/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrCCPathProcessor.h" #include "GrGpuCommandBuffer.h" #include "GrOnFlushResourceProvider.h" #include "GrTexture.h" #include "ccpr/GrCCPerFlushResources.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramBuilder.h" #include "glsl/GrGLSLVarying.h" // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge // from the path's bounding box and one edge from its 45-degree bounding box. The below inputs // define a vertex by the two edges that need to be intersected. Normals point out of the octagon, // and the bounding boxes are sent in as instance attribs. static constexpr float kOctoEdgeNorms[8 * 4] = { // bbox // bbox45 -1, 0, -1,+1, -1, 0, -1,-1, 0,-1, -1,-1, 0,-1, +1,-1, +1, 0, +1,-1, +1, 0, +1,+1, 0,+1, +1,+1, 0,+1, -1,+1, }; GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); sk_sp GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); return onFlushRP->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kOctoEdgeNorms), kOctoEdgeNorms, gVertexBufferKey); } static constexpr uint16_t kRestartStrip = 0xffff; static constexpr uint16_t kOctoIndicesAsStrips[] = { 1, 0, 2, 4, 3, kRestartStrip, // First half. 5, 4, 6, 0, 7 // Second half. }; static constexpr uint16_t kOctoIndicesAsTris[] = { // First half. 1, 0, 2, 0, 4, 2, 2, 4, 3, // Second half. 5, 4, 6, 4, 0, 6, 6, 0, 7, }; GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kEdgeNormsAttrib; sk_sp GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); if (onFlushRP->caps()->usePrimitiveRestart()) { return onFlushRP->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, gIndexBufferKey); } else { return onFlushRP->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, gIndexBufferKey); } } GrCCPathProcessor::GrCCPathProcessor(const GrTextureProxy* atlas, const SkMatrix& viewMatrixIfUsingLocalCoords) : INHERITED(kGrCCPathProcessor_ClassID) , fAtlasAccess(atlas->textureType(), atlas->config(), GrSamplerState::Filter::kNearest, GrSamplerState::WrapMode::kClamp) , fAtlasSize(atlas->isize()) , fAtlasOrigin(atlas->origin()) { // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? this->setInstanceAttributes(kInstanceAttribs, kNumInstanceAttribs); SkASSERT(this->instanceStride() == sizeof(Instance)); this->setVertexAttributes(&kEdgeNormsAttrib, 1); this->setTextureSamplerCnt(1); if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { fLocalMatrix.setIdentity(); } } class GLSLPathProcessor : public GrGLSLGeometryProcessor { public: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; private: void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, FPCoordTransformIter&& transformIter) override { const GrCCPathProcessor& proc = primProc.cast(); pdman.set2f(fAtlasAdjustUniform, 1.0f / proc.atlasSize().fWidth, 1.0f / proc.atlasSize().fHeight); this->setTransformDataHelper(proc.localMatrix(), pdman, &transformIter); } GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; typedef GrGLSLGeometryProcessor INHERITED; }; GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { return new GLSLPathProcessor(); } void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrCCPerFlushResources& resources, int baseInstance, int endInstance, const SkRect& bounds) const { const GrCaps& caps = flushState->caps(); GrPrimitiveType primitiveType = caps.usePrimitiveRestart() ? GrPrimitiveType::kTriangleStrip : GrPrimitiveType::kTriangles; int numIndicesPerInstance = caps.usePrimitiveRestart() ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) : SK_ARRAY_COUNT(kOctoIndicesAsTris); GrMesh mesh(primitiveType); auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); mesh.setIndexedInstanced(resources.refIndexBuffer(), numIndicesPerInstance, resources.refInstanceBuffer(), endInstance - baseInstance, baseInstance, enablePrimitiveRestart); mesh.setVertexData(resources.refVertexBuffer()); flushState->rtCommandBuffer()->draw(*this, pipeline, fixedDynamicState, nullptr, &mesh, 1, bounds); } void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { using InstanceAttribs = GrCCPathProcessor::InstanceAttribs; using Interpolation = GrGLSLVaryingHandler::Interpolation; const GrCCPathProcessor& proc = args.fGP.cast(); GrGLSLUniformHandler* uniHandler = args.fUniformHandler; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; const char* atlasAdjust; fAtlasAdjustUniform = uniHandler->addUniform( kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust", &atlasAdjust); varyingHandler->emitAttributes(proc); GrGLSLVarying texcoord(kFloat3_GrSLType); GrGLSLVarying color(kHalf4_GrSLType); varyingHandler->addVarying("texcoord", &texcoord); varyingHandler->addPassThroughAttribute(proc.getInstanceAttrib(InstanceAttribs::kColor), args.fOutputColor, Interpolation::kCanBeFlat); // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to // find an octagon that circumscribes the (bloated) path. GrGLSLVertexBuilder* v = args.fVertBuilder; // Each vertex is the intersection of one edge from devBounds and one from devBounds45. // 'N' holds the normals to these edges as column vectors. // // NOTE: "float2x2(float4)" is valid and equivalent to "float2x2(float4.xy, float4.zw)", // however Intel compilers crash when we use the former syntax in this shader. v->codeAppendf("float2x2 N = float2x2(%s.xy, %s.zw);", proc.getEdgeNormsAttrib().name(), proc.getEdgeNormsAttrib().name()); // N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing // out of the octagon. v->codeAppendf("float4 devbounds = %s;", proc.getInstanceAttrib(InstanceAttribs::kDevBounds).name()); v->codeAppend ("float2 refpt = (0 == sk_VertexID >> 2)" "? float2(min(devbounds.x, devbounds.z), devbounds.y)" ": float2(max(devbounds.x, devbounds.z), devbounds.w);"); // N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing // out of the octagon. v->codeAppendf("float2 refpt45 = (0 == ((sk_VertexID + 1) & (1 << 2))) ? %s.xy : %s.zw;", proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).name(), proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).name()); v->codeAppendf("refpt45 *= float2x2(.5,.5,-.5,.5);"); // transform back to device space. v->codeAppend ("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));"); v->codeAppendf("float2 octocoord = K * inverse(N);"); // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive // bloatdir means we should take the "ceil" and negative means to take the "floor".) // // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also // diagonals in the octagon that cross through pixel centers, we need to outset by another // quarter px to ensure those pixels get rasterized. v->codeAppend ("float2 bloatdir = (0 != N[0].x) " "? half2(N[0].x, N[1].y) : half2(N[1].x, N[0].y);"); v->codeAppend ("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;"); gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord"); // Convert to atlas coordinates in order to do our texture lookup. v->codeAppendf("float2 atlascoord = octocoord + float2(%s);", proc.getInstanceAttrib(InstanceAttribs::kDevToAtlasOffset).name()); if (kTopLeft_GrSurfaceOrigin == proc.atlasOrigin()) { v->codeAppendf("%s.xy = atlascoord * %s;", texcoord.vsOut(), atlasAdjust); } else { SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlasOrigin()); v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);", texcoord.vsOut(), atlasAdjust, atlasAdjust); } // The third texture coordinate is -.5 for even-odd paths and +.5 for winding ones. // ("right < left" indicates even-odd fill type.) v->codeAppendf("%s.z = sign(devbounds.z - devbounds.x) * .5;", texcoord.vsOut()); this->emitTransforms(v, varyingHandler, uniHandler, GrShaderVar("octocoord", kFloat2_GrSLType), proc.localMatrix(), args.fFPCoordTransformHandler); // Fragment shader. GrGLSLFPFragmentBuilder* f = args.fFragBuilder; // Look up coverage count in the atlas. f->codeAppend ("half coverage = "); f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy", texcoord.fsIn()).c_str(), kFloat2_GrSLType); f->codeAppend (".a;"); // Scale coverage count by .5. Make it negative for even-odd paths and positive for winding // ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). f->codeAppendf("coverage = min(abs(coverage) * %s.z, .5);", texcoord.fsIn()); // For negative values, this finishes the even-odd sawtooth function. Since positive (winding) // values were clamped at "coverage/2 = .5", this only undoes the previous multiply by .5. f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);"); f->codeAppendf("%s = half4(coverage);", args.fOutputCoverage); }