/* * Copyright 2020 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/SkSLConstantFolder.h" #include #include "src/sksl/SkSLContext.h" #include "src/sksl/SkSLErrorReporter.h" #include "src/sksl/ir/SkSLBinaryExpression.h" #include "src/sksl/ir/SkSLBoolLiteral.h" #include "src/sksl/ir/SkSLConstructor.h" #include "src/sksl/ir/SkSLConstructorCompound.h" #include "src/sksl/ir/SkSLConstructorSplat.h" #include "src/sksl/ir/SkSLExpression.h" #include "src/sksl/ir/SkSLFloatLiteral.h" #include "src/sksl/ir/SkSLIntLiteral.h" #include "src/sksl/ir/SkSLPrefixExpression.h" #include "src/sksl/ir/SkSLType.h" #include "src/sksl/ir/SkSLVariable.h" #include "src/sksl/ir/SkSLVariableReference.h" namespace SkSL { static std::unique_ptr eliminate_no_op_boolean(const Expression& left, Operator op, const Expression& right) { SkASSERT(right.is()); bool rightVal = right.as().value(); // Detect no-op Boolean expressions and optimize them away. if ((op.kind() == Token::Kind::TK_LOGICALAND && rightVal) || // (expr && true) -> (expr) (op.kind() == Token::Kind::TK_LOGICALOR && !rightVal) || // (expr || false) -> (expr) (op.kind() == Token::Kind::TK_LOGICALXOR && !rightVal) || // (expr ^^ false) -> (expr) (op.kind() == Token::Kind::TK_EQEQ && rightVal) || // (expr == true) -> (expr) (op.kind() == Token::Kind::TK_NEQ && !rightVal)) { // (expr != false) -> (expr) return left.clone(); } return nullptr; } static std::unique_ptr short_circuit_boolean(const Expression& left, Operator op, const Expression& right) { SkASSERT(left.is()); bool leftVal = left.as().value(); // When the literal is on the left, we can sometimes eliminate the other expression entirely. if ((op.kind() == Token::Kind::TK_LOGICALAND && !leftVal) || // (false && expr) -> (false) (op.kind() == Token::Kind::TK_LOGICALOR && leftVal)) { // (true || expr) -> (true) return left.clone(); } // We can't eliminate the right-side expression via short-circuit, but we might still be able to // simplify away a no-op expression. return eliminate_no_op_boolean(right, op, left); } // 'T' is the actual stored type of the literal data (SKSL_FLOAT or SKSL_INT). // 'U' is an unsigned version of that, used to perform addition, subtraction, and multiplication, // to avoid signed-integer overflow errors. This mimics the use of URESULT vs. RESULT when doing // scalar folding in Simplify, later in this file. template static std::unique_ptr simplify_vector(const Context& context, const Expression& left, Operator op, const Expression& right) { SkASSERT(left.type().isVector()); SkASSERT(left.type() == right.type()); const Type& type = left.type(); // Handle boolean operations: == != if (op.kind() == Token::Kind::TK_EQEQ || op.kind() == Token::Kind::TK_NEQ) { bool equality = (op.kind() == Token::Kind::TK_EQEQ); switch (left.compareConstant(right)) { case Expression::ComparisonResult::kNotEqual: equality = !equality; [[fallthrough]]; case Expression::ComparisonResult::kEqual: return BoolLiteral::Make(context, left.fOffset, equality); case Expression::ComparisonResult::kUnknown: return nullptr; } } // Handle floating-point arithmetic: + - * / const auto vectorComponentwiseFold = [&](auto foldFn) -> std::unique_ptr { const Type& componentType = type.componentType(); ExpressionArray args; args.reserve_back(type.columns()); for (int i = 0; i < type.columns(); i++) { U value = foldFn(left.getConstantSubexpression(i)->as>().value(), right.getConstantSubexpression(i)->as>().value()); args.push_back(Literal::Make(left.fOffset, value, &componentType)); } return ConstructorCompound::Make(context, left.fOffset, type, std::move(args)); }; switch (op.kind()) { case Token::Kind::TK_PLUS: return vectorComponentwiseFold([](U a, U b) { return a + b; }); case Token::Kind::TK_MINUS: return vectorComponentwiseFold([](U a, U b) { return a - b; }); case Token::Kind::TK_STAR: return vectorComponentwiseFold([](U a, U b) { return a * b; }); case Token::Kind::TK_SLASH: return vectorComponentwiseFold([](T a, T b) { return a / b; }); default: return nullptr; } } static std::unique_ptr cast_expression(const Context& context, const Expression& expr, const Type& type) { ExpressionArray ctorArgs; ctorArgs.push_back(expr.clone()); std::unique_ptr ctor = Constructor::Convert(context, expr.fOffset, type, std::move(ctorArgs)); SkASSERT(ctor); return ctor; } static ConstructorSplat splat_scalar(const Expression& scalar, const