/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/codegen/SkSLMetalCodeGenerator.h" #include "src/core/SkScopeExit.h" #include "src/sksl/SkSLCompiler.h" #include "src/sksl/SkSLMemoryLayout.h" #include "src/sksl/ir/SkSLConstructorArray.h" #include "src/sksl/ir/SkSLConstructorCompoundCast.h" #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" #include "src/sksl/ir/SkSLConstructorMatrixResize.h" #include "src/sksl/ir/SkSLConstructorSplat.h" #include "src/sksl/ir/SkSLConstructorStruct.h" #include "src/sksl/ir/SkSLExpressionStatement.h" #include "src/sksl/ir/SkSLExtension.h" #include "src/sksl/ir/SkSLIndexExpression.h" #include "src/sksl/ir/SkSLModifiersDeclaration.h" #include "src/sksl/ir/SkSLNop.h" #include "src/sksl/ir/SkSLStructDefinition.h" #include "src/sksl/ir/SkSLVariableReference.h" #include namespace SkSL { const char* MetalCodeGenerator::OperatorName(Operator op) { switch (op.kind()) { case Token::Kind::TK_LOGICALXOR: return "!="; default: return op.operatorName(); } } class MetalCodeGenerator::GlobalStructVisitor { public: virtual ~GlobalStructVisitor() = default; virtual void visitInterfaceBlock(const InterfaceBlock& block, const String& blockName) = 0; virtual void visitTexture(const Type& type, const String& name) = 0; virtual void visitSampler(const Type& type, const String& name) = 0; virtual void visitVariable(const Variable& var, const Expression* value) = 0; }; void MetalCodeGenerator::write(const char* s) { if (!s[0]) { return; } if (fAtLineStart) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->writeText(s); fAtLineStart = false; } void MetalCodeGenerator::writeLine(const char* s) { this->write(s); this->writeLine(); } void MetalCodeGenerator::write(const String& s) { this->write(s.c_str()); } void MetalCodeGenerator::writeLine(const String& s) { this->writeLine(s.c_str()); } void MetalCodeGenerator::writeLine() { fOut->writeText(fLineEnding); fAtLineStart = true; } void MetalCodeGenerator::finishLine() { if (!fAtLineStart) { this->writeLine(); } } void MetalCodeGenerator::writeExtension(const Extension& ext) { this->writeLine("#extension " + ext.name() + " : enable"); } String MetalCodeGenerator::typeName(const Type& type) { switch (type.typeKind()) { case Type::TypeKind::kArray: SkASSERTF(type.columns() > 0, "invalid array size: %s", type.description().c_str()); return String::printf("array<%s, %d>", this->typeName(type.componentType()).c_str(), type.columns()); case Type::TypeKind::kVector: return this->typeName(type.componentType()) + to_string(type.columns()); case Type::TypeKind::kMatrix: return this->typeName(type.componentType()) + to_string(type.columns()) + "x" + to_string(type.rows()); case Type::TypeKind::kSampler: return "texture2d"; // FIXME - support other texture types case Type::TypeKind::kEnum: return "int"; default: if (type == *fContext.fTypes.fHalf) { // FIXME - Currently only supporting floats in MSL to avoid type coercion issues. return fContext.fTypes.fFloat->name(); } else { return type.name(); } } } void MetalCodeGenerator::writeStructDefinition(const StructDefinition& s) { const Type& type = s.type(); this->writeLine("struct " + type.name() + " {"); fIndentation++; this->writeFields(type.fields(), type.fOffset); fIndentation--; this->writeLine("};"); } void MetalCodeGenerator::writeType(const Type& type) { this->write(this->typeName(type)); } void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { switch (expr.kind()) { case Expression::Kind::kBinary: this->writeBinaryExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kBoolLiteral: this->writeBoolLiteral(expr.as()); break; case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorStruct: this->writeAnyConstructor(expr.asAnyConstructor(), "{", "}", parentPrecedence); break; case Expression::Kind::kConstructorCompound: this->writeConstructorCompound(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorDiagonalMatrix: case Expression::Kind::kConstructorSplat: this->writeAnyConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); break; case Expression::Kind::kConstructorMatrixResize: this->writeConstructorMatrixResize(expr.as(), parentPrecedence); break; case Expression::Kind::kConstructorScalarCast: case Expression::Kind::kConstructorCompoundCast: this->writeCastConstructor(expr.asAnyConstructor(), "(", ")", parentPrecedence); break; case Expression::Kind::kIntLiteral: this->writeIntLiteral(expr.as()); break; case Expression::Kind::kFieldAccess: this->writeFieldAccess(expr.as()); break; case Expression::Kind::kFloatLiteral: this->writeFloatLiteral(expr.as()); break; case Expression::Kind::kFunctionCall: this->writeFunctionCall(expr.as()); break; case Expression::Kind::kPrefix: this->writePrefixExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kPostfix: this->writePostfixExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kSetting: this->writeSetting(expr.as()); break; case Expression::Kind::kSwizzle: this->writeSwizzle(expr.as()); break; case Expression::Kind::kVariableReference: this->writeVariableReference(expr.as()); break; case Expression::Kind::kTernary: this->writeTernaryExpression(expr.as(), parentPrecedence); break; case Expression::Kind::kIndex: this->writeIndexExpression(expr.as()); break; default: SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); break; } } String MetalCodeGenerator::getOutParamHelper(const FunctionCall& call, const ExpressionArray& arguments, const SkTArray& outVars) { AutoOutputStream outputToExtraFunctions(this, &fExtraFunctions, &fIndentation); const FunctionDeclaration& function = call.function(); String name = "_skOutParamHelper" + to_string(fSwizzleHelperCount++) + "_" + function.mangledName(); const char* separator = ""; // Emit a prototype for the function we'll be calling through to in our helper. if (!function.isBuiltin()) { this->writeFunctionDeclaration(function); this->writeLine(";"); } // Synthesize a helper function that takes the same inputs as `function`, except in places where // `outVars` is non-null; in those places, we take the type of the VariableReference. // // float _skOutParamHelper0_originalFuncName(float _var0, float _var1, float& outParam) { this->writeType(call.type()); this->write(" "); this->write(name); this->write("("); this->writeFunctionRequirementParams(function, separator); SkASSERT(outVars.size() == arguments.size()); SkASSERT(outVars.size() == function.parameters().size()); // We need to detect cases where the caller passes the same variable as an out-param more than // once, and avoid reusing the variable name. (In those cases we can actually just ignore the // redundant input parameter entirely, and not give it any name.) std::unordered_set writtenVars; for (int index = 0; index < arguments.count(); ++index) { this->write(separator); separator = ", "; const Variable* param = function.parameters()[index]; this->writeModifiers(param->modifiers(), /*globalContext=*/false); const Type* type = outVars[index] ? &outVars[index]->type() : &arguments[index]->type(); this->writeType(*type); if (param->modifiers().fFlags & Modifiers::kOut_Flag) { this->write("&"); } if (outVars[index]) { auto [iter, didInsert] = writtenVars.insert(outVars[index]->variable()); if (didInsert) { this->write(" "); fIgnoreVariableReferenceModifiers = true; this->writeVariableReference(*outVars[index]); fIgnoreVariableReferenceModifiers = false; } } else { this->write(" _var"); this->write(to_string(index)); } } this->writeLine(") {"); ++fIndentation; for (int index = 0; index < outVars.count(); ++index) { if (!outVars[index]) { continue; } // float3 _var2[ = outParam.zyx]; this->writeType(arguments[index]->type()); this->write(" _var"); this->write(to_string(index)); const Variable* param = function.parameters()[index]; if (param->modifiers().fFlags & Modifiers::kIn_Flag) { this->write(" = "); fIgnoreVariableReferenceModifiers = true; this->writeExpression(*arguments[index], Precedence::kAssignment); fIgnoreVariableReferenceModifiers = false; } this->writeLine(";"); } // [int _skResult = ] myFunction(inputs, outputs, _globals, _var0, _var1, _var2, _var3); bool hasResult = (call.type().name() != "void"); if (hasResult) { this->writeType(call.type()); this->write(" _skResult = "); } this->writeName(function.mangledName()); this->write("("); separator = ""; this->writeFunctionRequirementArgs(function, separator); for (int index = 0; index < arguments.count(); ++index) { this->write(separator); separator = ", "; this->write("_var"); this->write(to_string(index)); } this->writeLine(");"); for (int index = 0; index < outVars.count(); ++index) { if (!outVars[index]) { continue; } // outParam.zyx = _var2; fIgnoreVariableReferenceModifiers = true; this->writeExpression(*arguments[index], Precedence::kAssignment); fIgnoreVariableReferenceModifiers = false; this->write(" = _var"); this->write(to_string(index)); this->writeLine(";"); } if (hasResult) { this->writeLine("return _skResult;"); } --fIndentation; this->writeLine("}"); return name; } String MetalCodeGenerator::getBitcastIntrinsic(const Type& outType) { return "as_type<" + outType.displayName() + ">"; } void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) { const FunctionDeclaration& function = c.function(); // Many intrinsics need to be rewritten in Metal. if (function.isIntrinsic()) { if (this->writeIntrinsicCall(c, function.intrinsicKind())) { return; } } // Determine whether or not we need to emulate GLSL's out-param semantics for Metal using a // helper function. (Specifically, out-parameters in GLSL are only written back to the original // variable at the end of the function call; also, swizzles are supported, whereas Metal doesn't // allow a swizzle to be passed to a `floatN&`.) const ExpressionArray& arguments = c.arguments(); const std::vector& parameters = function.parameters(); SkASSERT(arguments.size() == parameters.size()); bool foundOutParam = false; SkSTArray<16, VariableReference*> outVars; outVars.push_back_n(arguments.count(), (VariableReference*)nullptr); for (int index = 0; index < arguments.count(); ++index) { // If this is an out parameter... if (parameters[index]->modifiers().fFlags & Modifiers::kOut_Flag) { // Find the expression's inner variable being written to. Analysis::AssignmentInfo info; // Assignability was verified at IRGeneration time, so this should always succeed. SkAssertResult(Analysis::IsAssignable(*arguments[index], &info)); outVars[index] = info.fAssignedVar; foundOutParam = true; } } if (foundOutParam) { // Out parameters need to be written back to at the end of the function. To do this, we // synthesize a helper function which evaluates the out-param expression into a temporary // variable, calls the original function, then writes the temp var back into the out param // using the original out-param expression. (This lets us support things like swizzles and // array indices.) this->write(getOutParamHelper(c, arguments, outVars)); } else { this->write(function.mangledName()); } this->write("("); const char* separator = ""; this->writeFunctionRequirementArgs(function, separator); for (int i = 0; i < arguments.count(); ++i) { this->write(separator); separator = ", "; if (outVars[i]) { this->writeExpression(*outVars[i], Precedence::kSequence); } else { this->writeExpression(*arguments[i], Precedence::kSequence); } } this->write(")"); } static constexpr char kInverse2x2[] = R"( float2x2 float2x2_inverse(float2x2 m) { return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m)); } )"; static constexpr char kInverse3x3[] = R"( float3x3 float3x3_inverse(float3x3 m) { float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2]; float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2]; float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2]; float b01 = a22*a11 - a12*a21; float b11 = -a22*a10 + a12*a20; float b21 = a21*a10 - a11*a20; float det = a00*b01 + a01*b11 + a02*b21; return float3x3(b01, (-a22*a01 + a02*a21), ( a12*a01 - a02*a11), b11, ( a22*a00 - a02*a20), (-a12*a00 + a02*a10), b21, (-a21*a00 + a01*a20), ( a11*a00 - a01*a10)) * (1/det); } )"; static constexpr char kInverse4x4[] = R"( float4x4 float4x4_inverse(float4x4 m) { float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3]; float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3]; float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3]; float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3]; float b00 = a00*a11 - a01*a10; float b01 = a00*a12 - a02*a10; float b02 = a00*a13 - a03*a10; float b03 = a01*a12 - a02*a11; float b04 = a01*a13 - a03*a11; float b05 = a02*a13 - a03*a12; float b06 = a20*a31 - a21*a30; float b07 = a20*a32 - a22*a30; float b08 = a20*a33 - a23*a30; float b09 = a21*a32 - a22*a31; float b10 = a21*a33 - a23*a31; float b11 = a22*a33 - a23*a32; float det = b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06; return float4x4(a11*b11 - a12*b10 + a13*b09, a02*b10 - a01*b11 - a03*b09, a31*b05 - a32*b04 + a33*b03, a22*b04 - a21*b05 - a23*b03, a12*b08 - a10*b11 - a13*b07, a00*b11 - a02*b08 + a03*b07, a32*b02 - a30*b05 - a33*b01, a20*b05 - a22*b02 + a23*b01, a10*b10 - a11*b08 + a13*b06, a01*b08 - a00*b10 - a03*b06, a30*b04 - a31*b02 + a33*b00, a21*b02 - a20*b04 - a23*b00, a11*b07 - a10*b09 - a12*b06, a00*b09 - a01*b07 + a02*b06, a31*b01 - a30*b03 - a32*b00, a20*b03 - a21*b01 + a22*b00) * (1/det); } )"; String MetalCodeGenerator::getInversePolyfill(const ExpressionArray& arguments) { // Only use polyfills for a function taking a single-argument square matrix. if (arguments.size() == 1) { const Type& type = arguments.front()->type(); if (type.isMatrix() && type.rows() == type.columns()) { // Inject the correct polyfill based on the matrix size. String name = this->typeName(type) + "_inverse"; auto [iter, didInsert] = fWrittenIntrinsics.insert(name); if (didInsert) { switch (type.rows()) { case 2: fExtraFunctions.writeText(kInverse2x2); break; case 3: fExtraFunctions.writeText(kInverse3x3); break; case 4: fExtraFunctions.writeText(kInverse4x4); break; } } return name; } } // This isn't the built-in `inverse`. We don't want to polyfill it at all. return "inverse"; } static constexpr char kMatrixCompMult[] = R"( template matrix matrixCompMult(matrix a, matrix b) { matrix result; for (int c = 0; c < C; ++c) { result[c] = a[c] * b[c]; } return result; } )"; void MetalCodeGenerator::writeMatrixCompMult() { String name = "matrixCompMult"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(kMatrixCompMult); } } String MetalCodeGenerator::getTempVariable(const Type& type) { String tempVar = "_skTemp" + to_string(fVarCount++); this->fFunctionHeader += " " + this->typeName(type) + " " + tempVar + ";\n"; return tempVar; } void MetalCodeGenerator::writeSimpleIntrinsic(const FunctionCall& c) { // Write out an intrinsic function call exactly as-is. No muss no fuss. this->write(c.function().name()); this->writeArgumentList(c.arguments()); } void MetalCodeGenerator::writeArgumentList(const ExpressionArray& arguments) { this->write("("); const char* separator = ""; for (const std::unique_ptr& arg : arguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, Precedence::kSequence); } this->write(")"); } bool MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c, IntrinsicKind kind) { const ExpressionArray& arguments = c.arguments(); switch (kind) { case k_sample_IntrinsicKind: { this->writeExpression(*arguments[0], Precedence::kSequence); this->write(".sample("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(SAMPLER_SUFFIX); this->write(", "); const Type& arg1Type = arguments[1]->type(); if (arg1Type.columns() == 3) { // have to store the vector in a temp variable to avoid double evaluating it String tmpVar = this->getTempVariable(arg1Type); this->write("(" + tmpVar + " = "); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(", " + tmpVar + ".xy / " + tmpVar + ".z))"); } else { SkASSERT(arg1Type.columns() == 2); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(")"); } return true; } case k_mod_IntrinsicKind: { // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y) String tmpX = this->getTempVariable(arguments[0]->type()); String tmpY = this->getTempVariable(arguments[1]->type()); this->write("(" + tmpX + " = "); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(", " + tmpY + " = "); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))"); return true; } // GLSL declares scalar versions of most geometric intrinsics, but these don't exist in MSL case k_distance_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { this->write("abs("); this->writeExpression(*arguments[0], Precedence::kAdditive); this->write(" - "); this->writeExpression(*arguments[1], Precedence::kAdditive); this->write(")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_dot_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { this->write("("); this->writeExpression(*arguments[0], Precedence::kMultiplicative); this->write(" * "); this->writeExpression(*arguments[1], Precedence::kMultiplicative); this->write(")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_faceforward_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // ((((Nref) * (I) < 0) ? 1 : -1) * (N)) this->write("(((("); this->writeExpression(*arguments[2], Precedence::kSequence); this->write(") * ("); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(") < 0) ? 