/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/vk/GrVkMemory.h" #include "src/gpu/vk/GrVkGpu.h" #include "src/gpu/vk/GrVkUtil.h" using AllocationPropertyFlags = GrVkMemoryAllocator::AllocationPropertyFlags; using BufferUsage = GrVkMemoryAllocator::BufferUsage; bool GrVkMemory::AllocAndBindBufferMemory(GrVkGpu* gpu, VkBuffer buffer, BufferUsage usage, GrVkAlloc* alloc) { GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); GrVkBackendMemory memory = 0; AllocationPropertyFlags propFlags; bool shouldPersistentlyMapCpuToGpu = gpu->vkCaps().shouldPersistentlyMapCpuToGpuBuffers(); if (usage == BufferUsage::kTransfersFromCpuToGpu || (usage == BufferUsage::kCpuWritesGpuReads && shouldPersistentlyMapCpuToGpu)) { // In general it is always fine (and often better) to keep buffers always mapped that we are // writing to on the cpu. propFlags = AllocationPropertyFlags::kPersistentlyMapped; } else { propFlags = AllocationPropertyFlags::kNone; } VkResult result = allocator->allocateBufferMemory(buffer, usage, propFlags, &memory); if (!gpu->checkVkResult(result)) { return false; } allocator->getAllocInfo(memory, alloc); // Bind buffer VkResult err; GR_VK_CALL_RESULT(gpu, err, BindBufferMemory(gpu->device(), buffer, alloc->fMemory, alloc->fOffset)); if (err) { FreeBufferMemory(gpu, *alloc); return false; } return true; } void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, const GrVkAlloc& alloc) { SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); allocator->freeMemory(alloc.fBackendMemory); } bool GrVkMemory::AllocAndBindImageMemory(GrVkGpu* gpu, VkImage image, bool linearTiling, GrVkAlloc* alloc) { SkASSERT(!linearTiling); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); GrVkBackendMemory memory = 0; VkMemoryRequirements memReqs; GR_VK_CALL(gpu->vkInterface(), GetImageMemoryRequirements(gpu->device(), image, &memReqs)); AllocationPropertyFlags propFlags; // If we ever find that our allocator is not aggressive enough in using dedicated image // memory we can add a size check here to force the use of dedicate memory. However for now, // we let the allocators decide. The allocator can query the GPU for each image to see if the // GPU recommends or requires the use of dedicated memory. if (gpu->vkCaps().shouldAlwaysUseDedicatedImageMemory()) { propFlags = AllocationPropertyFlags::kDedicatedAllocation; } else { propFlags = AllocationPropertyFlags::kNone; } if (gpu->protectedContext()) { propFlags |= AllocationPropertyFlags::kProtected; } VkResult result = allocator->allocateImageMemory(image, propFlags, &memory); if (!gpu->checkVkResult(result)) { return false; } allocator->getAllocInfo(memory, alloc); // Bind buffer VkResult err; GR_VK_CALL_RESULT(gpu, err, BindImageMemory(gpu->device(), image, alloc->fMemory, alloc->fOffset)); if (err) { FreeImageMemory(gpu, linearTiling, *alloc); return false; } return true; } void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling, const GrVkAlloc& alloc) { SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); allocator->freeMemory(alloc.fBackendMemory); } void* GrVkMemory::MapAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc) { SkASSERT(GrVkAlloc::kMappable_Flag & alloc.fFlags); SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); void* mapPtr; VkResult result = allocator->mapMemory(alloc.fBackendMemory, &mapPtr); if (!gpu->checkVkResult(result)) { return nullptr; } return mapPtr; } void GrVkMemory::UnmapAlloc(const GrVkGpu* gpu, const GrVkAlloc& alloc) { SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); allocator->unmapMemory(alloc.fBackendMemory); } void GrVkMemory::GetNonCoherentMappedMemoryRange(const GrVkAlloc& alloc, VkDeviceSize offset, VkDeviceSize size, VkDeviceSize alignment, VkMappedMemoryRange* range) { SkASSERT(alloc.fFlags & GrVkAlloc::kNoncoherent_Flag); offset = offset + alloc.fOffset; VkDeviceSize offsetDiff = offset & (alignment -1); offset = offset - offsetDiff; size = (size + alignment - 1) & ~(alignment - 1); #ifdef SK_DEBUG SkASSERT(offset >= alloc.fOffset); SkASSERT(offset + size <= alloc.fOffset + alloc.fSize); SkASSERT(0 == (offset & (alignment-1))); SkASSERT(size > 0); SkASSERT(0 == (size & (alignment-1))); #endif memset(range, 0, sizeof(VkMappedMemoryRange)); range->sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range->memory = alloc.fMemory; range->offset = offset; range->size = size; } void GrVkMemory::FlushMappedAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc, VkDeviceSize offset, VkDeviceSize size) { if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) { SkASSERT(offset == 0); SkASSERT(size <= alloc.fSize); SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); VkResult result = allocator->flushMemory(alloc.fBackendMemory, offset, size); gpu->checkVkResult(result); } } void GrVkMemory::InvalidateMappedAlloc(GrVkGpu* gpu, const GrVkAlloc& alloc, VkDeviceSize offset, VkDeviceSize size) { if (alloc.fFlags & GrVkAlloc::kNoncoherent_Flag) { SkASSERT(offset == 0); SkASSERT(size <= alloc.fSize); SkASSERT(alloc.fBackendMemory); GrVkMemoryAllocator* allocator = gpu->memoryAllocator(); VkResult result = allocator->invalidateMemory(alloc.fBackendMemory, offset, size); gpu->checkVkResult(result); } }