/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkTSort.h" #include "src/pathops/SkOpSegment.h" #include "src/pathops/SkOpSpan.h" #include "src/pathops/SkPathOpsPoint.h" #include "src/pathops/SkPathWriter.h" // wrap path to keep track of whether the contour is initialized and non-empty SkPathWriter::SkPathWriter(SkPath& path) : fPathPtr(&path) { init(); } void SkPathWriter::close() { if (fCurrent.isEmpty()) { return; } SkASSERT(this->isClosed()); #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.close();\n"); #endif fCurrent.close(); fPathPtr->addPath(fCurrent); fCurrent.reset(); init(); } void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) { SkPoint pt2pt = this->update(pt2); #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n", pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY, weight); #endif fCurrent.conicTo(pt1, pt2pt, weight); } void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) { SkPoint pt3pt = this->update(pt3); #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3pt.fX, pt3pt.fY); #endif fCurrent.cubicTo(pt1, pt2, pt3pt); } bool SkPathWriter::deferredLine(const SkOpPtT* pt) { SkASSERT(fFirstPtT); SkASSERT(fDefer[0]); if (fDefer[0] == pt) { // FIXME: why we're adding a degenerate line? Caller should have preflighted this. return true; } if (pt->contains(fDefer[0])) { // FIXME: why we're adding a degenerate line? return true; } if (this->matchedLast(pt)) { return false; } if (fDefer[1] && this->changedSlopes(pt)) { this->lineTo(); fDefer[0] = fDefer[1]; } fDefer[1] = pt; return true; } void SkPathWriter::deferredMove(const SkOpPtT* pt) { if (!fDefer[1]) { fFirstPtT = fDefer[0] = pt; return; } SkASSERT(fDefer[0]); if (!this->matchedLast(pt)) { this->finishContour(); fFirstPtT = fDefer[0] = pt; } } void SkPathWriter::finishContour() { if (!this->matchedLast(fDefer[0])) { if (!fDefer[1]) { return; } this->lineTo(); } if (fCurrent.isEmpty()) { return; } if (this->isClosed()) { this->close(); } else { SkASSERT(fDefer[1]); fEndPtTs.push_back(fFirstPtT); fEndPtTs.push_back(fDefer[1]); fPartials.push_back(fCurrent); this->init(); } } void SkPathWriter::init() { fCurrent.reset(); fFirstPtT = fDefer[0] = fDefer[1] = nullptr; } bool SkPathWriter::isClosed() const { return this->matchedLast(fFirstPtT); } void SkPathWriter::lineTo() { if (fCurrent.isEmpty()) { this->moveTo(); } #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY); #endif fCurrent.lineTo(fDefer[1]->fPt); } bool SkPathWriter::matchedLast(const SkOpPtT* test) const { if (test == fDefer[1]) { return true; } if (!test) { return false; } if (!fDefer[1]) { return false; } return test->contains(fDefer[1]); } void SkPathWriter::moveTo() { #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY); #endif fCurrent.moveTo(fFirstPtT->fPt); } void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) { SkPoint pt2pt = this->update(pt2); #if DEBUG_PATH_CONSTRUCTION SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY); #endif fCurrent.quadTo(pt1, pt2pt); } // if last point to be written matches the current path's first point, alter the // last to avoid writing a degenerate lineTo when the path is closed SkPoint SkPathWriter::update(const SkOpPtT* pt) { if (!fDefer[1]) { this->moveTo(); } else if (!this->matchedLast(fDefer[0])) { this->lineTo(); } SkPoint result = pt->fPt; if (fFirstPtT && result != fFirstPtT->fPt && fFirstPtT->contains(pt)) { result = fFirstPtT->fPt; } fDefer[0] = fDefer[1] = pt; // set both to know that there is not a pending deferred line return result; } bool SkPathWriter::someAssemblyRequired() { this->finishContour(); return fEndPtTs.count() > 0; } bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const { if (matchedLast(fDefer[0])) { return false; } SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt; SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt; return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX; } class DistanceLessThan { public: DistanceLessThan(double* distances) : fDistances(distances) { } double* fDistances; bool operator()(const int one, const int two) const { return fDistances[one] < fDistances[two]; } }; /* check start and end of each contour if not the same, record them match them up connect closest reassemble contour pieces into new path */ void SkPathWriter::assemble() { if (!this->someAssemblyRequired()) { return; } #if DEBUG_PATH_CONSTRUCTION SkDebugf("%s\n", __FUNCTION__); #endif SkOpPtT const* const* runs = fEndPtTs.begin(); // starts, ends of partial contours int endCount = fEndPtTs.count(); // all starts and ends SkASSERT(endCount > 0); SkASSERT(endCount == fPartials.count() * 2); #if DEBUG_ASSEMBLE for (int index = 0; index < endCount; index += 2) { const SkOpPtT* eStart = runs[index]; const SkOpPtT* eEnd = runs[index + 1]; SkASSERT(eStart != eEnd); SkASSERT(!eStart->contains(eEnd)); SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__, eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY); } #endif // lengthen any partial contour adjacent to a simple segment for (int pIndex = 0; pIndex < endCount; pIndex++) { SkOpPtT* opPtT = const_cast(runs[pIndex]); SkPath dummy; SkPathWriter partWriter(dummy); do { if (!zero_or_one(opPtT->fT)) { break; } SkOpSpanBase* opSpanBase = opPtT->span(); SkOpSpanBase* start = opPtT->fT ? opSpanBase->prev() : opSpanBase->upCast()->next(); int step = opPtT->fT ? 