1 : -1) * ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("))"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_length_IntrinsicKind: { this->write(arguments[0]->type().columns() == 1 ? "abs(" : "length("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_normalize_IntrinsicKind: { this->write(arguments[0]->type().columns() == 1 ? "sign(" : "normalize("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_floatBitsToInt_IntrinsicKind: case k_floatBitsToUint_IntrinsicKind: case k_intBitsToFloat_IntrinsicKind: case k_uintBitsToFloat_IntrinsicKind: { this->write(this->getBitcastIntrinsic(c.type())); this->write("("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_degrees_IntrinsicKind: { this->write("(("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(") * 57.2957795)"); return true; } case k_radians_IntrinsicKind: { this->write("(("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(") * 0.0174532925)"); return true; } case k_dFdx_IntrinsicKind: { this->write("dfdx"); this->writeArgumentList(c.arguments()); return true; } case k_dFdy_IntrinsicKind: { // Flipping Y also negates the Y derivatives. if (fProgram.fConfig->fSettings.fFlipY) { this->write("-"); } this->write("dfdy"); this->writeArgumentList(c.arguments()); return true; } case k_inverse_IntrinsicKind: { this->write(this->getInversePolyfill(arguments)); this->writeArgumentList(c.arguments()); return true; } case k_inversesqrt_IntrinsicKind: { this->write("rsqrt"); this->writeArgumentList(c.arguments()); return true; } case k_atan_IntrinsicKind: { this->write(c.arguments().size() == 2 ? "atan2" : "atan"); this->writeArgumentList(c.arguments()); return true; } case k_reflect_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // We need to synthesize `I - 2 * N * I * N`. String tmpI = this->getTempVariable(arguments[0]->type()); String tmpN = this->getTempVariable(arguments[1]->type()); // (_skTempI = ... this->write("(" + tmpI + " = "); this->writeExpression(*arguments[0], Precedence::kSequence); // , _skTempN = ... this->write(", " + tmpN + " = "); this->writeExpression(*arguments[1], Precedence::kSequence); // , _skTempI - 2 * _skTempN * _skTempI * _skTempN) this->write(", " + tmpI + " - 2 * " + tmpN + " * " + tmpI + " * " + tmpN + ")"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_refract_IntrinsicKind: { if (arguments[0]->type().columns() == 1) { // Metal does implement refract for vectors; rather than reimplementing refract from // scratch, we can replace the call with `refract(float2(I,0), float2(N,0), eta).x`. this->write("(refract(float2("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(", 0), float2("); this->writeExpression(*arguments[1], Precedence::kSequence); this->write(", 0), "); this->writeExpression(*arguments[2], Precedence::kSequence); this->write(").x)"); } else { this->writeSimpleIntrinsic(c); } return true; } case k_roundEven_IntrinsicKind: { this->write("rint"); this->writeArgumentList(c.arguments()); return true; } case k_bitCount_IntrinsicKind: { this->write("popcount("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write(")"); return true; } case k_findLSB_IntrinsicKind: { // Create a temp variable to store the expression, to avoid double-evaluating it. String skTemp = this->getTempVariable(arguments[0]->type()); String exprType = this->typeName(arguments[0]->type()); // ctz returns numbits(type) on zero inputs; GLSL documents it as generating -1 instead. // Use select to detect zero inputs and force a -1 result. // (_skTemp1 = (.....), select(ctz(_skTemp1), int4(-1), _skTemp1 == int4(0))) this->write("("); this->write(skTemp); this->write(" = ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("), select(ctz("); this->write(skTemp); this->write("), "); this->write(exprType); this->write("(-1), "); this->write(skTemp); this->write(" == "); this->write(exprType); this->write("(0)))"); return true; } case k_findMSB_IntrinsicKind: { // Create a temp variable to store the expression, to avoid double-evaluating it. String skTemp1 = this->getTempVariable(arguments[0]->type()); String exprType = this->typeName(arguments[0]->type()); // GLSL findMSB is actually quite different from Metal's clz: // - For signed negative numbers, it returns the first zero bit, not the first one bit! // - For an empty input (0/~0 depending on sign), findMSB gives -1; clz is numbits(type) // (_skTemp1 = (.....), this->write("("); this->write(skTemp1); this->write(" = ("); this->writeExpression(*arguments[0], Precedence::kSequence); this->write("), "); // Signed input types might be negative; we need another helper variable to negate the // input (since we can only find one bits, not zero bits). String skTemp2; if (arguments[0]->type().isSigned()) { // ... _skTemp2 = (select(_skTemp1, ~_skTemp1, _skTemp1 < 0)), skTemp2 = this->getTempVariable(arguments[0]->type()); this->write(skTemp2); this->write(" = (select("); this->write(skTemp1); this->write(", ~"); this->write(skTemp1); this->write(", "); this->write(skTemp1); this->write(" < 0)), "); } else { skTemp2 = skTemp1; } // ... select(int4(clz(_skTemp2)), int4(-1), _skTemp2 == int4(0))) this->write("select("); this->write(this->typeName(c.type())); this->write("(clz("); this->write(skTemp2); this->write(")), "); this->write(this->typeName(c.type())); this->write("(-1), "); this->write(skTemp2); this->write(" == "); this->write(exprType); this->write("(0)))"); return true; } case k_matrixCompMult_IntrinsicKind: { this->writeMatrixCompMult(); this->writeSimpleIntrinsic(c); return true; } case k_equal_IntrinsicKind: case k_greaterThan_IntrinsicKind: case k_greaterThanEqual_IntrinsicKind: case k_lessThan_IntrinsicKind: case k_lessThanEqual_IntrinsicKind: case k_notEqual_IntrinsicKind: { this->write("("); this->writeExpression(*c.arguments()[0], Precedence::kRelational); switch (kind) { case k_equal_IntrinsicKind: this->write(" == "); break; case k_notEqual_IntrinsicKind: this->write(" != "); break; case k_lessThan_IntrinsicKind: this->write(" < "); break; case k_lessThanEqual_IntrinsicKind: this->write(" <= "); break; case k_greaterThan_IntrinsicKind: this->write(" > "); break; case k_greaterThanEqual_IntrinsicKind: this->write(" >= "); break; default: SK_ABORT("unsupported comparison intrinsic kind"); } this->writeExpression(*c.arguments()[1], Precedence::kRelational); this->write(")"); return true; } default: return false; } } // Assembles a matrix of type floatRxC by resizing another matrix named `x0`. // Cells that don't exist in the source matrix will be populated with identity-matrix values. void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int rows, int columns) { SkASSERT(rows <= 4); SkASSERT(columns <= 4); const char* columnSeparator = ""; for (int c = 0; c < columns; ++c) { fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows); columnSeparator = "), "; // Determine how many values to take from the source matrix for this row. int swizzleLength = 0; if (c < sourceMatrix.columns()) { swizzleLength = std::min<>(rows, sourceMatrix.rows()); } // Emit all the values from the source matrix row. bool firstItem; switch (swizzleLength) { case 0: firstItem = true; break; case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break; case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break; case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break; case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break; default: SkUNREACHABLE; } // Emit the placeholder identity-matrix cells. for (int r = swizzleLength; r < rows; ++r) { fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0"); firstItem = false; } } fExtraFunctions.writeText(")"); } // Assembles a matrix of type floatRxC by concatenating an arbitrary mix of values, named `x0`, // `x1`, etc. An error is written if the expression list don't contain exactly R*C scalars. void MetalCodeGenerator::assembleMatrixFromExpressions(const AnyConstructor& ctor, int rows, int columns) { size_t argIndex = 0; int argPosition = 0; auto args = ctor.argumentSpan(); const char* columnSeparator = ""; for (int c = 0; c < columns; ++c) { fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows); columnSeparator = "), "; const char* rowSeparator = ""; for (int r = 0; r < rows; ++r) { fExtraFunctions.writeText(rowSeparator); rowSeparator = ", "; if (argIndex < args.size()) { const Type& argType = args[argIndex]->type(); switch (argType.typeKind()) { case Type::TypeKind::kScalar: { fExtraFunctions.printf("x%zu", argIndex); break; } case Type::TypeKind::kVector: { fExtraFunctions.printf("x%zu[%d]", argIndex, argPosition); break; } case Type::TypeKind::kMatrix: { fExtraFunctions.printf("x%zu[%d][%d]", argIndex, argPosition / argType.rows(), argPosition % argType.rows()); break; } default: { SkDEBUGFAIL("incorrect type of argument for matrix constructor"); fExtraFunctions.writeText(""); break; } } ++argPosition; if (argPosition >= argType.columns() * argType.rows()) { ++argIndex; argPosition = 0; } } else { SkDEBUGFAIL("not enough arguments for matrix constructor"); fExtraFunctions.writeText(""); } } } if (argPosition != 0 || argIndex != args.size()) { SkDEBUGFAIL("incorrect