/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrQuadPerEdgeAA_DEFINED #define GrQuadPerEdgeAA_DEFINED #include "include/core/SkPoint.h" #include "include/core/SkPoint3.h" #include "include/private/GrTypesPriv.h" #include "src/gpu/GrColor.h" #include "src/gpu/GrGeometryProcessor.h" #include "src/gpu/GrSamplerState.h" #include "src/gpu/GrVertexWriter.h" #include "src/gpu/geometry/GrQuad.h" #include "src/gpu/geometry/GrQuadUtils.h" #include "src/gpu/ops/GrMeshDrawOp.h" #include "src/gpu/ops/GrTextureOp.h" class GrCaps; class GrColorSpaceXform; class GrShaderCaps; struct GrVertexWriter; namespace GrQuadPerEdgeAA { using Saturate = GrTextureOp::Saturate; enum class CoverageMode { kNone, kWithPosition, kWithColor }; enum class Subset : bool { kNo = false, kYes = true }; enum class ColorType { kNone, kByte, kFloat, kLast = kFloat }; static const int kColorTypeCount = static_cast(ColorType::kLast) + 1; enum class IndexBufferOption { kPictureFramed, // geometrically AA'd -> 8 verts/quad + an index buffer kIndexedRects, // non-AA'd but indexed -> 4 verts/quad + an index buffer kTriStrips, // non-AA'd -> 4 verts/quad but no index buffer kLast = kTriStrips }; static const int kIndexBufferOptionCount = static_cast(IndexBufferOption::kLast) + 1; IndexBufferOption CalcIndexBufferOption(GrAAType aa, int numQuads); // Gets the minimum ColorType that can represent a color. ColorType MinColorType(SkPMColor4f); // Specifies the vertex configuration for an op that renders per-edge AA quads. The vertex // order (when enabled) is device position, color, local position, subset, aa edge equations. // This order matches the constructor argument order of VertexSpec and is the order that // GPAttributes maintains. If hasLocalCoords is false, then the local quad type can be ignored. struct VertexSpec { public: VertexSpec() : fDeviceQuadType(0) // kAxisAligned , fLocalQuadType(0) // kAxisAligned , fIndexBufferOption(0) // kPictureFramed , fHasLocalCoords(false) , fColorType(0) // kNone , fHasSubset(false) , fUsesCoverageAA(false) , fCompatibleWithCoverageAsAlpha(false) , fRequiresGeometrySubset(false) {} VertexSpec(GrQuad::Type deviceQuadType, ColorType colorType, GrQuad::Type localQuadType, bool hasLocalCoords, Subset subset, GrAAType aa, bool coverageAsAlpha, IndexBufferOption indexBufferOption) : fDeviceQuadType(static_cast(deviceQuadType)) , fLocalQuadType(static_cast(localQuadType)) , fIndexBufferOption(static_cast(indexBufferOption)) , fHasLocalCoords(hasLocalCoords) , fColorType(static_cast(colorType)) , fHasSubset(static_cast(subset)) , fUsesCoverageAA(aa == GrAAType::kCoverage) , fCompatibleWithCoverageAsAlpha(coverageAsAlpha) , fRequiresGeometrySubset(aa == GrAAType::kCoverage && deviceQuadType > GrQuad::Type::kRectilinear) { } GrQuad::Type deviceQuadType() const { return static_cast(fDeviceQuadType); } GrQuad::Type localQuadType() const { return static_cast(fLocalQuadType); } IndexBufferOption indexBufferOption() const { return static_cast(fIndexBufferOption); } bool hasLocalCoords() const { return fHasLocalCoords; } ColorType colorType() const { return static_cast(fColorType); } bool hasVertexColors() const { return ColorType::kNone != this->colorType(); } bool hasSubset() const { return fHasSubset; } bool usesCoverageAA() const { return fUsesCoverageAA; } bool compatibleWithCoverageAsAlpha() const { return fCompatibleWithCoverageAsAlpha; } bool requiresGeometrySubset() const { return fRequiresGeometrySubset; } // Will always be 2 or 3 int deviceDimensionality() const; // Will always be 0 if hasLocalCoords is false, otherwise will be 2 or 3 int localDimensionality() const; int verticesPerQuad() const { return fUsesCoverageAA ? 