Type& type) { SkASSERT(type.isVector()); SkASSERT(type.componentType() == scalar.type()); // Use a constructor to splat the scalar expression across a vector. return ConstructorSplat{scalar.fOffset, type, scalar.clone()}; } bool ConstantFolder::GetConstantInt(const Expression& value, SKSL_INT* out) { const Expression* expr = GetConstantValueForVariable(value); if (!expr->is()) { return false; } *out = expr->as().value(); return true; } bool ConstantFolder::GetConstantFloat(const Expression& value, SKSL_FLOAT* out) { const Expression* expr = GetConstantValueForVariable(value); if (!expr->is()) { return false; } *out = expr->as().value(); return true; } static bool is_constant_scalar_value(const Expression& inExpr, float match) { const Expression* expr = ConstantFolder::GetConstantValueForVariable(inExpr); return (expr->is() && expr->as().value() == match) || (expr->is() && expr->as().value() == match); } static bool contains_constant_zero(const Expression& expr) { if (expr.isAnyConstructor()) { for (const auto& arg : expr.asAnyConstructor().argumentSpan()) { if (contains_constant_zero(*arg)) { return true; } } return false; } return is_constant_scalar_value(expr, 0.0); } static bool is_constant_value(const Expression& expr, float value) { // This check only supports scalars and vectors (and in particular, not matrices). SkASSERT(expr.type().isScalar() || expr.type().isVector()); if (expr.isAnyConstructor()) { for (const auto& arg : expr.asAnyConstructor().argumentSpan()) { if (!is_constant_value(*arg, value)) { return false; } } return true; } return is_constant_scalar_value(expr, value); } bool ConstantFolder::ErrorOnDivideByZero(const Context& context, int offset, Operator op, const Expression& right) { switch (op.kind()) { case Token::Kind::TK_SLASH: case Token::Kind::TK_SLASHEQ: case Token::Kind::TK_PERCENT: case Token::Kind::TK_PERCENTEQ: if (contains_constant_zero(right)) { context.fErrors.error(offset, "division by zero"); return true; } return false; default: return false; } } const Expression* ConstantFolder::GetConstantValueForVariable(const Expression& inExpr) { for (const Expression* expr = &inExpr;;) { if (!expr->is()) { break; } const VariableReference& varRef = expr->as(); if (varRef.refKind() != VariableRefKind::kRead) { break; } const Variable& var = *varRef.variable(); if (!(var.modifiers().fFlags & Modifiers::kConst_Flag)) { break; } expr = var.initialValue(); if (!expr) { SkDEBUGFAILF("found a const variable without an initial value (%s)", var.description().c_str()); break; } if (expr->isCompileTimeConstant()) { return expr; } if (!expr->is()) { break; } } // We didn't find a compile-time constant at the end. Return the expression as-is. return &inExpr; } std::unique_ptr ConstantFolder::MakeConstantValueForVariable( std::unique_ptr expr) { const Expression* constantExpr = GetConstantValueForVariable(*expr); if (constantExpr != expr.get()) { expr = constantExpr->clone(); } return expr; } static std::unique_ptr simplify_no_op_arithmetic(const Context& context, const Expression& left, Operator op, const Expression& right, const Type& resultType) { switch (op.kind()) { case Token::Kind::TK_PLUS: if (is_constant_value(right, 0.0)) { // x + 0 return cast_expression(context, left, resultType); } if (is_constant_value(left, 0.0)) { // 0 + x return cast_expression(context, right, resultType); } break; case Token::Kind::TK_STAR: if (is_constant_value(right, 1.0)) { // x * 1 return cast_expression(context, left, resultType); } if (is_constant_value(left, 1.0)) { // 1 * x return cast_expression(context, right, resultType); } if (is_constant_value(right, 0.0) && !left.hasSideEffects()) { // x * 0 return cast_expression(context, right, resultType); } if (is_constant_value(left, 0.0) && !right.hasSideEffects()) { // 0 * x return cast_expression(context, left, resultType); } break; case Token::Kind::TK_MINUS: if (is_constant_value(right, 0.0)) { // x - 0 return cast_expression(context, left, resultType); } if (is_constant_value(left, 0.0)) { // 0 - x (to `-x`) return PrefixExpression::Make(context, Token::Kind::TK_MINUS, cast_expression(context, right, resultType)); } break; case Token::Kind::TK_SLASH: if (is_constant_value(right, 1.0)) { // x / 1 return cast_expression(context, left, resultType); } if (is_constant_value(left, 0.0) && !is_constant_value(right, 0.0) && !right.hasSideEffects()) { // 0 / x (where x is not 0) return cast_expression(context, left, resultType); } break; case