/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrMatrixConvolutionEffect.h" #include "GrTexture.h" #include "GrTextureProxy.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; private: typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; UniformHandle fKernelUni; UniformHandle fImageIncrementUni; UniformHandle fKernelOffsetUni; UniformHandle fGainUni; UniformHandle fBiasUni; GrTextureDomain::GLDomain fDomain; typedef GrGLSLFragmentProcessor INHERITED; }; void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) { const GrMatrixConvolutionEffect& mce = args.fFp.cast(); const GrTextureDomain& domain = mce.domain(); int kWidth = mce.kernelSize().width(); int kHeight = mce.kernelSize().height(); int arrayCount = (kWidth * kHeight + 3) / 4; SkASSERT(4 * arrayCount >= kWidth * kHeight); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "ImageIncrement"); fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType, "Kernel", arrayCount); fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "KernelOffset"); fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain"); fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias"); const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni); const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); const char* kernel = uniformHandler->getUniformCStr(fKernelUni); const char* gain = uniformHandler->getUniformCStr(fGainUni); const char* bias = uniformHandler->getUniformCStr(fBiasUni); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);"); fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc); fragBuilder->codeAppend("half4 c;"); const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" }; for (int y = 0; y < kHeight; y++) { for (int x = 0; x < kWidth; x++) { GrGLSLShaderBuilder::ShaderBlock block(fragBuilder); int offset = y*kWidth + x; fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4, kVecSuffix[offset & 0x3]); SkString coord; coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc); fDomain.sampleTexture(fragBuilder, uniformHandler, args.fShaderCaps, domain, "c", coord, args.fTexSamplers[0]); if (!mce.convolveAlpha()) { fragBuilder->codeAppend("c.rgb /= c.a;"); fragBuilder->codeAppend("c.rgb = saturate(c.rgb);"); } fragBuilder->codeAppend("sum += c * k;"); } } if (mce.convolveAlpha()) { fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias); fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor); fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);", args.fOutputColor, args.fOutputColor, args.fOutputColor); } else { fDomain.sampleTexture(fragBuilder, uniformHandler, args.fShaderCaps, domain, "c", coords2D, args.fTexSamplers[0]); fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor); fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias); fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor); } fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor); } void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrMatrixConvolutionEffect& m = processor.cast(); SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF); uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height(); key |= m.convolveAlpha() ? 1U << 31 : 0; b->add32(key); b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain())); } void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { const GrMatrixConvolutionEffect& conv = processor.cast(); GrTextureProxy* proxy = conv.textureSampler(0).proxy(); GrTexture* texture = proxy->peekTexture(); float imageIncrement[2]; float ySign = proxy->origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f; imageIncrement[0] = 1.0f / texture->width(); imageIncrement[1] = ySign / texture->height(); pdman.set2fv(fImageIncrementUni, 1, imageIncrement); pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset()); int kernelCount = conv.kernelSize().width() * conv.kernelSize().height(); int arrayCount = (kernelCount + 3) / 4; SkASSERT(4 * arrayCount >= kernelCount); pdman.set4fv(fKernelUni, arrayCount, conv.kernel()); pdman.set1f(fGainUni, conv.gain()); pdman.set1f(fBiasUni, conv.bias()); fDomain.setData(pdman, conv.domain(), proxy, conv.textureSampler(0).samplerState()); } GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(sk_sp srcProxy, const SkIRect& srcBounds, const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, GrTextureDomain::Mode tileMode, bool convolveAlpha) // To advertise either the modulation or opaqueness optimizations we'd have to examine the // parameters. : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags) , fCoordTransform(srcProxy.get()) , fDomain(srcProxy.get(), GrTextureDomain::MakeTexelDomain(srcBounds, tileMode), tileMode, tileMode) , fTextureSampler(std::move(srcProxy)) , fKernelSize(kernelSize) , fGain(SkScalarToFloat(gain)) , fBias(SkScalarToFloat(bias) / 255.0f) , fConvolveAlpha(convolveAlpha) { this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) { fKernel[i] = SkScalarToFloat(kernel[i]); } fKernelOffset[0] = static_cast(kernelOffset.x()); fKernelOffset[1] = static_cast(kernelOffset.y()); } GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that) : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags) , fCoordTransform(that.fCoordTransform) , fDomain(that.fDomain) , fTextureSampler(that.fTextureSampler) , fKernelSize(that.fKernelSize) , fGain(that.fGain) , fBias(that.fBias) , fConvolveAlpha(that.fConvolveAlpha) { this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); memcpy(fKernel, that.fKernel, sizeof(float) * fKernelSize.width() * fKernelSize.height()); memcpy(fKernelOffset, that.fKernelOffset, sizeof(fKernelOffset)); } std::unique_ptr