number of arguments for matrix constructor"); fExtraFunctions.writeText(", "); } fExtraFunctions.writeText(")"); } // Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape. // Keeps track of previously generated constructors so that we won't generate more than one // constructor for any given permutation of input argument types. Returns the name of the // generated constructor method. String MetalCodeGenerator::getMatrixConstructHelper(const AnyConstructor& c) { const Type& matrix = c.type(); int columns = matrix.columns(); int rows = matrix.rows(); auto args = c.argumentSpan(); // Create the helper-method name and use it as our lookup key. String name; name.appendf("float%dx%d_from", columns, rows); for (const std::unique_ptr& expr : args) { name.appendf("_%s", this->typeName(expr->type()).c_str()); } // If a helper-method has already been synthesized, we don't need to synthesize it again. auto [iter, newlyCreated] = fHelpers.insert(name); if (!newlyCreated) { return name; } // Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C // components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot // supply a mixture of scalars and vectors.) fExtraFunctions.printf("float%dx%d %s(", columns, rows, name.c_str()); size_t argIndex = 0; const char* argSeparator = ""; for (const std::unique_ptr& expr : args) { fExtraFunctions.printf("%s%s x%zu", argSeparator, this->typeName(expr->type()).c_str(), argIndex++); argSeparator = ", "; } fExtraFunctions.printf(") {\n return float%dx%d(", columns, rows); if (args.size() == 1 && args.front()->type().isMatrix()) { this->assembleMatrixFromMatrix(args.front()->type(), rows, columns); } else { this->assembleMatrixFromExpressions(c, rows, columns); } fExtraFunctions.writeText(");\n}\n"); return name; } bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) { if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) { return false; } if (t1.columns() > 1) { return this->canCoerce(t1.componentType(), t2.componentType()); } return t1.isFloat() && t2.isFloat(); } bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const ConstructorCompound& c) { SkASSERT(c.type().isMatrix()); // GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it // expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C // scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of // scalars can be constructed trivially. In more complex cases, we generate a helper function // that converts our inputs into a properly-shaped matrix. // A matrix construct helper method is always used if any input argument is a matrix. // Helper methods are also necessary when any argument would span multiple rows. For instance: // // float2 x = (1, 2); // float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline // | 2 4 6 | // // float2 x = (2, 3); // float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used // | 2 4 6 | // // float4 x = (1, 2, 3, 4); // float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used // | 2 4 | // int position = 0; for (const std::unique_ptr& expr : c.arguments()) { // If an input argument is a matrix, we need a helper function. if (expr->type().isMatrix()) { return true; } position += expr->type().columns(); if (position > c.type().rows()) { // An input argument would span multiple rows; a helper function is required. return true; } if (position == c.type().rows()) { // We've advanced to the end of a row. Wrap to the start of the next row. position = 0; } } return false; } void MetalCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, Precedence parentPrecedence) { // Matrix-resize via casting doesn't natively exist in Metal at all, so we always need to use a // matrix-construct helper here. this->write(this->getMatrixConstructHelper(c)); this->write("("); this->writeExpression(*c.argument(), Precedence::kSequence); this->write(")"); } void MetalCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, Precedence parentPrecedence) { if (c.type().isMatrix()) { this->writeConstructorCompoundMatrix(c, parentPrecedence); } else { this->writeAnyConstructor(c, "(", ")", parentPrecedence); } } void MetalCodeGenerator::writeConstructorCompoundMatrix(const ConstructorCompound& c, Precedence parentPrecedence) { // Emit and invoke a matrix-constructor helper method if one is necessary. if (this->matrixConstructHelperIsNeeded(c)) { this->write(this->getMatrixConstructHelper(c)); this->write("("); const char* separator = ""; for (const std::unique_ptr& expr : c.arguments()) { this->write(separator); separator = ", "; this->writeExpression(*expr, Precedence::kSequence); } this->write(")"); return; } // Metal doesn't allow creating matrices by passing in scalars and vectors in a jumble; it // requires your scalars to be grouped up into columns. Because `matrixConstructHelperIsNeeded` // returned false, we know that none of our scalars/vectors "wrap" across across a column, so we // can group our inputs up and synthesize a constructor for each column. const Type& matrixType = c.type(); const Type& columnType = matrixType.componentType().toCompound( fContext, /*columns=*/matrixType.rows(), /*rows=*/1); this->writeType(matrixType); this->write("("); const char* separator = ""; int scalarCount = 0; for (const std::unique_ptr& arg : c.arguments()) { this->write(separator); separator = ", "; if (arg->type().columns() < matrixType.rows()) { // Write a `floatN(` constructor to group scalars and smaller vectors together. if (!scalarCount) { this->writeType(columnType); this->write("("); } scalarCount += arg->type().columns(); } this->writeExpression(*arg, Precedence::kSequence); if (scalarCount && scalarCount == matrixType.rows()) { // Close our `floatN(...` constructor block from above. this->write(")"); scalarCount = 0; } } this->write(")"); } void MetalCodeGenerator::writeAnyConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence) { this->writeType(c.type()); this->write(leftBracket); const char* separator = ""; for (const std::unique_ptr& arg : c.argumentSpan()) { this->write(separator); separator = ", "; this->writeExpression(*arg, Precedence::kSequence); } this->write(rightBracket); } void MetalCodeGenerator::writeCastConstructor(const AnyConstructor& c, const char* leftBracket, const char* rightBracket, Precedence parentPrecedence) { // If the type is coercible, emit it directly without the cast. auto args = c.argumentSpan(); if (args.size() == 1) { if (this->canCoerce(c.type(), args.front()->type())) { this->writeExpression(*args.front(), parentPrecedence); return; } } return this->writeAnyConstructor(c, leftBracket, rightBracket, parentPrecedence); } void MetalCodeGenerator::writeFragCoord() { if (fRTHeightName.length()) { this->write("float4(_fragCoord.x, "); this->write(fRTHeightName.c_str()); this->write(" - _fragCoord.y, 0.0, _fragCoord.w)"); } else { this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)"); } } void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) { // When assembling out-param helper functions, we copy variables into local clones with matching // names. We never want to prepend "_in." or "_globals." when writing these variables since // we're actually targeting the clones. if (fIgnoreVariableReferenceModifiers) { this->writeName(ref.variable()->name()); return; } switch (ref.variable()->modifiers().fLayout.fBuiltin) { case SK_FRAGCOLOR_BUILTIN: this->write("_out.sk_FragColor"); break; case SK_FRAGCOORD_BUILTIN: this->writeFragCoord(); break; case SK_VERTEXID_BUILTIN: this->write("sk_VertexID"); break; case SK_INSTANCEID_BUILTIN: this->write("sk_InstanceID"); break; case SK_CLOCKWISE_BUILTIN: // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter // clockwise to match Skia convention. this->write(fProgram.fConfig->fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)"); break; default: const Variable& var = *ref.variable(); if (var.storage() == Variable::Storage::kGlobal) { if (var.modifiers().fFlags & Modifiers::kIn_Flag) { this->write("_in."); } else if (var.modifiers().fFlags & Modifiers::kOut_Flag) { this->write("_out."); } else if (var.modifiers().fFlags & Modifiers::kUniform_Flag && var.type().typeKind() != Type::TypeKind::kSampler) { this->write("_uniforms."); } else { this->write("_globals."); } } this->writeName(var.name()); } } void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) { this->writeExpression(*expr.base(), Precedence::kPostfix); this->write("["); this->writeExpression(*expr.index(), Precedence::kTopLevel); this->write("]"); } void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) { const Type::Field* field = &f.base()->type().fields()[f.fieldIndex()]; if (FieldAccess::OwnerKind::kDefault == f.ownerKind()) { this->writeExpression(*f.base(), Precedence::kPostfix); this->write("."); } switch (field->fModifiers.fLayout.fBuiltin) { case