContext) { static constexpr int kSize = 256; SkAutoTMalloc data(kSize * kSize * 3); uint32_t* srcData = data.get(); // Fill with every possible premultiplied A, color channel value. There will be 256-y // duplicate values in row y. We set r, g, and b to the same value since they are handled // identically. for (int y = 0; y < kSize; ++y) { for (int x = 0; x < kSize; ++x) { uint8_t* color = reinterpret_cast(&srcData[kSize * y + x]); color[3] = y; color[2] = std::min(x, y); color[1] = std::min(x, y); color[0] = std::min(x, y); } } const SkImageInfo pmII = SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType); const SkImageInfo upmII = pmII.makeAlphaType(kUnpremul_SkAlphaType); auto readSFC = GrSurfaceFillContext::Make(dContext, upmII, SkBackingFit::kExact); auto tempSFC = GrSurfaceFillContext::Make(dContext, pmII, SkBackingFit::kExact); if (!readSFC || !tempSFC) { return false; } // This function is only ever called if we are in a GrDirectContext since we are // calling read pixels here. Thus the pixel data will be uploaded immediately and we don't // need to keep the pixel data alive in the proxy. Therefore the ReleaseProc is nullptr. SkBitmap bitmap; bitmap.installPixels(pmII, srcData, 4 * kSize); bitmap.setImmutable(); auto dataView = std::get<0>(GrMakeUncachedBitmapProxyView(dContext, bitmap)); if (!dataView) { return false; } uint32_t* firstRead = data.get() + kSize * kSize; uint32_t* secondRead = data.get() + 2 * kSize * kSize; std::fill_n(firstRead, kSize * kSize, 0); std::fill_n(secondRead, kSize * kSize, 0); GrPixmap firstReadPM(upmII, firstRead, kSize * sizeof(uint32_t)); GrPixmap secondReadPM(upmII, secondRead, kSize * sizeof(uint32_t)); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. auto fp1 = GrConfigConversionEffect::Make( GrTextureEffect::Make(std::move(dataView), bitmap.alphaType()), PMConversion::kToUnpremul); readSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp1)); if (!readSFC->readPixels(dContext, firstReadPM, {0, 0})) { return false; } auto fp2 = GrConfigConversionEffect::Make( GrTextureEffect::Make(readSFC->readSurfaceView(), readSFC->colorInfo().alphaType()), PMConversion::kToPremul); tempSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp2)); auto fp3 = GrConfigConversionEffect::Make( GrTextureEffect::Make(tempSFC->readSurfaceView(), tempSFC->colorInfo().alphaType()), PMConversion::kToUnpremul); readSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp3)); if (!readSFC->readPixels(dContext, secondReadPM, {0, 0})) { return false; } for (int y = 0; y < kSize; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) { return false; } } } return true; }