/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDefaultGeoProcFactory.h" #include "GrCaps.h" #include "SkRefCnt.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVertexGeoBuilder.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" /* * The default Geometry Processor simply takes position and multiplies it by the uniform view * matrix. It also leaves coverage untouched. Behind the scenes, we may add per vertex color or * local coords. */ enum GPFlag { kColorAttribute_GPFlag = 0x1, kColorAttributeIsSkColor_GPFlag = 0x2, kColorAttributeIsWide_GPFlag = 0x4, kLocalCoordAttribute_GPFlag = 0x8, kCoverageAttribute_GPFlag = 0x10, kCoverageAttributeTweak_GPFlag = 0x20, kBonesAttribute_GPFlag = 0x40, }; static constexpr int kNumVec2sPerBone = 3; // Our bone matrices are 3x2 matrices passed in as // vec2s in column major order, and thus there are 3 // vec2s per bone. class DefaultGeoProc : public GrGeometryProcessor { public: static sk_sp Make(const GrShaderCaps* shaderCaps, uint32_t gpTypeFlags, const SkPMColor4f& color, sk_sp colorSpaceXform, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, bool localCoordsWillBeRead, uint8_t coverage, const float* bones, int boneCount) { return sk_sp(new DefaultGeoProc( shaderCaps, gpTypeFlags, color, std::move(colorSpaceXform), viewMatrix, localMatrix, coverage, localCoordsWillBeRead, bones, boneCount)); } const char* name() const override { return "DefaultGeometryProcessor"; } const SkPMColor4f& color() const { return fColor; } bool hasVertexColor() const { return fInColor.isInitialized(); } const SkMatrix& viewMatrix() const { return fViewMatrix; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool localCoordsWillBeRead() const { return fLocalCoordsWillBeRead; } uint8_t coverage() const { return fCoverage; } bool hasVertexCoverage() const { return fInCoverage.isInitialized(); } const float* bones() const { return fBones; } int boneCount() const { return fBoneCount; } bool hasBones() const { return SkToBool(fBones); } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()) , fColor(SK_PMColor4fILLEGAL) , fCoverage(0xff) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const DefaultGeoProc& gp = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(gp); bool tweakAlpha = SkToBool(gp.fFlags & kCoverageAttributeTweak_GPFlag); SkASSERT(!tweakAlpha || gp.hasVertexCoverage()); // Setup pass through color if (gp.hasVertexColor() || tweakAlpha) { GrGLSLVarying varying(kHalf4_GrSLType); varyingHandler->addVarying("color", &varying); // There are several optional steps to process the color. Start with the attribute, // or with uniform color (in the case of folding coverage into a uniform color): if (gp.hasVertexColor()) { vertBuilder->codeAppendf("half4 color = %s;", gp.fInColor.name()); } else { const char* colorUniformName; fColorUniform = uniformHandler->addUniform(kVertex_GrShaderFlag, kHalf4_GrSLType, "Color", &colorUniformName); vertBuilder->codeAppendf("half4 color = %s;", colorUniformName); } // For SkColor, do a red/blue swap, possible color space conversion, and premul if (gp.fFlags & kColorAttributeIsSkColor_GPFlag) { vertBuilder->codeAppend("color = color.bgra;"); if (gp.fColorSpaceXform) { fColorSpaceHelper.emitCode(uniformHandler, gp.fColorSpaceXform.get(), kVertex_GrShaderFlag); SkString xformedColor; vertBuilder->appendColorGamutXform(&xformedColor, "color", &fColorSpaceHelper); vertBuilder->codeAppendf("color = %s;", xformedColor.c_str()); } vertBuilder->codeAppend("color = half4(color.rgb * color.a, color.a);"); } // Optionally fold coverage into alpha (color). if (tweakAlpha) { vertBuilder->codeAppendf("color = color * %s;", gp.fInCoverage.name()); } vertBuilder->codeAppendf("%s = color;\n", varying.vsOut()); fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, varying.fsIn()); } else { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup bone transforms // NOTE: This code path is currently unused. Benchmarks have found that for all // reasonable cases of skinned vertices, the overhead involved in copying and uploading // bone data makes performing the transformations on the CPU faster than doing so on // the GPU. This is being kept here in case that changes. const char* transformedPositionName = gp.fInPosition.name(); if (gp.hasBones()) { // Set up the uniform for the bones. const char* vertBonesUniformName; fBonesUniform = uniformHandler->addUniformArray(kVertex_GrShaderFlag, kFloat2_GrSLType, "Bones", kMaxBones * kNumVec2sPerBone, &vertBonesUniformName); // Set up the bone application function. SkString applyBoneFunctionName; this->emitApplyBoneFunction(vertBuilder, vertBonesUniformName, &applyBoneFunctionName); // Apply the world transform to the position first. vertBuilder->codeAppendf( "float2 worldPosition = %s(0, %s);" "float2 transformedPosition = float2(0, 0);" "for (int i = 0; i < 4; i++) {", applyBoneFunctionName.c_str(), gp.fInPosition.name()); // If the GPU supports unsigned integers, then we can read the index. Otherwise, // we have to estimate it given the float representation. if (args.fShaderCaps->unsignedSupport()) { vertBuilder->codeAppendf( " byte index = %s[i];", gp.fInBoneIndices.name()); } else { vertBuilder->codeAppendf( " byte index = byte(floor(%s[i] * 255 + 0.5));", gp.fInBoneIndices.name()); } // Get the weight and apply the transformation. vertBuilder->codeAppendf( " float weight = %s[i];" " transformedPosition += %s(index, worldPosition) * weight;" "}", gp.fInBoneWeights.name(), applyBoneFunctionName.c_str()); transformedPositionName = "transformedPosition"; } // Setup position this->writeOutputPosition(vertBuilder, uniformHandler, gpArgs, transformedPositionName, gp.viewMatrix(), &fViewMatrixUniform); if (gp.fInLocalCoords.isInitialized()) { // emit transforms with explicit local coords this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gp.fInLocalCoords.asShaderVar(), gp.localMatrix(), args.fFPCoordTransformHandler); } else { // emit transforms with position this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gp.fInPosition.asShaderVar(), gp.localMatrix(), args.fFPCoordTransformHandler); } // Setup coverage as pass through if (gp.hasVertexCoverage() && !tweakAlpha) { fragBuilder->codeAppendf("half alpha = 1.0;"); varyingHandler->addPassThroughAttribute(gp.fInCoverage, "alpha"); fragBuilder->codeAppendf("%s = half4(alpha);", args.fOutputCoverage); } else if (gp.coverage() == 0xff) { fragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage); } else { const char* fragCoverage; fCoverageUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Coverage", &fragCoverage); fragBuilder->codeAppendf("%s = half4(%s);", args.fOutputCoverage, fragCoverage); } } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const DefaultGeoProc& def = gp.cast(); uint32_t key = def.fFlags; key |= (def.coverage() == 0xff) ? 0x80 : 0; key |= (def.localCoordsWillBeRead() && def.localMatrix().hasPerspective()) ? 0x100 : 0; key |= ComputePosKey(def.viewMatrix()) << 20; b->add32(key); b->add32(GrColorSpaceXform::XformKey(def.fColorSpaceXform.get())); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, FPCoordTransformIter&& transformIter) override { const DefaultGeoProc& dgp = gp.cast(); if (!dgp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dgp.viewMatrix())) { fViewMatrix = dgp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } if (!dgp.hasVertexColor() && dgp.color() != fColor) { pdman.set4fv(fColorUniform, 1, dgp.color().vec()); fColor = dgp.color(); } if (dgp.coverage() != fCoverage && !dgp.hasVertexCoverage()) { pdman.set1f(fCoverageUniform, GrNormalizeByteToFloat(dgp.coverage())); fCoverage = dgp.coverage(); } this->setTransformDataHelper(dgp.fLocalMatrix, pdman, &transformIter); fColorSpaceHelper.setData(pdman, dgp.fColorSpaceXform.get()); if (dgp.hasBones()) { pdman.set2fv(fBonesUniform, dgp.boneCount() * kNumVec2sPerBone, dgp.bones()); } } private: void emitApplyBoneFunction(GrGLSLVertexBuilder* vertBuilder, const char* vertBonesUniformName, SkString* funcName) { // The bone matrices are passed in as 3x2 matrices in column-major order as groups // of 3 float2s. This code takes those float2s and performs the matrix operation on // a given matrix and float2. const GrShaderVar gApplyBoneArgs[] = { GrShaderVar("index", kByte_GrSLType), GrShaderVar("vec", kFloat2_GrSLType), }; SkString body; body.appendf( " float2 c0 = %s[index * 3];" " float2 c1 = %s[index * 3 + 1];" " float2 c2 = %s[index * 3 + 2];" " float x = c0.x * vec.x + c1.x * vec.y + c2.x;" " float y = c0.y * vec.x + c1.y * vec.y + c2.y;" " return float2(x, y);", vertBonesUniformName, vertBonesUniformName, vertBonesUniformName); vertBuilder->emitFunction(kFloat2_GrSLType, "applyBone", SK_ARRAY_COUNT(gApplyBoneArgs), gApplyBoneArgs, body.c_str(), funcName); } private: SkMatrix fViewMatrix; SkPMColor4f fColor; uint8_t fCoverage; UniformHandle fViewMatrixUniform; UniformHandle fColorUniform; UniformHandle fCoverageUniform; UniformHandle fBonesUniform; GrGLSLColorSpaceXformHelper fColorSpaceHelper; typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { return new GLSLProcessor(); } private: DefaultGeoProc(const GrShaderCaps* shaderCaps, uint32_t gpTypeFlags, const SkPMColor4f& color, sk_sp colorSpaceXform, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, uint8_t coverage, bool localCoordsWillBeRead, const float* bones, int boneCount) : INHERITED(kDefaultGeoProc_ClassID) , fColor(color) , fViewMatrix(viewMatrix) , fLocalMatrix(localMatrix) , fCoverage(coverage) , fFlags(gpTypeFlags) , fLocalCoordsWillBeRead(localCoordsWillBeRead) , fColorSpaceXform(std::move(colorSpaceXform)) , fBones(bones) , fBoneCount(boneCount) { fInPosition = {"inPosition", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; if (fFlags & kColorAttribute_GPFlag) { fInColor = MakeColorAttribute("inColor", SkToBool(fFlags & kColorAttributeIsWide_GPFlag)); } if (fFlags & kLocalCoordAttribute_GPFlag) { fInLocalCoords = {"inLocalCoord", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; } if (fFlags & kCoverageAttribute_GPFlag) { fInCoverage = {"inCoverage", kFloat_GrVertexAttribType, kHalf_GrSLType}; } if (fFlags & kBonesAttribute_GPFlag) { SkASSERT(bones && (boneCount > 0)); // GLSL 1.10 and 1.20 don't support integer attributes. GrVertexAttribType indicesCPUType = kByte4_GrVertexAttribType; GrSLType indicesGPUType = kByte4_GrSLType; if (!shaderCaps->unsignedSupport()) { indicesCPUType = kUByte4_norm_GrVertexAttribType; indicesGPUType = kHalf4_GrSLType; } fInBoneIndices = {"inBoneIndices", indicesCPUType, indicesGPUType}; fInBoneWeights = {"inBoneWeights", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; } this->setVertexAttributes(&fInPosition, 6); } Attribute fInPosition; Attribute fInColor; Attribute fInLocalCoords; Attribute fInCoverage; Attribute fInBoneIndices; Attribute fInBoneWeights; SkPMColor4f fColor; SkMatrix fViewMatrix; SkMatrix fLocalMatrix; uint8_t fCoverage; uint32_t fFlags; bool fLocalCoordsWillBeRead; sk_sp fColorSpaceXform; const float* fBones; int fBoneCount; GR_DECLARE_GEOMETRY_PROCESSOR_TEST typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DefaultGeoProc); #if GR_TEST_UTILS static constexpr int kNumFloatsPerBone = 6; static constexpr int kTestBoneCount = 4; static constexpr float kTestBones[kTestBoneCount * kNumFloatsPerBone] = { 