SK_POSITION_BUILTIN: this->write("_out.sk_Position"); break; default: if (field->fName == "sk_PointSize") { this->write("_out.sk_PointSize"); } else { if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) { this->write("_globals."); this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]); this->write("->"); } this->writeName(field->fName); } } } void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) { this->writeExpression(*swizzle.base(), Precedence::kPostfix); this->write("."); for (int c : swizzle.components()) { SkASSERT(c >= 0 && c <= 3); this->write(&("x\0y\0z\0w\0"[c * 2])); } } void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right, const Type& result) { String key = "TimesEqual " + this->typeName(left) + ":" + this->typeName(right); auto [iter, wasInserted] = fHelpers.insert(key); if (wasInserted) { fExtraFunctions.printf("thread %s& operator*=(thread %s& left, thread const %s& right) {\n" " left = left * right;\n" " return left;\n" "}\n", this->typeName(result).c_str(), this->typeName(left).c_str(), this->typeName(right).c_str()); } } void MetalCodeGenerator::writeMatrixEqualityHelpers(const Type& left, const Type& right) { SkASSERT(left.isMatrix()); SkASSERT(right.isMatrix()); SkASSERT(left.rows() == right.rows()); SkASSERT(left.columns() == right.columns()); String key = "MatrixEquality " + this->typeName(left) + ":" + this->typeName(right); auto [iter, wasInserted] = fHelpers.insert(key); if (wasInserted) { fExtraFunctions.printf( "thread bool operator==(const %s left, const %s right) {\n" " return ", this->typeName(left).c_str(), this->typeName(right).c_str()); const char* separator = ""; for (int index=0; indextypeName(left).c_str(), this->typeName(right).c_str()); } } void MetalCodeGenerator::writeArrayEqualityHelpers(const Type& type) { SkASSERT(type.isArray()); // If the array's component type needs a helper as well, we need to emit that one first. this->writeEqualityHelpers(type.componentType(), type.componentType()); auto [iter, wasInserted] = fHelpers.insert("ArrayEquality []"); if (wasInserted) { fExtraFunctions.writeText(R"( template bool operator==(thread const array& left, thread const array& right) { for (size_t index = 0; index < N; ++index) { if (!(left[index] == right[index])) { return false; } } return true; } template bool operator!=(thread const array& left, thread const array& right) { return !(left == right); } )"); } } void MetalCodeGenerator::writeStructEqualityHelpers(const Type& type) { SkASSERT(type.isStruct()); String key = "StructEquality " + this->typeName(type); auto [iter, wasInserted] = fHelpers.insert(key); if (wasInserted) { // If one of the struct's fields needs a helper as well, we need to emit that one first. for (const Type::Field& field : type.fields()) { this->writeEqualityHelpers(*field.fType, *field.fType); } // Write operator== and operator!= for this struct, since those are assumed to exist in SkSL // and GLSL but do not exist by default in Metal. fExtraFunctions.printf( "thread bool operator==(thread const %s& left, thread const %s& right) {\n" " return ", this->typeName(type).c_str(), this->typeName(type).c_str()); const char* separator = ""; for (const Type::Field& field : type.fields()) { fExtraFunctions.printf("%s(left.%.*s == right.%.*s)", separator, (int)field.fName.size(), field.fName.data(), (int)field.fName.size(), field.fName.data()); separator = " &&\n "; } fExtraFunctions.printf( ";\n" "}\n" "thread bool operator!=(thread const %s& left, thread const %s& right) {\n" " return !(left == right);\n" "}\n", this->typeName(type).c_str(), this->typeName(type).c_str()); } } void MetalCodeGenerator::writeEqualityHelpers(const Type& leftType, const Type& rightType) { if (leftType.isArray() && rightType.isArray()) { this->writeArrayEqualityHelpers(leftType); return; } if (leftType.isStruct() && rightType.isStruct()) { this->writeStructEqualityHelpers(leftType); return; } if (leftType.isMatrix() && rightType.isMatrix()) { this->writeMatrixEqualityHelpers(leftType, rightType); return; } } void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { const Expression& left = *b.left(); const Expression& right = *b.right(); const Type& leftType = left.type(); const Type& rightType = right.type(); Operator op = b.getOperator(); Precedence precedence = op.getBinaryPrecedence(); bool needParens = precedence >= parentPrecedence; switch (op.kind()) { case Token::Kind::TK_EQEQ: this->writeEqualityHelpers(leftType, rightType); if (leftType.isVector()) { this->write("all"); needParens = true; } break; case Token::Kind::TK_NEQ: this->writeEqualityHelpers(leftType, rightType); if (leftType.isVector()) { this->write("any"); needParens = true; } break; default: break; } if (needParens) { this->write("("); } if (leftType.isMatrix() && rightType.isMatrix() && op.kind() == Token::Kind::TK_STAREQ) { this->writeMatrixTimesEqualHelper(leftType, rightType, b.type()); } this->writeExpression(left, precedence); if (op.kind() != Token::Kind::TK_EQ && op.isAssignment() && left.kind() == Expression::Kind::kSwizzle && !left.hasSideEffects()) { // This doesn't compile in Metal: // float4 x = float4(1); // x.xy *= float2x2(...); // with the error message "non-const reference cannot bind to vector element", // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation // as long as the LHS has no side effects, and hope for the best otherwise. this->write(" = "); this->writeExpression(left, Precedence::kAssignment); this->write(" "); String opName = OperatorName(op); SkASSERT(opName.endsWith("=")); this->write(opName.substr(0, opName.size() - 1).c_str()); this->write(" "); } else { this->write(String(" ") + OperatorName(op) + " "); } this->writeExpression(right, precedence); if (needParens) { this->write(")"); } } void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence) { if (Precedence::kTernary >= parentPrecedence) { this->write("("); } this->writeExpression(*t.test(), Precedence::kTernary); this->write(" ? "); this->writeExpression(*t.ifTrue(), Precedence::kTernary); this->write(" : "); this->writeExpression(*t.ifFalse(), Precedence::kTernary); if (Precedence::kTernary >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence) { if (Precedence::kPrefix >= parentPrecedence) { this->write("("); } this->write(OperatorName(p.getOperator())); this->writeExpression(*p.operand(), Precedence::kPrefix); if (Precedence::kPrefix >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence) { if (Precedence::kPostfix >= parentPrecedence) { this->write("("); } this->writeExpression(*p.operand(), Precedence::kPostfix); this->write(OperatorName(p.getOperator())); if (Precedence::kPostfix >= parentPrecedence) { this->write(")"); } } void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { this->write(b.value() ? "true" : "false"); } void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) { const Type& type = i.type(); if (type == *fContext.fTypes.fUInt) { this->write(to_string(i.value() & 0xffffffff) + "u"); } else if (type == *fContext.fTypes.fUShort) { this->write(to_string(i.value() & 0xffff) + "u"); } else { this->write(to_string(i.value())); } } void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { this->write(to_string(f.value())); } void MetalCodeGenerator::writeSetting(const Setting& s) { SK_ABORT("internal error; setting was not folded to a constant during compilation\n"); } void MetalCodeGenerator::writeFunctionRequirementArgs(const FunctionDeclaration& f, const char*& separator) { Requirements requirements = this->requirements(f); if (requirements & kInputs_Requirement) { this->write(separator); this->write("_in"); separator = ", "; } if (requirements & kOutputs_Requirement) { this->write(separator); this->write("_out"); separator = ", "; } if (requirements & kUniforms_Requirement) { this->write(separator); this->write("_uniforms"); separator = ", "; } if (requirements & kGlobals_Requirement) { this->write(separator); this->write("_globals"); separator = ", "; } if (requirements & kFragCoord_Requirement) { this->write(separator); this->write("_fragCoord"); separator = ", "; } } void MetalCodeGenerator::writeFunctionRequirementParams(const FunctionDeclaration& f, const char*& separator) { Requirements requirements = this->requirements(f); if (requirements & kInputs_Requirement) { this->write(separator); this->write("Inputs _in"); separator = ", "; } if (requirements & kOutputs_Requirement) { this->write(separator); this->write("thread Outputs& _out"); separator = ", "; } if (requirements & kUniforms_Requirement) { this->write(separator); this->write("Uniforms _uniforms"); separator = ", "; } if (requirements & kGlobals_Requirement) { this->write(separator); this->write("thread Globals& _globals"); separator = ", "; } if (requirements & kFragCoord_Requirement) { this->write(separator); this->write("float4 _fragCoord"); separator = ", "; } } int MetalCodeGenerator::getUniformBinding(const Modifiers& m) { return (m.fLayout.fBinding >= 0) ? m.fLayout.fBinding : fProgram.fConfig->fSettings.fDefaultUniformBinding; } int MetalCodeGenerator::getUniformSet(const Modifiers& m) { return (m.fLayout.fSet >= 0) ? m.fLayout.fSet : fProgram.fConfig->fSettings.fDefaultUniformSet; } bool MetalCodeGenerator::writeFunctionDeclaration(const FunctionDeclaration& f) { fRTHeightName = fProgram.fInputs.fRTHeight ? "_globals._anonInterface0->u_skRTHeight" : ""; const char* separator = ""; if (f.isMain()) { switch (fProgram.fConfig->fKind) { case ProgramKind::kFragment: this->write("fragment Outputs fragmentMain"); break; case ProgramKind::kVertex: this->write("vertex Outputs vertexMain"); break; default: fErrors.error(-1, "unsupported kind of program"); return false; } this->write("(Inputs _in [[stage_in]]"); if (-1 != fUniformBuffer) { this->write(", constant Uniforms& _uniforms [[buffer(" + to_string(fUniformBuffer) + ")]]"); } for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const VarDeclaration& var = decls.declaration()->as(); if (var.var().type().typeKind() == Type::TypeKind::kSampler) { if (var.var().modifiers().fLayout.fBinding < 0) { fErrors.error(decls.fOffset, "Metal samplers must have 'layout(binding=...)'"); return false; } if (var.var().type().dimensions() != SpvDim2D) { // Not yet implemented--Skia currently only uses 2D textures. fErrors.error(decls.fOffset, "Unsupported texture dimensions"); return false; } this->write(", texture2d "); this->writeName(var.var().name()); this->write("[[texture("); this->write(to_string(var.var().modifiers().fLayout.fBinding)); this->write(")]]"); this->write(", sampler "); this->writeName(var.var().name()); this->write(SAMPLER_SUFFIX); this->write("[[sampler("); this->write(to_string(var.var().modifiers().fLayout.fBinding)); this->write(")]]"); } } else if (e->is()) { const InterfaceBlock& intf = e->as(); if (intf.typeName() == "sk_PerVertex") { continue; } this->write(", constant "); this->writeType(intf.variable().type()); this->write("& " ); this->write(fInterfaceBlockNameMap[&intf]); this->write(" [[buffer("); this->write(to_string(this->getUniformBinding(intf.variable().modifiers()))); this->write(")]]"); } } if (fProgram.fConfig->fKind == ProgramKind::kFragment) { if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) { this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]"); fRTHeightName = "_anonInterface0.u_skRTHeight"; } this->write(", bool _frontFacing [[front_facing]]"); this->write(", float4 _fragCoord [[position]]"); } else if (fProgram.fConfig->fKind == ProgramKind::kVertex) { this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]"); } separator = ", "; } else { this->writeType(f.returnType()); this->write(" "); this->writeName(f.mangledName()); this->write("("); this->writeFunctionRequirementParams(f, separator); } for (const auto& param : f.parameters()) { if (f.isMain() && param->modifiers().fLayout.fBuiltin != -1) { continue; } this->write(separator); separator = ", "; this->writeModifiers(param->modifiers(), /*globalContext=*/false); const Type* type = ¶m->type(); this->writeType(*type); if (param->modifiers().fFlags & Modifiers::kOut_Flag) { this->write("&"); } this->write(" "); this->writeName(param->name()); } this->write(")"); return true; } void MetalCodeGenerator::writeFunctionPrototype(const FunctionPrototype& f) { this->writeFunctionDeclaration(f.declaration()); this->writeLine(";"); } static bool is_block_ending_with_return(const Statement* stmt) { // This function detects (potentially nested) blocks that end in a return statement. if (!stmt->is()) { return false; } const StatementArray& block = stmt->as().children(); for (int index = block.count(); index--; ) { const Statement& stmt = *block[index]; if (stmt.is()) { return true; } if (stmt.is()) { return is_block_ending_with_return(&stmt); } if (!stmt.is()) { break; } } return false; } void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) { SkASSERT(!fProgram.fConfig->fSettings.fFragColorIsInOut); if (!this->writeFunctionDeclaration(f.declaration())) { return; } fCurrentFunction = &f.declaration(); SkScopeExit clearCurrentFunction([&] { fCurrentFunction = nullptr; }); this->writeLine(" {"); if (f.declaration().isMain()) { this->writeGlobalInit(); this->writeLine(" Outputs _out;"); this->writeLine(" (void)_out;"); } fFunctionHeader.clear(); StringStream buffer; { AutoOutputStream outputToBuffer(this, &buffer); fIndentation++; for (const std::unique_ptr& stmt : f.body()->as().children()) { if (!stmt->isEmpty()) { this->writeStatement(*stmt); this->finishLine(); } } if (f.declaration().isMain()) { // If the main function doesn't end with a return, we need to synthesize one here. if (!is_block_ending_with_return(f.body().get())) { this->writeReturnStatementFromMain(); this->finishLine(); } } fIndentation--; this->writeLine("}"); } this->write(fFunctionHeader); this->write(buffer.str()); } void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers, bool globalContext) { if (modifiers.fFlags & Modifiers::kOut_Flag) { this->write("thread "); } if (modifiers.fFlags & Modifiers::kConst_Flag) { this->write("const "); } } void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { if ("sk_PerVertex" == intf.typeName()) { return; } this->writeModifiers(intf.variable().modifiers(), /*globalContext=*/true); this->write("struct "); this->writeLine(intf.typeName() + " {"); const Type* structType = &intf.variable().type(); if (structType->isArray()) { structType = &structType->componentType(); } fIndentation++; this->writeFields(structType->fields(), structType->fOffset, &intf); if (fProgram.fInputs.fRTHeight) { this->writeLine("float u_skRTHeight;"); } fIndentation--; this->write("}"); if (intf.instanceName().size()) { this->write(" "); this->write(intf.instanceName()); if (intf.arraySize() > 0) { this->write("["); this->write(to_string(intf.arraySize())); this->write("]"); } else if (intf.arraySize() == Type::kUnsizedArray){ this->write("[]"); } fInterfaceBlockNameMap[&intf] = intf.instanceName(); } else { fInterfaceBlockNameMap[&intf] = "_anonInterface" + to_string(fAnonInterfaceCount++); } this->writeLine(";"); } void MetalCodeGenerator::writeFields(const std::vector& fields, int parentOffset, const InterfaceBlock* parentIntf) { MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard); int currentOffset = 0; for (const Type::Field& field : fields) { int fieldOffset = field.fModifiers.fLayout.fOffset; const Type* fieldType = field.fType; if (!MemoryLayout::LayoutIsSupported(*fieldType)) { fErrors.error(parentOffset, "type '" + fieldType->name() + "' is not permitted here"); return; } if (fieldOffset != -1) { if (currentOffset > fieldOffset) { fErrors.error(parentOffset, "offset of field '" + field.fName + "' must be at least " + to_string((int) currentOffset)); return; } else if (currentOffset < fieldOffset) { this->write("char pad"); this->write(to_string(fPaddingCount++)); this->write("["); this->write(to_string(fieldOffset - currentOffset)); this->writeLine("];"); currentOffset = fieldOffset; } int alignment = memoryLayout.alignment(*fieldType); if (fieldOffset % alignment) { fErrors.error(parentOffset, "offset of field '" + field.fName + "' must be a multiple of " + to_string((int) alignment)); return; } } size_t fieldSize = memoryLayout.size(*fieldType); if (fieldSize > static_cast(std::numeric_limits::max() - currentOffset)) { fErrors.error(parentOffset, "field offset overflow"); return; } currentOffset += fieldSize; this->writeModifiers(field.fModifiers, /*globalContext=*/false); this->writeType(*fieldType); this->write(" "); this->writeName(field.fName); this->writeLine(";"); if (parentIntf) { fInterfaceBlockMap[&field] = parentIntf; } } } void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { this->writeExpression(value, Precedence::kTopLevel); } void MetalCodeGenerator::writeName(const String& name) { if (fReservedWords.find(name) != fReservedWords.end()) { this->write("_"); // adding underscore before name to avoid conflict with reserved words } this->write(name); } void MetalCodeGenerator::writeVarDeclaration(const VarDeclaration& varDecl, bool global) { if (global && !