/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrBlurUtils.h" #include "GrCaps.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrFixedClip.h" #include "GrProxyProvider.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrShape.h" #include "GrSoftwarePathRenderer.h" #include "GrStyle.h" #include "GrTextureProxy.h" #include "effects/GrSimpleTextureEffect.h" #include "SkDraw.h" #include "SkGr.h" #include "SkMaskFilterBase.h" #include "SkPaint.h" #include "SkTLazy.h" static bool clip_bounds_quick_reject(const SkIRect& clipBounds, const SkIRect& rect) { return clipBounds.isEmpty() || rect.isEmpty() || !SkIRect::Intersects(clipBounds, rect); } // Draw a mask using the supplied paint. Since the coverage/geometry // is already burnt into the mask this boils down to a rect draw. // Return true if the mask was successfully drawn. static bool draw_mask(GrRenderTargetContext* renderTargetContext, const GrClip& clip, const SkMatrix& viewMatrix, const SkIRect& maskRect, GrPaint&& paint, sk_sp mask) { SkMatrix inverse; if (!viewMatrix.invert(&inverse)) { return false; } SkMatrix matrix = SkMatrix::MakeTrans(-SkIntToScalar(maskRect.fLeft), -SkIntToScalar(maskRect.fTop)); matrix.preConcat(viewMatrix); paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(std::move(mask), matrix)); renderTargetContext->fillRectWithLocalMatrix(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), SkRect::Make(maskRect), inverse); return true; } static void mask_release_proc(void* addr, void* /*context*/) { SkMask::FreeImage(addr); } static bool sw_draw_with_mask_filter(GrContext* context, GrRenderTargetContext* renderTargetContext, const GrClip& clipData, const SkMatrix& viewMatrix, const GrShape& shape, const SkMaskFilter* filter, const SkIRect& clipBounds, GrPaint&& paint, const GrUniqueKey& key) { SkASSERT(filter); SkASSERT(!shape.style().applies()); auto proxyProvider = context->contextPriv().proxyProvider(); sk_sp filteredMask; SkStrokeRec::InitStyle fillOrHairline = shape.style().isSimpleHairline() ? SkStrokeRec::kHairline_InitStyle : SkStrokeRec::kFill_InitStyle; if (key.isValid()) { // TODO: this cache look up is duplicated in draw_shape_with_mask_filter for gpu filteredMask = proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin); } SkIRect drawRect; if (filteredMask) { SkRect devBounds = shape.bounds(); viewMatrix.mapRect(&devBounds); // Here we need to recompute the destination bounds in order to draw the mask correctly SkMask srcM, dstM; if (!SkDraw::ComputeMaskBounds(devBounds, &clipBounds, filter, &viewMatrix, &srcM.fBounds)) { return false; } srcM.fFormat = SkMask::kA8_Format; if (!as_MFB(filter)->filterMask(&dstM, srcM, viewMatrix, nullptr)) { return false; } // Unfortunately, we cannot double check that the computed bounds (i.e., dstM.fBounds) // match the stored bounds of the mask bc the proxy may have been recreated and, // when it is recreated, it just gets the bounds of the underlying GrTexture (which // might be a loose fit). drawRect = dstM.fBounds; } else { // TODO: it seems like we could create an SkDraw here and set its fMatrix field rather // than explicitly transforming the path to device space. SkPath devPath; shape.asPath(&devPath); devPath.transform(viewMatrix); SkMask srcM, dstM; if (!SkDraw::DrawToMask(devPath, &clipBounds, filter, &viewMatrix, &srcM, SkMask::kComputeBoundsAndRenderImage_CreateMode, fillOrHairline)) { return false; } SkAutoMaskFreeImage autoSrc(srcM.fImage); SkASSERT(SkMask::kA8_Format == srcM.fFormat); if (!as_MFB(filter)->filterMask(&dstM, srcM, viewMatrix, nullptr)) { return false; } // this will free-up dstM when we're done (allocated in filterMask()) SkAutoMaskFreeImage autoDst(dstM.fImage); if (clip_bounds_quick_reject(clipBounds, dstM.fBounds)) { return false; } // we now have a device-aligned 8bit mask in dstM, ready to be drawn using // the current clip (and identity matrix) and GrPaint settings SkBitmap bm; if (!bm.installPixels(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()), autoDst.release(), dstM.fRowBytes, mask_release_proc, nullptr)) { return false; } bm.setImmutable(); sk_sp image = SkImage::MakeFromBitmap(bm); if (!image) { return false; } filteredMask = proxyProvider->createTextureProxy(std::move(image), kNone_GrSurfaceFlags, 1, SkBudgeted::kYes, SkBackingFit::kApprox); if (!filteredMask) { return false; } SkASSERT(kTopLeft_GrSurfaceOrigin == filteredMask->origin()); drawRect = dstM.fBounds; if (key.isValid()) { proxyProvider->assignUniqueKeyToProxy(key, filteredMask.get()); } } return draw_mask(renderTargetContext, clipData, viewMatrix, drawRect, std::move(paint), std::move(filteredMask)); } // Create