/* * Copyright 2020 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrWangsFormula_DEFINED #define GrWangsFormula_DEFINED #include "include/core/SkPoint.h" #include "include/private/SkFloatingPoint.h" #include "src/gpu/GrVx.h" #include "src/gpu/tessellate/GrVectorXform.h" // Wang's formula gives the minimum number of evenly spaced (in the parametric sense) line segments // that a bezier curve must be chopped into in order to guarantee all lines stay within a distance // of "1/precision" pixels from the true curve. Its definition for a bezier curve of degree "n" is // as follows: // // maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)]) // numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8) // // (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic Programming Approach // to Curves and Surfaces for Geometric Modeling". Morgan Kaufmann Publishers.) namespace GrWangsFormula { // Returns the value by which to multiply length in Wang's formula. (See above.) template constexpr float length_term(float precision) { return (Degree * (Degree - 1) / 8.f) * precision; } template constexpr float length_term_pow2(float precision) { return ((Degree * Degree) * ((Degree - 1) * (Degree - 1)) / 64.f) * (precision * precision); } SK_ALWAYS_INLINE static float root4(float x) { return sqrtf(sqrtf(x)); } // Returns nextlog2(sqrt(x)): // // log2(sqrt(x)) == log2(x^(1/2)) == log2(x)/2 == log2(x)/log2(4) == log4(x) // SK_ALWAYS_INLINE static int nextlog4(float x) { return (sk_float_nextlog2(x) + 1) >> 1; } // Returns nextlog2(sqrt(sqrt(x))): // // log2(sqrt(sqrt(x))) == log2(x^(1/4)) == log2(x)/4 == log2(x)/log2(16) == log16(x) // SK_ALWAYS_INLINE static int nextlog16(float x) { return (sk_float_nextlog2(x) + 3) >> 2; } // Returns Wang's formula, raised to the 4th power, specialized for a quadratic curve. SK_ALWAYS_INLINE static float quadratic_pow4(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { using grvx::float2, skvx::bit_pun; float2 p0 = bit_pun(pts[0]); float2 p1 = bit_pun(pts[1]); float2 p2 = bit_pun(pts[2]); float2 v = grvx::fast_madd<2>(-2, p1, p0) + p2; v = vectorXform(v); float2 vv = v*v; return (vv[0] + vv[1]) * length_term_pow2<2>(precision); } // Returns Wang's formula specialized for a quadratic curve. SK_ALWAYS_INLINE static float quadratic(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { return root4(quadratic_pow4(precision, pts, vectorXform)); } // Returns the log2 value of Wang's formula specialized for a quadratic curve, rounded up to the // next int. SK_ALWAYS_INLINE static int quadratic_log2(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) return nextlog16(quadratic_pow4(precision, pts, vectorXform)); } // Returns Wang's formula, raised to the 4th power, specialized for a cubic curve. SK_ALWAYS_INLINE static float cubic_pow4(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { using grvx::float4; float4 p01 = float4::Load(pts); float4 p12 = float4::Load(pts + 1); float4 p23 = float4::Load(pts + 2); float4 v = grvx::fast_madd<4>(-2, p12, p01) + p23; v = vectorXform(v); float4 vv = v*v; return std::max(vv[0] + vv[1], vv[2] + vv[3]) * length_term_pow2<3>(precision); } // Returns Wang's formula specialized for a cubic curve. SK_ALWAYS_INLINE static float cubic(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { return root4(cubic_pow4(precision, pts, vectorXform)); } // Returns the log2 value of Wang's formula specialized for a cubic curve, rounded up to the next // int. SK_ALWAYS_INLINE static int cubic_log2(float precision, const SkPoint pts[], const GrVectorXform& vectorXform = GrVectorXform()) { // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) return nextlog16(cubic_pow4(precision, pts, vectorXform)); } // Returns the maximum number of line segments a cubic with the given device-space bounding box size // would ever need to be divided into. This is simply a special case of the cubic formula where we // maximize its value by placing control points on specific corners of the bounding box. SK_ALWAYS_INLINE static float worst_case_cubic(float precision, float devWidth, float devHeight) { float k = length_term<3>(precision); return sqrtf(2*k * SkVector::Length(devWidth, devHeight)); } // Returns the maximum log2 number of line segments a cubic with the given device-space bounding box // size would ever need to be divided into. SK_ALWAYS_INLINE static int worst_case_cubic_log2(float precision, float devWidth, float devHeight) { float kk = length_term_pow2<3>(precision); // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) return nextlog16(4*kk * (devWidth * devWidth + devHeight * devHeight)); } // Returns Wang's formula specialized for a conic curve, raised to the second power. // Input points should be in projected space, and note tolerance parameter is not "precision". // // This is not actually due to Wang, but is an analogue from (Theorem 3, corollary 1): // J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for // Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000. SK_ALWAYS_INLINE static float conic_pow2(float tolerance, const SkPoint pts[], float w, const GrVectorXform& vectorXform = GrVectorXform()) { using grvx::dot, grvx::float2, grvx::float4, skvx::bit_pun; float2 p0 = vectorXform(bit_pun(pts[0])); float2 p1 = vectorXform(bit_pun(pts[1])); float2 p2 = vectorXform(bit_pun(pts[2])); // Compute center of bounding box in projected space const float2 C = 0.5f * (skvx::min(skvx::min(p0, p1), p2) + skvx::max(skvx::max(p0, p1), p2)); // Translate by -C. This improves translation-invariance of the formula, // see Sec. 3.3 of cited paper p0 -= C; p1 -= C; p2 -= C; // Compute max length const float max_len = sqrtf(std::max(dot(p0, p0), std::max(dot(p1, p1), dot(p2, p2)))); // Compute forward differences const float2 dp = grvx::fast_madd<2>(-2 * w, p1, p0) + p2; const float dw = fabsf(1 - 2 * w + 1); // Compute numerator and denominator for parametric step size of linearization const float r_minus_eps = std::max(0.f, max_len - tolerance); const float min_w = std::min(w, 1.f); const float numer = sqrtf(grvx::dot(dp, dp)) + r_minus_eps * dw; const float denom = 4 * min_w * tolerance; // Number of segments = sqrt(numer / denom). // This assumes parametric interval of curve being linearized is [t0,t1] = [0, 1]. // If not, the number of segments is (tmax - tmin) / sqrt(denom / numer). return numer / denom; } // Returns the value of Wang's formula specialized for a conic curve. SK_ALWAYS_INLINE static float conic(float tolerance, const SkPoint pts[], float w, const GrVectorXform& vectorXform = GrVectorXform()) { return sqrtf(conic_pow2(tolerance, pts, w, vectorXform)); } // Returns the log2 value of Wang's formula specialized for a conic curve, rounded up to the next // int. SK_ALWAYS_INLINE static int conic_log2(float tolerance, const SkPoint pts[], float w, const GrVectorXform& vectorXform = GrVectorXform()) { // nextlog4(x) == ceil(log2(sqrt(x))) return nextlog4(conic_pow2(tolerance, pts, w, vectorXform)); } } // namespace GrWangsFormula #endif