(varDecl.var().modifiers().fFlags & Modifiers::kConst_Flag)) { return; } this->writeModifiers(varDecl.var().modifiers(), global); this->writeType(varDecl.var().type()); this->write(" "); this->writeName(varDecl.var().name()); if (varDecl.value()) { this->write(" = "); this->writeVarInitializer(varDecl.var(), *varDecl.value()); } this->write(";"); } void MetalCodeGenerator::writeStatement(const Statement& s) { switch (s.kind()) { case Statement::Kind::kBlock: this->writeBlock(s.as()); break; case Statement::Kind::kExpression: this->writeExpression(*s.as().expression(), Precedence::kTopLevel); this->write(";"); break; case Statement::Kind::kReturn: this->writeReturnStatement(s.as()); break; case Statement::Kind::kVarDeclaration: this->writeVarDeclaration(s.as(), false); break; case Statement::Kind::kIf: this->writeIfStatement(s.as()); break; case Statement::Kind::kFor: this->writeForStatement(s.as()); break; case Statement::Kind::kDo: this->writeDoStatement(s.as()); break; case Statement::Kind::kSwitch: this->writeSwitchStatement(s.as()); break; case Statement::Kind::kBreak: this->write("break;"); break; case Statement::Kind::kContinue: this->write("continue;"); break; case Statement::Kind::kDiscard: this->write("discard_fragment();"); break; case Statement::Kind::kInlineMarker: case Statement::Kind::kNop: this->write(";"); break; default: SkDEBUGFAILF("unsupported statement: %s", s.description().c_str()); break; } } void MetalCodeGenerator::writeBlock(const Block& b) { // Write scope markers if this block is a scope, or if the block is empty (since we need to emit // something here to make the code valid). bool isScope = b.isScope() || b.isEmpty(); if (isScope) { this->writeLine("{"); fIndentation++; } for (const std::unique_ptr& stmt : b.children()) { if (!stmt->isEmpty()) { this->writeStatement(*stmt); this->finishLine(); } } if (isScope) { fIndentation--; this->write("}"); } } void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) { this->write("if ("); this->writeExpression(*stmt.test(), Precedence::kTopLevel); this->write(") "); this->writeStatement(*stmt.ifTrue()); if (stmt.ifFalse()) { this->write(" else "); this->writeStatement(*stmt.ifFalse()); } } void MetalCodeGenerator::writeForStatement(const ForStatement& f) { // Emit loops of the form 'for(;test;)' as 'while(test)', which is probably how they started if (!f.initializer() && f.test() && !f.next()) { this->write("while ("); this->writeExpression(*f.test(), Precedence::kTopLevel); this->write(") "); this->writeStatement(*f.statement()); return; } this->write("for ("); if (f.initializer() && !f.initializer()->isEmpty()) { this->writeStatement(*f.initializer()); } else { this->write("; "); } if (f.test()) { this->writeExpression(*f.test(), Precedence::kTopLevel); } this->write("; "); if (f.next()) { this->writeExpression(*f.next(), Precedence::kTopLevel); } this->write(") "); this->writeStatement(*f.statement()); } void MetalCodeGenerator::writeDoStatement(const DoStatement& d) { this->write("do "); this->writeStatement(*d.statement()); this->write(" while ("); this->writeExpression(*d.test(), Precedence::kTopLevel); this->write(");"); } void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { this->write("switch ("); this->writeExpression(*s.value(), Precedence::kTopLevel); this->writeLine(") {"); fIndentation++; for (const std::unique_ptr& stmt : s.cases()) { const SwitchCase& c = stmt->as(); if (c.value()) { this->write("case "); this->writeExpression(*c.value(), Precedence::kTopLevel); this->writeLine(":"); } else { this->writeLine("default:"); } if (!c.statement()->isEmpty()) { fIndentation++; this->writeStatement(*c.statement()); this->finishLine(); fIndentation--; } } fIndentation--; this->write("}"); } void MetalCodeGenerator::writeReturnStatementFromMain() { // main functions in Metal return a magic _out parameter that doesn't exist in SkSL. switch (fProgram.fConfig->fKind) { case ProgramKind::kFragment: this->write("return _out;"); break; case ProgramKind::kVertex: this->write("return (_out.sk_Position.y = -_out.sk_Position.y, _out);"); break; default: SkDEBUGFAIL("unsupported kind of program"); } } void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) { if (fCurrentFunction && fCurrentFunction->isMain()) { if (r.expression()) { if (r.expression()->type() == *fContext.fTypes.fHalf4) { this->write("_out.sk_FragColor = "); this->writeExpression(*r.expression(), Precedence::kTopLevel); this->writeLine(";"); } else { fErrors.error(r.fOffset, "Metal does not support returning '" + r.expression()->type().description() + "' from main()"); } } this->writeReturnStatementFromMain(); return; } this->write("return"); if (r.expression()) { this->write(" "); this->writeExpression(*r.expression(), Precedence::kTopLevel); } this->write(";"); } void MetalCodeGenerator::writeHeader() { this->write("#include \n"); this->write("#include \n"); this->write("using namespace metal;\n"); } void MetalCodeGenerator::writeUniformStruct() { for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = decls.declaration()->as().var(); if (var.modifiers().fFlags & Modifiers::kUniform_Flag && var.type().typeKind() != Type::TypeKind::kSampler) { int uniformSet = this->getUniformSet(var.modifiers()); // Make sure that the program's uniform-set value is consistent throughout. if (-1 == fUniformBuffer) { this->write("struct Uniforms {\n"); fUniformBuffer = uniformSet; } else if (uniformSet != fUniformBuffer) { fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have " "the same 'layout(set=...)'"); } this->write(" "); this->writeType(var.type()); this->write(" "); this->writeName(var.name()); this->write(";\n"); } } } if (-1 != fUniformBuffer) { this->write("};\n"); } } void MetalCodeGenerator::writeInputStruct() { this->write("struct Inputs {\n"); for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = decls.declaration()->as().var(); if (var.modifiers().fFlags & Modifiers::kIn_Flag && -1 == var.modifiers().fLayout.fBuiltin) { this->write(" "); this->writeType(var.type()); this->write(" "); this->writeName(var.name()); if (-1 != var.modifiers().fLayout.fLocation) { if (fProgram.fConfig->fKind == ProgramKind::kVertex) { this->write(" [[attribute(" + to_string(var.modifiers().fLayout.fLocation) + ")]]"); } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { this->write(" [[user(locn" + to_string(var.modifiers().fLayout.fLocation) + ")]]"); } } this->write(";\n"); } } } this->write("};\n"); } void MetalCodeGenerator::writeOutputStruct() { this->write("struct Outputs {\n"); if (fProgram.fConfig->fKind == ProgramKind::kVertex) { this->write(" float4 sk_Position [[position]];\n"); } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { this->write(" float4 sk_FragColor [[color(0)]];\n"); } for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const GlobalVarDeclaration& decls = e->as(); const Variable& var = decls.declaration()->as().var(); if (var.modifiers().fFlags & Modifiers::kOut_Flag && -1 == var.modifiers().fLayout.fBuiltin) { this->write(" "); this->writeType(var.type()); this->write(" "); this->writeName(var.name()); int location = var.modifiers().fLayout.fLocation; if (location < 0) { fErrors.error(var.fOffset, "Metal out variables must have 'layout(location=...)'"); } else if (fProgram.fConfig->fKind == ProgramKind::kVertex) { this->write(" [[user(locn" + to_string(location) + ")]]"); } else if (fProgram.fConfig->fKind == ProgramKind::kFragment) { this->write(" [[color(" + to_string(location) + ")"); int colorIndex = var.modifiers().fLayout.fIndex; if (colorIndex) { this->write(", index(" + to_string(colorIndex) + ")"); } this->write("]]"); } this->write(";\n"); } } } if (fProgram.fConfig->fKind == ProgramKind::kVertex) { this->write(" float sk_PointSize [[point_size]];\n"); } this->write("};\n"); } void MetalCodeGenerator::writeInterfaceBlocks() { bool wroteInterfaceBlock = false; for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { this->writeInterfaceBlock(e->as()); wroteInterfaceBlock = true; } } if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) { this->writeLine("struct sksl_synthetic_uniforms {"); this->writeLine(" float u_skRTHeight;"); this->writeLine("};"); } } void MetalCodeGenerator::writeStructDefinitions() { for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { this->writeStructDefinition(e->as()); } } } void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) { // Visit the interface blocks. for (const auto& [interfaceType, interfaceName] : fInterfaceBlockNameMap) { visitor->visitInterfaceBlock(*interfaceType, interfaceName); } for (const ProgramElement* element : fProgram.elements()) { if (!element->is()) { continue; } const GlobalVarDeclaration& global = element->as(); const VarDeclaration& decl = global.declaration()->as(); const Variable& var = decl.var(); if ((!var.modifiers().fFlags && -1 == var.modifiers().fLayout.fBuiltin) || var.type().typeKind() == Type::TypeKind::kSampler) { if (var.type().typeKind() == Type::TypeKind::kSampler) { // Samplers are represented as a "texture/sampler" duo in the global struct. visitor->visitTexture(var.type(), var.name()); visitor->visitSampler(var.type(), String(var.name()) + SAMPLER_SUFFIX); } else { // Visit a regular variable. visitor->visitVariable(var, decl.value().get()); } } } } void MetalCodeGenerator::writeGlobalStruct() { class : public GlobalStructVisitor { public: void visitInterfaceBlock(const InterfaceBlock& block, const String& blockName) override { this->addElement(); fCodeGen->write(" constant "); fCodeGen->write(block.typeName()); fCodeGen->write("* "); fCodeGen->writeName(blockName); fCodeGen->write(";\n"); } void visitTexture(const Type& type, const String& name) override { this->addElement(); fCodeGen->write(" "); fCodeGen->writeType(type); fCodeGen->write(" "); fCodeGen->writeName(name); fCodeGen->write(";\n"); } void visitSampler(const Type&, const String& name) override { this->addElement(); fCodeGen->write(" sampler "); fCodeGen->writeName(name); fCodeGen->write(";\n"); } void visitVariable(const Variable& var, const Expression* value) override { this->addElement(); fCodeGen->write(" "); fCodeGen->writeType(var.type()); fCodeGen->write(" "); fCodeGen->writeName(var.name()); fCodeGen->write(";\n"); } void addElement() { if (fFirst) { fCodeGen->write("struct Globals {\n"); fFirst = false; } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fFirst = true; } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitGlobalStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::writeGlobalInit() { class : public GlobalStructVisitor { public: void visitInterfaceBlock(const InterfaceBlock& blockType, const String& blockName) override { this->addElement(); fCodeGen->write("&"); fCodeGen->writeName(blockName); } void visitTexture(const Type&, const String& name) override { this->addElement(); fCodeGen->writeName(name); } void visitSampler(const Type&, const String& name) override { this->addElement(); fCodeGen->writeName(name); } void visitVariable(const Variable& var, const Expression* value) override { this->addElement(); if (value) { fCodeGen->writeVarInitializer(var, *value); } else { fCodeGen->write("{}"); } } void addElement() { if (fFirst) { fCodeGen->write(" Globals _globals{"); fFirst = false; } else { fCodeGen->write(", "); } } void finish() { if (!fFirst) { fCodeGen->writeLine("};"); fCodeGen->writeLine(" (void)_globals;"); } } MetalCodeGenerator* fCodeGen = nullptr; bool fFirst = true; } visitor; visitor.fCodeGen = this; this->visitGlobalStruct(&visitor); visitor.finish(); } void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) { switch (e.kind()) { case ProgramElement::Kind::kExtension: break; case ProgramElement::Kind::kGlobalVar: { const GlobalVarDeclaration& global = e.as(); const VarDeclaration& decl = global.declaration()->as(); int builtin = decl.var().modifiers().fLayout.fBuiltin; if (-1 == builtin) { // normal var this->writeVarDeclaration(decl, true); this->finishLine(); } else if (SK_FRAGCOLOR_BUILTIN == builtin) { // ignore } break; } case ProgramElement::Kind::kInterfaceBlock: // handled in writeInterfaceBlocks, do nothing break; case ProgramElement::Kind::kStructDefinition: // Handled in writeStructDefinitions. Do nothing. break; case ProgramElement::Kind::kFunction: this->writeFunction(e.as()); break; case ProgramElement::Kind::kFunctionPrototype: this->writeFunctionPrototype(e.as()); break; case ProgramElement::Kind::kModifiers: this->writeModifiers(e.as().modifiers(), /*globalContext=*/true); this->writeLine(";"); break; case ProgramElement::Kind::kEnum: break; default: SkDEBUGFAILF("unsupported program element: %s\n", e.description().c_str()); break; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression* e) { if (!e) { return kNo_Requirements; } switch (e->kind()) { case Expression::Kind::kFunctionCall: { const FunctionCall& f = e->as(); Requirements result = this->requirements(f.function()); for (const auto& arg : f.arguments()) { result |= this->requirements(arg.get()); } return result; } case Expression::Kind::kConstructorCompound: case Expression::Kind::kConstructorCompoundCast: case Expression::Kind::kConstructorArray: case Expression::Kind::kConstructorDiagonalMatrix: case Expression::Kind::kConstructorScalarCast: case Expression::Kind::kConstructorSplat: case Expression::Kind::kConstructorStruct: { const AnyConstructor& c = e->asAnyConstructor(); Requirements result = kNo_Requirements; for (const auto& arg : c.argumentSpan()) { result |= this->requirements(arg.get()); } return result; } case Expression::Kind::kFieldAccess: { const FieldAccess& f = e->as(); if (FieldAccess::OwnerKind::kAnonymousInterfaceBlock == f.ownerKind()) { return kGlobals_Requirement; } return this->requirements(f.base().get()); } case Expression::Kind::kSwizzle: return this->requirements(e->as().base().get()); case Expression::Kind::kBinary: { const BinaryExpression& bin = e->as(); return this->requirements(bin.left().get()) | this->requirements(bin.right().get()); } case Expression::Kind::kIndex: { const IndexExpression& idx = e->as(); return this->requirements(idx.base().get()) | this->requirements(idx.index().get()); } case Expression::Kind::kPrefix: return this->requirements(e->as().operand().get()); case Expression::Kind::kPostfix: return this->requirements(e->as().operand().get()); case Expression::Kind::kTernary: { const TernaryExpression& t = e->as(); return this->requirements(t.test().get()) | this->requirements(t.ifTrue().get()) | this->requirements(t.ifFalse().get()); } case Expression::Kind::kVariableReference: { const VariableReference& v = e->as(); const Modifiers& modifiers = v.variable()->modifiers(); Requirements result = kNo_Requirements; if (modifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { result = kGlobals_Requirement | kFragCoord_Requirement; } else if (Variable::Storage::kGlobal == v.variable()->storage()) { if (modifiers.fFlags & Modifiers::kIn_Flag) { result = kInputs_Requirement; } else if (modifiers.fFlags & Modifiers::kOut_Flag) { result = kOutputs_Requirement; } else if (modifiers.fFlags & Modifiers::kUniform_Flag && v.variable()->type().typeKind() != Type::TypeKind::kSampler) { result = kUniforms_Requirement; } else { result = kGlobals_Requirement; } } return result; } default: return kNo_Requirements; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) { if (!s) { return kNo_Requirements; } switch (s->kind()) { case Statement::Kind::kBlock: { Requirements result = kNo_Requirements; for (const std::unique_ptr& child : s->as().children()) { result |= this->requirements(child.get()); } return result; } case Statement::Kind::kVarDeclaration: { const VarDeclaration& var = s->as(); return this->requirements(var.value().get()); } case Statement::Kind::kExpression: return this->requirements(s->as().expression().get()); case Statement::Kind::kReturn: { const ReturnStatement& r = s->as(); return this->requirements(r.expression().get()); } case Statement::Kind::kIf: { const IfStatement& i = s->as(); return this->requirements(i.test().get()) | this->requirements(i.ifTrue().get()) | this->requirements(i.ifFalse().get()); } case Statement::Kind::kFor: { const ForStatement& f = s->as(); return this->requirements(f.initializer().get()) | this->requirements(f.test().get()) | this->requirements(f.next().get()) | this->requirements(f.statement().get()); } case Statement::Kind::kDo: { const DoStatement& d = s->as(); return this->requirements(d.test().get()) | this->requirements(d.statement().get()); } case Statement::Kind::kSwitch: { const SwitchStatement& sw = s->as(); Requirements result = this->requirements(sw.value().get()); for (const std::unique_ptr& sc : sw.cases()) { result |= this->requirements(sc->as().statement().get()); } return result; } default: return kNo_Requirements; } } MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) { if (f.isBuiltin()) { return kNo_Requirements; } auto found = fRequirements.find(&f); if (found == fRequirements.end()) { fRequirements[&f] = kNo_Requirements; for (const ProgramElement* e : fProgram.elements()) { if (e->is()) { const FunctionDefinition& def = e->as(); if (&def.declaration() == &f) { Requirements reqs = this->requirements(def.body().get()); fRequirements[&f] = reqs; return reqs; } } } // We never found a definition for this declared function, but it's legal to prototype a // function without ever giving a definition, as long as you don't call it. return kNo_Requirements; } return found->second; } bool MetalCodeGenerator::generateCode() { StringStream header; { AutoOutputStream outputToHeader(this, &header, &fIndentation); this->writeHeader(); this->writeStructDefinitions(); this->writeUniformStruct(); this->writeInputStruct(); this->writeOutputStruct(); this->writeInterfaceBlocks(); this->writeGlobalStruct(); } StringStream body; { AutoOutputStream outputToBody(this, &body, &fIndentation); for (const ProgramElement* e : fProgram.elements()) { this->writeProgramElement(*e); } } write_stringstream(header, *fOut); write_stringstream(fExtraFunctions, *fOut); write_stringstream(body, *fOut); return 0 == fErrors.errorCount(); } } // namespace SkSL