8 : 4; } CoverageMode coverageMode() const; size_t vertexSize() const; bool needsIndexBuffer() const { return this->indexBufferOption() != IndexBufferOption::kTriStrips; } GrPrimitiveType primitiveType() const { switch (this->indexBufferOption()) { case IndexBufferOption::kPictureFramed: return GrPrimitiveType::kTriangles; case IndexBufferOption::kIndexedRects: return GrPrimitiveType::kTriangles; case IndexBufferOption::kTriStrips: return GrPrimitiveType::kTriangleStrip; } SkUNREACHABLE; } private: static_assert(GrQuad::kTypeCount <= 4, "GrQuad::Type doesn't fit in 2 bits"); static_assert(kColorTypeCount <= 4, "Color doesn't fit in 2 bits"); static_assert(kIndexBufferOptionCount <= 4, "IndexBufferOption doesn't fit in 2 bits"); unsigned fDeviceQuadType: 2; unsigned fLocalQuadType: 2; unsigned fIndexBufferOption: 2; unsigned fHasLocalCoords: 1; unsigned fColorType : 2; unsigned fHasSubset : 1; unsigned fUsesCoverageAA: 1; unsigned fCompatibleWithCoverageAsAlpha: 1; // The geometry subset serves to clip off pixels touched by quads with sharp corners that // would otherwise exceed the miter limit for the AA-outset geometry. unsigned fRequiresGeometrySubset : 1; }; // A Tessellator is responsible for processing a series of device+local GrQuads into a VBO, // as specified by a VertexSpec. This vertex data can then be processed by a GP created with // MakeProcessor and/or MakeTexturedProcessor. class Tessellator { public: explicit Tessellator(const VertexSpec& spec, char* vertices); // Calculates (as needed) inset and outset geometry for anti-aliasing, and appends all // necessary position and vertex attributes required by this Tessellator's VertexSpec into // the 'vertices' the Tessellator was called with. The insetting and outsetting may // damage the provided GrQuads (as this is intended to work with GrQuadBuffer::Iter). // 'localQuad' can be null if the VertexSpec does not use local coords. void append(GrQuad* deviceQuad, GrQuad* localQuad, const SkPMColor4f& color, const SkRect& uvSubset, GrQuadAAFlags aaFlags); SkDEBUGCODE(char* vertices() const { return (char*) fVertexWriter.fPtr; }) private: // VertexSpec defines many unique ways to write vertex attributes, which can be handled // generically by branching per-quad based on the VertexSpec. However, there are several // specs that appear in the wild far more frequently, so they use explicit WriteQuadProcs // that have no branches. typedef void (*WriteQuadProc)(GrVertexWriter* vertices, const VertexSpec& spec, const GrQuad* deviceQuad, const GrQuad* localQuad, const float coverage[4], const SkPMColor4f& color, const SkRect& geomSubset, const SkRect& texSubset); static WriteQuadProc GetWriteQuadProc(const VertexSpec& spec); GrQuadUtils::TessellationHelper fAAHelper; VertexSpec fVertexSpec; GrVertexWriter fVertexWriter; WriteQuadProc fWriteProc; }; GrGeometryProcessor* MakeProcessor(SkArenaAlloc*, const VertexSpec&); GrGeometryProcessor* MakeTexturedProcessor(SkArenaAlloc*, const VertexSpec&, const GrShaderCaps&, const GrBackendFormat&, GrSamplerState, const GrSwizzle&, sk_sp textureColorSpaceXform, Saturate); // This method will return the correct index buffer for the specified indexBufferOption. // It will, correctly, return nullptr if the indexBufferOption is kTriStrips. sk_sp GetIndexBuffer(GrMeshDrawOp::Target*, IndexBufferOption); // What is the maximum number of quads allowed for the specified indexBuffer option? int QuadLimit(IndexBufferOption); // This method will issue the draw call on the provided GrOpsRenderPass, as specified by the // indexing method in vertexSpec. It is up to the calling code to allocate, fill in, and bind a // vertex buffer, and to acquire and bind the correct index buffer (if needed) with // GrPrimitiveRestart::kNo. // // @param runningQuadCount the number of quads already stored in 'vertexBuffer' and // 'indexBuffer' e.g., different GrMeshes have already been placed in // the buffers to allow dynamic state changes. // @param quadCount the number of quads that will be drawn by the provided 'mesh'. // A subsequent ConfigureMesh call would the use // 'runningQuadCount' + 'quadCount' for its new 'runningQuadCount'. void IssueDraw(const GrCaps&, GrOpsRenderPass*, const VertexSpec&, int runningQuadCount, int quadCount, int maxVerts, int absVertBufferOffset); } // namespace GrQuadPerEdgeAA #endif // GrQuadPerEdgeAA_DEFINED