/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkGeometry.h" #include "src/pathops/SkReduceOrder.h" int SkReduceOrder::reduce(const SkDLine& line) { fLine[0] = line[0]; int different = line[0] != line[1]; fLine[1] = line[different]; return 1 + different; } static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { reduction[0] = reduction[1] = quad[0]; return 1; } static int reductionLineCount(const SkDQuad& reduction) { return 1 + !reduction[0].approximatelyEqual(reduction[1]); } static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) { reduction[0] = quad[0]; reduction[1] = quad[2]; return reductionLineCount(reduction); } static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) { reduction[0] = quad[0]; reduction[1] = quad[2]; return reductionLineCount(reduction); } static int check_linear(const SkDQuad& quad, int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { if (!quad.isLinear(0, 2)) { return 0; } // four are colinear: return line formed by outside reduction[0] = quad[0]; reduction[1] = quad[2]; return reductionLineCount(reduction); } // reduce to a quadratic or smaller // look for identical points // look for all four points in a line // note that three points in a line doesn't simplify a cubic // look for approximation with single quadratic // save approximation with multiple quadratics for later int SkReduceOrder::reduce(const SkDQuad& quad) { int index, minX, maxX, minY, maxY; int minXSet, minYSet; minX = maxX = minY = maxY = 0; minXSet = minYSet = 0; for (index = 1; index < 3; ++index) { if (quad[minX].fX > quad[index].fX) { minX = index; } if (quad[minY].fY > quad[index].fY) { minY = index; } if (quad[maxX].fX < quad[index].fX) { maxX = index; } if (quad[maxY].fY < quad[index].fY) { maxY = index; } } for (index = 0; index < 3; ++index) { if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) { minXSet |= 1 << index; } if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { minYSet |= 1 << index; } } if ((minXSet & 0x05) == 0x5 && (minYSet & 0x05) == 0x5) { // test for degenerate // this quad starts and ends at the same place, so never contributes // to the fill return coincident_line(quad, fQuad); } if (minXSet == 0x7) { // test for vertical line return vertical_line(quad, fQuad); } if (minYSet == 0x7) { // test for horizontal line return horizontal_line(quad, fQuad); } int result = check_linear(quad, minX, maxX, minY, maxY, fQuad); if (result) { return result; } fQuad = quad; return 3; } //////////////////////////////////////////////////////////////////////////////////// static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { reduction[0] = reduction[1] = cubic[0]; return 1; } static int reductionLineCount(const SkDCubic& reduction) { return 1 + !reduction[0].approximatelyEqual(reduction[1]); } static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) { reduction[0] = cubic[0]; reduction[1] = cubic[3]; return reductionLineCount(reduction); } static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) { reduction[0] = cubic[0]; reduction[1] = cubic[3]; return reductionLineCount(reduction); } // check to see if it is a quadratic or a line static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { double dx10 = cubic[1].fX - cubic[0].fX; double dx23 = cubic[2].fX - cubic[3].fX; double midX = cubic[0].fX + dx10 * 3 / 2; double sideAx = midX - cubic[3].fX; double sideBx = dx23 * 3 / 2; if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx) : !AlmostEqualUlps_Pin(sideAx, sideBx)) { return 0; } double dy10 = cubic[1].fY - cubic[0].fY; double dy23 = cubic[2].fY - cubic[3].fY; double midY = cubic[0].fY + dy10 * 3 / 2; double sideAy = midY - cubic[3].fY; double sideBy = dy23 * 3 / 2; if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy) : !AlmostEqualUlps_Pin(sideAy, sideBy)) { return 0; } reduction[0] = cubic[0]; reduction[1].fX = midX; reduction[1].fY = midY; reduction[2] = cubic[3]; return 3; } static int check_linear(const SkDCubic& cubic, int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { if (!cubic.isLinear(0, 3)) { return 0; } // four are colinear: return line formed by outside reduction[0] = cubic[0]; reduction[1] = cubic[3]; return reductionLineCount(reduction); } /* food for thought: http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the corresponding quadratic Bezier are (given in convex combinations of points): q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 Of course, this curve does not interpolate the end-points, but it would be interesting to see the behaviour of such a curve in an applet. -- Kalle Rutanen http://kaba.hilvi.org */ // reduce to a quadratic or smaller // look for identical points // look for all four points in a line // note that three points in a line doesn't simplify a cubic // look for approximation with single quadratic // save approximation with multiple quadratics for later int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) { int index, minX, maxX, minY, maxY; int minXSet, minYSet; minX = maxX = minY = maxY = 0; minXSet = minYSet = 0; for (index = 1; index < 4; ++index) { if (cubic[minX].fX > cubic[index].fX) { minX = index; } if (cubic[minY].fY > cubic[index].fY) { minY = index; } if (cubic[maxX].fX < cubic[index].fX) { maxX = index; } if (cubic[maxY].fY < cubic[index].fY) { maxY = index; } } for (index = 0; index < 4; ++index) { double cx = cubic[index].fX; double cy = cubic[index].fY; double denom = std::max(fabs(cx), std::max(fabs(cy), std::max(fabs(cubic[minX].fX), fabs(cubic[minY].fY)))); if (denom == 0) { minXSet |= 1 << index; minYSet |= 1 << index; continue; } double inv = 1 / denom; if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) { minXSet |= 1 << index; } if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { minYSet |= 1 << index; } } if (minXSet == 0xF) { // test for vertical line if (minYSet == 0xF) { // return 1 if all four are coincident return coincident_line(cubic, fCubic); } return vertical_line(cubic, fCubic); } if (minYSet == 0xF) { // test for horizontal line return horizontal_line(cubic, fCubic); } int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic); if (result) { return result; } if (allowQuadratics == SkReduceOrder::kAllow_Quadratics && (result = check_quadratic(cubic, fCubic))) { return result; } fCubic = cubic; return 4; } SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) { SkDQuad quad; quad.set(a); SkReduceOrder reducer; int order = reducer.reduce(quad); if (order == 2) { // quad became line for (int index = 0; index < order; ++index) { *reducePts++ = reducer.fLine[index].asSkPoint(); } } return SkPathOpsPointsToVerb(order - 1); } SkPath::Verb SkReduceOrder::Conic(const SkConic& c, SkPoint* reducePts) { SkPath::Verb verb = SkReduceOrder::Quad(c.fPts, reducePts); if (verb > SkPath::kLine_Verb && c.fW == 1) { return SkPath::kQuad_Verb; } return verb == SkPath::kQuad_Verb ? SkPath::kConic_Verb : verb; } SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) { if (SkDPoint::ApproximatelyEqual(a[0], a[1]) && SkDPoint::ApproximatelyEqual(a[0], a[2]) && SkDPoint::ApproximatelyEqual(a[0], a[3])) { reducePts[0] = a[0]; return SkPath::kMove_Verb; } SkDCubic cubic; cubic.set(a); SkReduceOrder reducer; int order = reducer.reduce(cubic, kAllow_Quadratics); if (order == 2 || order == 3) { // cubic became line or quad for (int index = 0; index < order; ++index) { *reducePts++ = reducer.fQuad[index].asSkPoint(); } } return SkPathOpsPointsToVerb(order - 1); }