1 : -1; const SkOpSegment* opSegment = opSpanBase->segment(); const SkOpSegment* nextSegment = opSegment->isSimple(&start, &step); if (!nextSegment) { break; } SkOpSpanBase* opSpanEnd = start->t() ? start->prev() : start->upCast()->next(); if (start->starter(opSpanEnd)->alreadyAdded()) { break; } nextSegment->addCurveTo(start, opSpanEnd, &partWriter); opPtT = opSpanEnd->ptT(); SkOpPtT** runsPtr = const_cast(&runs[pIndex]); *runsPtr = opPtT; } while (true); partWriter.finishContour(); const SkTArray& partPartials = partWriter.partials(); if (!partPartials.count()) { continue; } // if pIndex is even, reverse and prepend to fPartials; otherwise, append SkPath& partial = const_cast(fPartials[pIndex >> 1]); const SkPath& part = partPartials[0]; if (pIndex & 1) { partial.addPath(part, SkPath::kExtend_AddPathMode); } else { SkPath reverse; reverse.reverseAddPath(part); reverse.addPath(partial, SkPath::kExtend_AddPathMode); partial = reverse; } } SkTDArray sLink, eLink; int linkCount = endCount / 2; // number of partial contours sLink.append(linkCount); eLink.append(linkCount); int rIndex, iIndex; for (rIndex = 0; rIndex < linkCount; ++rIndex) { sLink[rIndex] = eLink[rIndex] = SK_MaxS32; } const int entries = endCount * (endCount - 1) / 2; // folded triangle SkSTArray<8, double, true> distances(entries); SkSTArray<8, int, true> sortedDist(entries); SkSTArray<8, int, true> distLookup(entries); int rRow = 0; int dIndex = 0; for (rIndex = 0; rIndex < endCount - 1; ++rIndex) { const SkOpPtT* oPtT = runs[rIndex]; for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) { const SkOpPtT* iPtT = runs[iIndex]; double dx = iPtT->fPt.fX - oPtT->fPt.fX; double dy = iPtT->fPt.fY - oPtT->fPt.fY; double dist = dx * dx + dy * dy; distLookup.push_back(rRow + iIndex); distances.push_back(dist); // oStart distance from iStart sortedDist.push_back(dIndex++); } rRow += endCount; } SkASSERT(dIndex == entries); SkTQSort(sortedDist.begin(), sortedDist.end(), DistanceLessThan(distances.begin())); int remaining = linkCount; // number of start/end pairs for (rIndex = 0; rIndex < entries; ++rIndex) { int pair = sortedDist[rIndex]; pair = distLookup[pair]; int row = pair / endCount; int col = pair - row * endCount; int ndxOne = row >> 1; bool endOne = row & 1; int* linkOne = endOne ? eLink.begin() : sLink.begin(); if (linkOne[ndxOne] != SK_MaxS32) { continue; } int ndxTwo = col >> 1; bool endTwo = col & 1; int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); if (linkTwo[ndxTwo] != SK_MaxS32) { continue; } SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); bool flip = endOne == endTwo; linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; if (!--remaining) { break; } } SkASSERT(!remaining); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < linkCount; ++rIndex) { int s = sLink[rIndex]; int e = eLink[rIndex]; SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); } #endif rIndex = 0; do { bool forward = true; bool first = true; int sIndex = sLink[rIndex]; SkASSERT(sIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; int eIndex; if (sIndex < 0) { eIndex = sLink[~sIndex]; sLink[~sIndex] = SK_MaxS32; } else { eIndex = eLink[sIndex]; eLink[sIndex] = SK_MaxS32; } SkASSERT(eIndex != SK_MaxS32); #if DEBUG_ASSEMBLE SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', eIndex < 0 ? ~eIndex : eIndex); #endif do { const SkPath& contour = fPartials[rIndex]; if (!first) { SkPoint prior, next; if (!fPathPtr->getLastPt(&prior)) { return; } if (forward) { next = contour.getPoint(0); } else { SkAssertResult(contour.getLastPt(&next)); } if (prior != next) { /* TODO: if there is a gap between open path written so far and path to come, connect by following segments from one to the other, rather than introducing a diagonal to connect the two. */ SkDebugf(""); } } if (forward) { fPathPtr->addPath(contour, first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode); } else { SkASSERT(!first); fPathPtr->reversePathTo(contour); } if (first) { first = false; } #if DEBUG_ASSEMBLE SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); #endif if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { fPathPtr->close(); break; } if (forward) { eIndex = eLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); eLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(sLink[eIndex] == rIndex); sLink[eIndex] = SK_MaxS32; } else { SkASSERT(eLink[~eIndex] == ~rIndex); eLink[~eIndex] = SK_MaxS32; } } else { eIndex = sLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(eLink[eIndex] == rIndex); eLink[eIndex] = SK_MaxS32; } else { SkASSERT(sLink[~eIndex] == ~rIndex); sLink[~eIndex] = SK_MaxS32; } } rIndex = eIndex; if (rIndex < 0) { forward ^= 1; rIndex = ~rIndex; } } while (true); for (rIndex = 0; rIndex < linkCount; ++rIndex) { if (sLink[rIndex] != SK_MaxS32) { break; } } } while (rIndex < linkCount); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < linkCount; ++rIndex) { SkASSERT(sLink[rIndex] == SK_MaxS32); SkASSERT(eLink[rIndex] == SK_MaxS32); } #endif return; }