a mask of 'shape' and place the result in 'mask'. static sk_sp create_mask_GPU(GrContext* context, const SkIRect& maskRect, const SkMatrix& origViewMatrix, const GrShape& shape, int sampleCnt) { GrBackendFormat format = context->contextPriv().caps()->getBackendFormatFromColorType(kAlpha_8_SkColorType); sk_sp rtContext( context->contextPriv().makeDeferredRenderTargetContextWithFallback( format, SkBackingFit::kApprox, maskRect.width(), maskRect.height(), kAlpha_8_GrPixelConfig, nullptr, sampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin)); if (!rtContext) { return nullptr; } rtContext->priv().absClear(nullptr, SK_PMColor4fTRANSPARENT); GrPaint maskPaint; maskPaint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op); // setup new clip const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height()); GrFixedClip clip(clipRect); // Draw the mask into maskTexture with the path's integerized top-left at // the origin using maskPaint. SkMatrix viewMatrix = origViewMatrix; viewMatrix.postTranslate(-SkIntToScalar(maskRect.fLeft), -SkIntToScalar(maskRect.fTop)); rtContext->drawShape(clip, std::move(maskPaint), GrAA::kYes, viewMatrix, shape); return rtContext->asTextureProxyRef(); } static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix, SkIRect* devBounds) { SkRect shapeBounds = shape.styledBounds(); if (shapeBounds.isEmpty()) { return false; } SkRect shapeDevBounds; matrix.mapRect(&shapeDevBounds, shapeBounds); // Even though these are "unclipped" bounds we still clip to the int32_t range. // This is the largest int32_t that is representable exactly as a float. The next 63 larger ints // would round down to this value when cast to a float, but who really cares. // INT32_MIN is exactly representable. static constexpr int32_t kMaxInt = 2147483520; if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) { return false; } // Make sure that the resulting SkIRect can have representable width and height if (SkScalarRoundToInt(shapeDevBounds.width()) > kMaxInt || SkScalarRoundToInt(shapeDevBounds.height()) > kMaxInt) { return false; } shapeDevBounds.roundOut(devBounds); return true; } // Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there // is no intersection. static bool get_shape_and_clip_bounds(GrRenderTargetContext* renderTargetContext, const GrClip& clip, const GrShape& shape, const SkMatrix& matrix, SkIRect* unclippedDevShapeBounds, SkIRect* devClipBounds) { // compute bounds as intersection of rt size, clip, and path clip.getConservativeBounds(renderTargetContext->width(), renderTargetContext->height(), devClipBounds); if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) { *unclippedDevShapeBounds = SkIRect::EmptyIRect(); return false; } return true; } static void draw_shape_with_mask_filter(GrContext* context, GrRenderTargetContext* renderTargetContext, const GrClip& clip, GrPaint&& paint, const SkMatrix& viewMatrix, const SkMaskFilterBase* maskFilter, const GrShape& origShape) { SkASSERT(maskFilter); const GrShape* shape = &origShape; SkTLazy tmpShape; if (origShape.style().applies()) { SkScalar styleScale = GrStyle::MatrixToScaleFactor(viewMatrix); if (0 == styleScale) { return; } tmpShape.init(origShape.applyStyle(GrStyle::Apply::kPathEffectAndStrokeRec, styleScale)); if (tmpShape.get()->isEmpty()) { return; } shape = tmpShape.get(); } if (maskFilter->directFilterMaskGPU(context, renderTargetContext, std::move(paint), clip, viewMatrix, *shape)) { // the mask filter was able to draw itself directly, so there's nothing // left to do. return; } assert_alive(paint); // If the path is hairline, ignore inverse fill. bool inverseFilled = shape->inverseFilled() && !GrPathRenderer::IsStrokeHairlineOrEquivalent(shape->style(), viewMatrix, nullptr); SkIRect unclippedDevShapeBounds, devClipBounds; if (!get_shape_and_clip_bounds(renderTargetContext, clip, *shape, viewMatrix, &unclippedDevShapeBounds, &devClipBounds)) { // TODO: just cons up an opaque mask here if (!inverseFilled) { return; } } // To prevent overloading the cache with entries during animations we limit the cache of masks // to cases where the matrix preserves axis alignment. #ifdef SK_DISABLE_MASKFILTERED_MASK_CACHING bool useCache = false; #else bool useCache = !inverseFilled && viewMatrix.preservesAxisAlignment() && shape->hasUnstyledKey() && as_MFB(maskFilter)->asABlur(nullptr); #endif const SkIRect* boundsForClip = &devClipBounds; if (useCache) { SkIRect clippedMaskRect, unClippedMaskRect; maskFilter->canFilterMaskGPU(*shape, unclippedDevShapeBounds, devClipBounds, viewMatrix, &clippedMaskRect); maskFilter->canFilterMaskGPU(*shape, unclippedDevShapeBounds, unclippedDevShapeBounds, viewMatrix, &unClippedMaskRect); if (clippedMaskRect.isEmpty()) { return; } // Use the cache only if >50% of the filtered mask is visible. int unclippedWidth = unClippedMaskRect.width(); int unclippedHeight = unClippedMaskRect.height(); int64_t unclippedArea = sk_64_mul(unclippedWidth, unclippedHeight); int64_t clippedArea = sk_64_mul(clippedMaskRect.width(), clippedMaskRect.height()); int maxTextureSize = renderTargetContext->caps()->maxTextureSize(); if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize || unclippedHeight > maxTextureSize) { useCache = false; } else { // Make the clip not affect the mask boundsForClip = &unclippedDevShapeBounds; } } GrUniqueKey maskKey; if (useCache) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + 2 + shape->unstyledKeySize(), "Mask Filtered Masks"); // We require the upper left 2x2 of the matrix to match exactly for a cache hit. SkScalar sx = viewMatrix.get(SkMatrix::kMScaleX); SkScalar sy = viewMatrix.get(SkMatrix::kMScaleY); SkScalar kx = viewMatrix.get(SkMatrix::kMSkewX); SkScalar ky = viewMatrix.get(SkMatrix::kMSkewY); SkScalar tx = viewMatrix.get(SkMatrix::kMTransX); SkScalar ty = viewMatrix.get(SkMatrix::kMTransY); // Allow 8 bits each in x and y of subpixel positioning. SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00; SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00; builder[0] = SkFloat2Bits(sx); builder[1] = SkFloat2Bits(sy); builder[2] = SkFloat2Bits(kx); builder[3] = SkFloat2Bits(ky); // Distinguish between hairline and filled paths. For hairlines, we also need to include // the cap. (SW grows hairlines by 0.5 pixel with round and square caps). Note that // stroke-and-fill of hairlines is turned into pure fill by SkStrokeRec, so this covers // all cases we might see. uint32_t styleBits = shape->style().isSimpleHairline() ? ((shape->style().strokeRec().getCap() << 1) | 1) : 0; builder[4] = fracX | (fracY >> 8) | (styleBits << 16); SkMaskFilterBase::BlurRec rec; SkAssertResult(as_MFB(maskFilter)->asABlur(&rec)); builder[5] = rec.fStyle; // TODO: we could put this with the other style bits builder[6] = SkFloat2Bits(rec.fSigma); shape->writeUnstyledKey(&builder[7]); } SkIRect maskRect; if (maskFilter->canFilterMaskGPU(*shape, unclippedDevShapeBounds, *boundsForClip, viewMatrix, &maskRect)) { if (clip_bounds_quick_reject(*boundsForClip, maskRect)) { // clipped out return; } sk_sp filteredMask; GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); if (maskKey.isValid()) { // TODO: this cache look up is duplicated in sw_draw_with_mask_filter for raster filteredMask = proxyProvider->findOrCreateProxyByUniqueKey( maskKey, kTopLeft_GrSurfaceOrigin); } if (!filteredMask) { sk_sp maskProxy(create_mask_GPU( context, maskRect, viewMatrix, *shape, renderTargetContext->numColorSamples())); if (maskProxy) { filteredMask = maskFilter->filterMaskGPU(context, std::move(maskProxy), viewMatrix, maskRect); SkASSERT(kTopLeft_GrSurfaceOrigin == filteredMask->origin()); if (filteredMask && maskKey.isValid()) { proxyProvider->assignUniqueKeyToProxy(maskKey, filteredMask.get()); } } } if (filteredMask) { if (draw_mask(renderTargetContext, clip, viewMatrix, maskRect, std::move(paint), std::move(filteredMask))) { // This path is completely drawn return; } assert_alive(paint); } } sw_draw_with_mask_filter(context, renderTargetContext, clip, viewMatrix, *shape, maskFilter, *boundsForClip, std::move(paint), maskKey); } void GrBlurUtils::drawShapeWithMaskFilter(GrContext* context, GrRenderTargetContext* renderTargetContext, const GrClip& clip, const GrShape& shape, GrPaint&& paint, const SkMatrix& viewMatrix, const SkMaskFilter* mf) { draw_shape_with_mask_filter(context, renderTargetContext, clip, std::move(paint), viewMatrix, as_MFB(mf), shape); } void GrBlurUtils::drawShapeWithMaskFilter(GrContext* context, GrRenderTargetContext* renderTargetContext, const GrClip& clip, const SkPaint& paint, const SkMatrix& viewMatrix, const GrShape& shape) { if (context->abandoned()) { return; } GrPaint grPaint; if (!SkPaintToGrPaint(context, renderTargetContext->colorSpaceInfo(), paint, viewMatrix, &grPaint)) { return; } SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter()); if (mf && !mf->hasFragmentProcessor()) { // The MaskFilter wasn't already handled in SkPaintToGrPaint draw_shape_with_mask_filter(context, renderTargetContext, clip, std::move(grPaint), viewMatrix, mf, shape); } else { GrAA aa = GrAA(paint.isAntiAlias()); renderTargetContext->drawShape(clip, std::move(grPaint), aa, viewMatrix, shape); } }