/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkString.h" #include "src/core/SkGeometry.h" #include "src/core/SkPathPriv.h" #include "src/core/SkTraceEvent.h" #include "src/gpu/GrAuditTrail.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDefaultGeoProcFactory.h" #include "src/gpu/GrDrawOpTest.h" #include "src/gpu/GrGeometryProcessor.h" #include "src/gpu/GrOpFlushState.h" #include "src/gpu/GrProcessor.h" #include "src/gpu/GrProgramInfo.h" #include "src/gpu/GrStyle.h" #include "src/gpu/GrSurfaceDrawContext.h" #include "src/gpu/GrVertexWriter.h" #include "src/gpu/geometry/GrPathUtils.h" #include "src/gpu/geometry/GrStyledShape.h" #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" #include "src/gpu/ops/GrAAConvexTessellator.h" #include "src/gpu/ops/GrAALinearizingConvexPathRenderer.h" #include "src/gpu/ops/GrMeshDrawOp.h" #include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h" static const int DEFAULT_BUFFER_SIZE = 100; // The thicker the stroke, the harder it is to produce high-quality results using tessellation. For // the time being, we simply drop back to software rendering above this stroke width. static const SkScalar kMaxStrokeWidth = 20.0; GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() = default; /////////////////////////////////////////////////////////////////////////////// GrPathRenderer::CanDrawPath GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { if (GrAAType::kCoverage != args.fAAType) { return CanDrawPath::kNo; } if (!args.fShape->knownToBeConvex()) { return CanDrawPath::kNo; } if (args.fShape->style().pathEffect()) { return CanDrawPath::kNo; } if (args.fShape->inverseFilled()) { return CanDrawPath::kNo; } if (args.fShape->bounds().width() <= 0 && args.fShape->bounds().height() <= 0) { // Stroked zero length lines should draw, but this PR doesn't handle that case return CanDrawPath::kNo; } const SkStrokeRec& stroke = args.fShape->style().strokeRec(); if (stroke.getStyle() == SkStrokeRec::kStroke_Style || stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style) { if (!args.fViewMatrix->isSimilarity()) { return CanDrawPath::kNo; } SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * stroke.getWidth(); if (strokeWidth < 1.0f && stroke.getStyle() == SkStrokeRec::kStroke_Style) { return CanDrawPath::kNo; } if (strokeWidth > kMaxStrokeWidth || !args.fShape->knownToBeClosed() || stroke.getJoin() == SkPaint::Join::kRound_Join) { return CanDrawPath::kNo; } return CanDrawPath::kYes; } if (stroke.getStyle() != SkStrokeRec::kFill_Style) { return CanDrawPath::kNo; } // This can almost handle perspective. It would need to use 3 component explicit local coords // when there are FPs that require them. This is difficult to test because AAConvexPathRenderer // takes almost all filled paths that could get here. So just avoid perspective fills. if (args.fViewMatrix->hasPerspective()) { return CanDrawPath::kNo; } return CanDrawPath::kYes; } // extract the result vertices and indices from the GrAAConvexTessellator static void extract_verts(const GrAAConvexTessellator& tess, const SkMatrix* localCoordsMatrix, void* vertData, const GrVertexColor& color, uint16_t firstIndex, uint16_t* idxs) { GrVertexWriter verts{vertData}; for (int i = 0; i < tess.numPts(); ++i) { SkPoint lc; if (localCoordsMatrix) { localCoordsMatrix->mapPoints(&lc, &tess.point(i), 1); } verts.write(tess.point(i), color, GrVertexWriter::If(localCoordsMatrix, lc), tess.coverage(i)); } for (int i = 0; i < tess.numIndices(); ++i) { idxs[i] = tess.index(i) + firstIndex; } } static GrGeometryProcessor* create_lines_only_gp(SkArenaAlloc* arena, bool tweakAlphaForCoverage, bool usesLocalCoords, bool wideColor) { using namespace GrDefaultGeoProcFactory; Coverage::Type coverageType = tweakAlphaForCoverage ? Coverage::kAttributeTweakAlpha_Type : Coverage::kAttribute_Type; LocalCoords::Type localCoordsType = usesLocalCoords ? LocalCoords::kHasExplicit_Type : LocalCoords::kUnused_Type; Color::Type colorType = wideColor ? Color::kPremulWideColorAttribute_Type : Color::kPremulGrColorAttribute_Type; return Make(arena, colorType, coverageType, localCoordsType, SkMatrix::I()); } namespace { class AAFlatteningConvexPathOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelperWithStencil; public: DEFINE_OP_CLASS_ID static GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkPath& path, SkScalar strokeWidth, SkStrokeRec::Style style, SkPaint::Join join, SkScalar miterLimit, const GrUserStencilSettings* stencilSettings) { return Helper::FactoryHelper(context, std::move(paint), viewMatrix, path, strokeWidth, style, join, miterLimit, stencilSettings); } AAFlatteningConvexPathOp(GrProcessorSet* processorSet, const SkPMColor4f& color, const SkMatrix& viewMatrix, const SkPath& path, SkScalar strokeWidth, SkStrokeRec::Style style, SkPaint::Join join, SkScalar miterLimit, const GrUserStencilSettings* stencilSettings) : INHERITED(ClassID()), fHelper(processorSet, GrAAType::kCoverage, stencilSettings) { fPaths.emplace_back( PathData{viewMatrix, path, color, strokeWidth, miterLimit, style, join}); // compute bounds SkRect bounds = path.getBounds(); SkScalar w = strokeWidth; if (w > 0) { w /= 2; SkScalar maxScale = viewMatrix.getMaxScale(); // We should not have a perspective matrix, thus we should have a valid scale. SkASSERT(maxScale != -1); if (SkPaint::kMiter_Join == join && w * maxScale > 1.f) { w *= miterLimit; } bounds.outset(w, w); } this->setTransformedBounds(bounds, viewMatrix, HasAABloat::kYes, IsHairline::kNo); } const char* name() const override { return "AAFlatteningConvexPathOp"; } void visitProxies(const VisitProxyFunc& func) const override { if (fProgramInfo) { fProgramInfo->visitFPProxies(func); } else { fHelper.visitProxies(func); } } FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { return fHelper.finalizeProcessors(caps, clip, clampType, GrProcessorAnalysisCoverage::kSingleChannel, &fPaths.back().fColor, &fWideColor); } private: GrProgramInfo* programInfo() override { return fProgramInfo; } void onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, GrAppliedClip&& appliedClip, const GrXferProcessor::DstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override { GrGeometryProcessor* gp = create_lines_only_gp(arena, fHelper.compatibleWithCoverageAsAlpha(), fHelper.usesLocalCoords(), fWideColor); if (!gp) { SkDebugf("Couldn't create a GrGeometryProcessor\n"); return; } fProgramInfo = fHelper.createProgramInfoWithStencil(caps, arena, writeView, std::move(appliedClip), dstProxyView, gp, GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp); } void recordDraw(Target* target, int vertexCount, size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) { if (vertexCount == 0 || indexCount == 0) { return; } sk_sp vertexBuffer; int firstVertex; void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } memcpy(verts, vertices, vertexCount * vertexStride); sk_sp indexBuffer; int firstIndex; uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } memcpy(idxs, indices, indexCount * sizeof(uint16_t)); GrSimpleMesh* mesh = target->allocMesh(); mesh->setIndexed(std::move(indexBuffer), indexCount, firstIndex, 0, vertexCount - 1, GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); fMeshes.push_back(mesh); } void onPrepareDraws(Target* target) override { if (!fProgramInfo) { this->createProgramInfo(target); if (!fProgramInfo) { return; } } size_t vertexStride = fProgramInfo->geomProc().vertexStride(); int instanceCount = fPaths.count(); int64_t vertexCount = 0; int64_t indexCount = 0; int64_t maxVertices = DEFAULT_BUFFER_SIZE; int64_t maxIndices = DEFAULT_BUFFER_SIZE; uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride); uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t)); for (int i = 0; i < instanceCount; i++) { const PathData& args = fPaths[i]; GrAAConvexTessellator tess(args.fStyle, args.fStrokeWidth, args.fJoin, args.fMiterLimit); if (!tess.tessellate(args.fViewMatrix, args.fPath)) { continue; } int currentVertices = tess.numPts(); if (vertexCount + currentVertices > static_cast(UINT16_MAX)) { // if we added the current instance, we would overflow the indices we can store in a // uint16_t. Draw what we've got so far and reset. this->recordDraw(target, vertexCount, vertexStride, vertices, indexCount, indices); vertexCount = 0; indexCount = 0; } if (vertexCount + currentVertices > maxVertices) { maxVertices = std::max(vertexCount + currentVertices, maxVertices * 2); if (maxVertices * vertexStride > SK_MaxS32) { sk_free(vertices); sk_free(indices); return; } vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride); } int currentIndices = tess.numIndices(); if (indexCount + currentIndices > maxIndices) { maxIndices = std::max(indexCount + currentIndices, maxIndices * 2); if (maxIndices * sizeof(uint16_t) > SK_MaxS32) { sk_free(vertices); sk_free(indices); return; } indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t)); } const SkMatrix* localCoordsMatrix = nullptr; SkMatrix ivm; if (fHelper.usesLocalCoords()) { if (!args.fViewMatrix.invert(&ivm)) { ivm = SkMatrix::I(); } localCoordsMatrix = &ivm; } extract_verts(tess, localCoordsMatrix, vertices + vertexStride * vertexCount, GrVertexColor(args.fColor, fWideColor), vertexCount, indices + indexCount); vertexCount += currentVertices; indexCount += currentIndices; } if (vertexCount <= SK_MaxS32 && indexCount <= SK_MaxS32) { this->recordDraw(target, vertexCount, vertexStride, vertices, indexCount, indices); } sk_free(vertices); sk_free(indices); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { if (!fProgramInfo || fMeshes.isEmpty()) { return; } flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); for (int i = 0; i < fMeshes.count(); ++i) { flushState->drawMesh(*fMeshes[i]); } } CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { AAFlatteningConvexPathOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return CombineResult::kCannotCombine; } fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); fWideColor |= that->fWideColor; return CombineResult::kMerged; } #if GR_TEST_UTILS SkString onDumpInfo() const override { SkString string; for (const auto& path : fPaths) { string.appendf( "Color: 0x%08x, StrokeWidth: %.2f, Style: %d, Join: %d, " "MiterLimit: %.2f\n", path.fColor.toBytes_RGBA(), path.fStrokeWidth, path.fStyle, path.fJoin, path.fMiterLimit); } string += fHelper.dumpInfo(); return string; } #endif struct PathData { SkMatrix fViewMatrix; SkPath fPath; SkPMColor4f fColor; SkScalar fStrokeWidth; SkScalar fMiterLimit; SkStrokeRec::Style fStyle; SkPaint::Join fJoin; }; SkSTArray<1, PathData, true> fPaths; Helper fHelper; bool fWideColor; SkTDArray fMeshes; GrProgramInfo* fProgramInfo = nullptr; using INHERITED = GrMeshDrawOp; }; } // anonymous namespace bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrAALinearizingConvexPathRenderer::onDrawPath"); SkASSERT(args.fRenderTargetContext->numSamples() <= 1); SkASSERT(!args.fShape->isEmpty()); SkASSERT(!args.fShape->style().pathEffect()); SkPath path; args.fShape->asPath(&path); bool fill = args.fShape->style().isSimpleFill(); const SkStrokeRec& stroke = args.fShape->style().strokeRec(); SkScalar strokeWidth = fill ? -1.0f : stroke.getWidth(); SkPaint::Join join = fill ? SkPaint::Join::kMiter_Join : stroke.getJoin(); SkScalar miterLimit = stroke.getMiter(); GrOp::Owner op = AAFlatteningConvexPathOp::Make( args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, strokeWidth, stroke.getStyle(), join, miterLimit, args.fUserStencilSettings); args.fRenderTargetContext->addDrawOp(args.fClip, std::move(op)); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS GR_DRAW_OP_TEST_DEFINE(AAFlatteningConvexPathOp) { SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); const SkPath& path = GrTest::TestPathConvex(random); SkStrokeRec::Style styles[3] = { SkStrokeRec::kFill_Style, SkStrokeRec::kStroke_Style, SkStrokeRec::kStrokeAndFill_Style }; SkStrokeRec::Style style = styles[random->nextU() % 3]; SkScalar strokeWidth = -1.f; SkPaint::Join join = SkPaint::kMiter_Join; SkScalar miterLimit = 0.5f; if (SkStrokeRec::kFill_Style != style) { strokeWidth = random->nextRangeF(1.0f, 10.0f); if (random->nextBool()) { join = SkPaint::kMiter_Join; } else { join = SkPaint::kBevel_Join; } miterLimit = random->nextRangeF(0.5f, 2.0f); } const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context); return AAFlatteningConvexPathOp::Make(context, std::move(paint), viewMatrix, path, strokeWidth, style, join, miterLimit, stencilSettings); } #endif