Token::Kind::TK_PLUSEQ: case Token::Kind::TK_MINUSEQ: if (is_constant_value(right, 0.0)) { // x += 0, x -= 0 std::unique_ptr result = cast_expression(context, left, resultType); Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead); return result; } break; case Token::Kind::TK_STAREQ: case Token::Kind::TK_SLASHEQ: if (is_constant_value(right, 1.0)) { // x *= 1, x /= 1 std::unique_ptr result = cast_expression(context, left, resultType); Analysis::UpdateRefKind(result.get(), VariableRefKind::kRead); return result; } break; default: break; } return nullptr; } std::unique_ptr ConstantFolder::Simplify(const Context& context, int offset, const Expression& leftExpr, Operator op, const Expression& rightExpr, const Type& resultType) { // When optimization is enabled, replace constant variables with trivial initial-values. const Expression* left; const Expression* right; if (context.fConfig->fSettings.fOptimize) { left = GetConstantValueForVariable(leftExpr); right = GetConstantValueForVariable(rightExpr); } else { left = &leftExpr; right = &rightExpr; } // If this is the comma operator, the left side is evaluated but not otherwise used in any way. // So if the left side has no side effects, it can just be eliminated entirely. if (op.kind() == Token::Kind::TK_COMMA && !left->hasSideEffects()) { return right->clone(); } // If this is the assignment operator, and both sides are the same trivial expression, this is // self-assignment (i.e., `var = var`) and can be reduced to just a variable reference (`var`). // This can happen when other parts of the assignment are optimized away. if (op.kind() == Token::Kind::TK_EQ && Analysis::IsSameExpressionTree(*left, *right)) { return right->clone(); } // Simplify the expression when both sides are constant Boolean literals. if (left->is() && right->is()) { bool leftVal = left->as().value(); bool rightVal = right->as().value(); bool result; switch (op.kind()) { case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break; case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break; case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break; case Token::Kind::TK_EQEQ: result = leftVal == rightVal; break; case Token::Kind::TK_NEQ: result = leftVal != rightVal; break; default: return nullptr; } return BoolLiteral::Make(context, offset, result); } // If the left side is a Boolean literal, apply short-circuit optimizations. if (left->is()) { return short_circuit_boolean(*left, op, *right); } // If the right side is a Boolean literal... if (right->is()) { // ... and the left side has no side effects... if (!left->hasSideEffects()) { // We can reverse the expressions and short-circuit optimizations are still valid. return short_circuit_boolean(*right, op, *left); } // We can't use short-circuiting, but we can still optimize away no-op Boolean expressions. return eliminate_no_op_boolean(*left, op, *right); } if (op.kind() == Token::Kind::TK_EQEQ && Analysis::IsSameExpressionTree(*left, *right)) { // With == comparison, if both sides are the same trivial expression, this is self- // comparison and is always true. (We are not concerned with NaN.) return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/true); } if (op.kind() == Token::Kind::TK_NEQ && Analysis::IsSameExpressionTree(*left, *right)) { // With != comparison, if both sides are the same trivial expression, this is self- // comparison and is always false. (We are not concerned with NaN.) return BoolLiteral::Make(context, leftExpr.fOffset, /*value=*/false); } if (ErrorOnDivideByZero(context, offset, op, *right)) { return nullptr; } // Optimize away no-op arithmetic like `x * 1`, `x *= 1`, `x + 0`, `x * 0`, `0 / x`, etc. const Type& leftType = left->type(); const Type& rightType = right->type(); if ((leftType.isScalar() || leftType.isVector()) && (rightType.isScalar() || rightType.isVector())) { std::unique_ptr expr = simplify_no_op_arithmetic(context, *left, op, *right, resultType); if (expr) { return expr; } } // Other than the cases above, constant folding requires both sides to be constant. if (!left->isCompileTimeConstant() || !right->isCompileTimeConstant()) { return nullptr; } // Note that we expressly do not worry about precision and overflow here -- we use the maximum // precision to calculate the results and hope the result makes sense. // TODO(skia:10932): detect and handle integer overflow properly. using SKSL_UINT = uint64_t; #define