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, }; sk_sp DefaultGeoProc::TestCreate(GrProcessorTestData* d) { uint32_t flags = 0; if (d->fRandom->nextBool()) { flags |= kColorAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kColorAttributeIsSkColor_GPFlag; } if (d->fRandom->nextBool()) { flags |= kColorAttributeIsWide_GPFlag; } if (d->fRandom->nextBool()) { flags |= kCoverageAttribute_GPFlag; if (d->fRandom->nextBool()) { flags |= kCoverageAttributeTweak_GPFlag; } } if (d->fRandom->nextBool()) { flags |= kLocalCoordAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kBonesAttribute_GPFlag; } return DefaultGeoProc::Make(d->caps()->shaderCaps(), flags, SkPMColor4f::FromBytes_RGBA(GrRandomColor(d->fRandom)), GrTest::TestColorXform(d->fRandom), GrTest::TestMatrix(d->fRandom), GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool(), GrRandomCoverage(d->fRandom), kTestBones, kTestBoneCount); } #endif sk_sp GrDefaultGeoProcFactory::Make(const GrShaderCaps* shaderCaps, const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { uint32_t flags = 0; if (Color::kPremulGrColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag; } else if (Color::kUnpremulSkColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsSkColor_GPFlag; } else if (Color::kPremulWideColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsWide_GPFlag; } if (Coverage::kAttribute_Type == coverage.fType) { flags |= kCoverageAttribute_GPFlag; } else if (Coverage::kAttributeTweakAlpha_Type == coverage.fType) { flags |= kCoverageAttribute_GPFlag | kCoverageAttributeTweak_GPFlag; } flags |= localCoords.fType == LocalCoords::kHasExplicit_Type ? kLocalCoordAttribute_GPFlag : 0; uint8_t inCoverage = coverage.fCoverage; bool localCoordsWillBeRead = localCoords.fType != LocalCoords::kUnused_Type; return DefaultGeoProc::Make(shaderCaps, flags, color.fColor, color.fColorSpaceXform, viewMatrix, localCoords.fMatrix ? *localCoords.fMatrix : SkMatrix::I(), localCoordsWillBeRead, inCoverage, nullptr, 0); } sk_sp GrDefaultGeoProcFactory::MakeForDeviceSpace( const GrShaderCaps* shaderCaps, const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { SkMatrix invert = SkMatrix::I(); if (LocalCoords::kUnused_Type != localCoords.fType) { SkASSERT(LocalCoords::kUsePosition_Type == localCoords.fType); if (!viewMatrix.isIdentity() && !viewMatrix.invert(&invert)) { return nullptr; } if (localCoords.hasLocalMatrix()) { invert.postConcat(*localCoords.fMatrix); } } LocalCoords inverted(LocalCoords::kUsePosition_Type, &invert); return Make(shaderCaps, color, coverage, inverted, SkMatrix::I()); } sk_sp GrDefaultGeoProcFactory::MakeWithBones(const GrShaderCaps* shaderCaps, const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const Bones& bones, const SkMatrix& viewMatrix) { uint32_t flags = 0; if (Color::kPremulGrColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag; } else if (Color::kUnpremulSkColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsSkColor_GPFlag; } else if (Color::kPremulWideColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsWide_GPFlag; } if (Coverage::kAttribute_Type == coverage.fType) { flags |= kCoverageAttribute_GPFlag; } else if (Coverage::kAttributeTweakAlpha_Type == coverage.fType) { flags |= kCoverageAttribute_GPFlag | kCoverageAttributeTweak_GPFlag; } flags |= localCoords.fType == LocalCoords::kHasExplicit_Type ? kLocalCoordAttribute_GPFlag : 0; flags |= kBonesAttribute_GPFlag; uint8_t inCoverage = coverage.fCoverage; bool localCoordsWillBeRead = localCoords.fType != LocalCoords::kUnused_Type; return DefaultGeoProc::Make(shaderCaps, flags, color.fColor, color.fColorSpaceXform, viewMatrix, localCoords.fMatrix ? *localCoords.fMatrix : SkMatrix::I(), localCoordsWillBeRead, inCoverage, bones.fBones, bones.fBoneCount); }