GrMatrixConvolutionEffect::clone() const { return std::unique_ptr(new GrMatrixConvolutionEffect(*this)); } void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLMatrixConvolutionEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const { return new GrGLMatrixConvolutionEffect; } bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrMatrixConvolutionEffect& s = sBase.cast(); return fKernelSize == s.kernelSize() && !memcmp(fKernel, s.kernel(), fKernelSize.width() * fKernelSize.height() * sizeof(float)) && fGain == s.gain() && fBias == s.bias() && !memcmp(fKernelOffset, s.kernelOffset(), sizeof(fKernelOffset)) && fConvolveAlpha == s.convolveAlpha() && fDomain == s.domain(); } static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride, float twoSigmaSqrd) { SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero)); const float sigmaDenom = 1.0f / twoSigmaSqrd; const int radius = size / 2; float sum = 0.0f; for (int i = 0; i < size; ++i) { float term = static_cast(i - radius); // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian // is dropped here, since we renormalize the kernel below. kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom); sum += kernel[i * stride]; } // Normalize the kernel float scale = 1.0f / sum; for (int i = 0; i < size; ++i) { kernel[i * stride] *= scale; } } static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height, SkScalar sigmaX, SkScalar sigmaY) { SkASSERT(width * height <= MAX_KERNEL_SIZE); const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX)); const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY)); // TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros. if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) || SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) { // In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point SkASSERT(3 == width || 3 == height); memset(kernel, 0, width*height*sizeof(float)); if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) && SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) { // A point SkASSERT(3 == width && 3 == height); kernel[4] = 1.0f; } else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) { // A 1D Gaussian in Y SkASSERT(3 == width); // Down the middle column of the kernel with a stride of width fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY); } else { // A 1D Gaussian in X SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)); SkASSERT(3 == height); // Down the middle row of the kernel with a stride of 1 fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX); } return; } const float sigmaXDenom = 1.0f / twoSigmaSqrdX; const float sigmaYDenom = 1.0f / twoSigmaSqrdY; const int xRadius = width / 2; const int yRadius = height / 2; float sum = 0.0f; for (int x = 0; x < width; x++) { float xTerm = static_cast(x - xRadius); xTerm = xTerm * xTerm * sigmaXDenom; for (int y = 0; y < height; y++) { float yTerm = static_cast(y - yRadius); float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom)); // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian // is dropped here, since we renormalize the kernel below. kernel[y * width + x] = xyTerm; sum += xyTerm; } } // Normalize the kernel float scale = 1.0f / sum; for (int i = 0; i < width * height; ++i) { kernel[i] *= scale; } } // Static function to create a 2D convolution std::unique_ptr GrMatrixConvolutionEffect::MakeGaussian( sk_sp srcProxy, const SkIRect& srcBounds, const SkISize& kernelSize, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, GrTextureDomain::Mode tileMode, bool convolveAlpha, SkScalar sigmaX, SkScalar sigmaY) { float kernel[MAX_KERNEL_SIZE]; fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY); return std::unique_ptr( new GrMatrixConvolutionEffect(std::move(srcProxy), srcBounds, kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect); #if GR_TEST_UTILS std::unique_ptr GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE); int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width); SkISize kernelSize = SkISize::Make(width, height); std::unique_ptr kernel(new SkScalar[width * height]); for (int i = 0; i < width * height; i++) { kernel.get()[i] = d->fRandom->nextSScalar1(); } SkScalar gain = d->fRandom->nextSScalar1(); SkScalar bias = d->fRandom->nextSScalar1(); SkIPoint kernelOffset = SkIPoint::Make(d->fRandom->nextRangeU(0, kernelSize.width()), d->fRandom->nextRangeU(0, kernelSize.height())); SkIRect bounds = SkIRect::MakeXYWH(d->fRandom->nextRangeU(0, proxy->width()), d->fRandom->nextRangeU(0, proxy->height()), d->fRandom->nextRangeU(0, proxy->width()), d->fRandom->nextRangeU(0, proxy->height())); GrTextureDomain::Mode tileMode = static_cast(d->fRandom->nextRangeU(0, 2)); bool convolveAlpha = d->fRandom->nextBool(); return GrMatrixConvolutionEffect::Make(std::move(proxy), bounds, kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, convolveAlpha); } #endif