RESULT(t, op) t ## Literal::Make(offset, leftVal op rightVal, &resultType) #define URESULT(t, op) t ## Literal::Make(offset, (SKSL_UINT)(leftVal) op \ (SKSL_UINT)(rightVal), &resultType) if (left->is() && right->is()) { SKSL_INT leftVal = left->as().value(); SKSL_INT rightVal = right->as().value(); switch (op.kind()) { case Token::Kind::TK_PLUS: return URESULT(Int, +); case Token::Kind::TK_MINUS: return URESULT(Int, -); case Token::Kind::TK_STAR: return URESULT(Int, *); case Token::Kind::TK_SLASH: if (leftVal == std::numeric_limits::min() && rightVal == -1) { context.fErrors.error(offset, "arithmetic overflow"); return nullptr; } return RESULT(Int, /); case Token::Kind::TK_PERCENT: if (leftVal == std::numeric_limits::min() && rightVal == -1) { context.fErrors.error(offset, "arithmetic overflow"); return nullptr; } return RESULT(Int, %); case Token::Kind::TK_BITWISEAND: return RESULT(Int, &); case Token::Kind::TK_BITWISEOR: return RESULT(Int, |); case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^); case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); case Token::Kind::TK_NEQ: return RESULT(Bool, !=); case Token::Kind::TK_GT: return RESULT(Bool, >); case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); case Token::Kind::TK_LT: return RESULT(Bool, <); case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); case Token::Kind::TK_SHL: if (rightVal >= 0 && rightVal <= 31) { // Left-shifting a negative (or really, any signed) value is undefined behavior // in C++, but not GLSL. Do the shift on unsigned values, to avoid UBSAN. return URESULT(Int, <<); } context.fErrors.error(offset, "shift value out of range"); return nullptr; case Token::Kind::TK_SHR: if (rightVal >= 0 && rightVal <= 31) { return RESULT(Int, >>); } context.fErrors.error(offset, "shift value out of range"); return nullptr; default: return nullptr; } } // Perform constant folding on pairs of floating-point literals. if (left->is() && right->is()) { SKSL_FLOAT leftVal = left->as().value(); SKSL_FLOAT rightVal = right->as().value(); switch (op.kind()) { case Token::Kind::TK_PLUS: return RESULT(Float, +); case Token::Kind::TK_MINUS: return RESULT(Float, -); case Token::Kind::TK_STAR: return RESULT(Float, *); case Token::Kind::TK_SLASH: return RESULT(Float, /); case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); case Token::Kind::TK_NEQ: return RESULT(Bool, !=); case Token::Kind::TK_GT: return RESULT(Bool, >); case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); case Token::Kind::TK_LT: return RESULT(Bool, <); case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); default: return nullptr; } } // Perform constant folding on pairs of vectors. if (leftType.isVector() && leftType == rightType) { if (leftType.componentType().isFloat()) { return simplify_vector(context, *left, op, *right); } if (leftType.componentType().isInteger()) { return simplify_vector(context, *left, op, *right); } return nullptr; } // Perform constant folding on vectors against scalars, e.g.: half4(2) + 2 if (leftType.isVector() && leftType.componentType() == rightType) { if (rightType.isFloat()) { return simplify_vector(context, *left, op, splat_scalar(*right, left->type())); } if (rightType.isInteger()) { return simplify_vector(context, *left, op, splat_scalar(*right, left->type())); } return nullptr; } // Perform constant folding on scalars against vectors, e.g.: 2 + half4(2) if (rightType.isVector() && rightType.componentType() == leftType) { if (leftType.isFloat()) { return simplify_vector(context, splat_scalar(*left, right->type()), op, *right); } if (leftType.isInteger()) { return simplify_vector(context, splat_scalar(*left, right->type()), op, *right); } return nullptr; } // Perform constant folding on pairs of matrices or arrays. if ((leftType.isMatrix() && rightType.isMatrix()) || (leftType.isArray() && rightType.isArray())) { bool equality; switch (op.kind()) { case Token::Kind::TK_EQEQ: equality = true; break; case Token::Kind::TK_NEQ: equality = false; break; default: return nullptr; } switch (left->compareConstant(*right)) { case Expression::ComparisonResult::kNotEqual: equality = !equality; [[fallthrough]]; case Expression::ComparisonResult::kEqual: return BoolLiteral::Make(context, offset, equality); case Expression::ComparisonResult::kUnknown: return nullptr; } } // We aren't able to constant-fold. #undef RESULT #undef URESULT return nullptr; } } // namespace SkSL