/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "glsl/GrGLSLProgramBuilder.h" #include "GrCaps.h" #include "GrPipeline.h" #include "GrRenderTarget.h" #include "GrShaderCaps.h" #include "GrTexturePriv.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLXferProcessor.h" #include "SkSLCompiler.h" const int GrGLSLProgramBuilder::kVarsPerBlock = 8; GrGLSLProgramBuilder::GrGLSLProgramBuilder(GrRenderTarget* renderTarget, GrSurfaceOrigin origin, const GrPrimitiveProcessor& primProc, const GrTextureProxy* const primProcProxies[], const GrPipeline& pipeline, GrProgramDesc* desc) : fVS(this) , fGS(this) , fFS(this) , fStageIndex(-1) , fConfig(renderTarget->config()) , fNumColorSamples(renderTarget->numColorSamples()) , fOrigin(origin) , fPipeline(pipeline) , fPrimProc(primProc) , fPrimProcProxies(primProcProxies) , fDesc(desc) , fGeometryProcessor(nullptr) , fXferProcessor(nullptr) , fNumFragmentSamplers(0) {} void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, uint32_t featureBit, const char* extensionName) { if (shaders & kVertex_GrShaderFlag) { fVS.addFeature(featureBit, extensionName); } if (shaders & kGeometry_GrShaderFlag) { SkASSERT(this->primitiveProcessor().willUseGeoShader()); fGS.addFeature(featureBit, extensionName); } if (shaders & kFragment_GrShaderFlag) { fFS.addFeature(featureBit, extensionName); } } bool GrGLSLProgramBuilder::emitAndInstallProcs() { // First we loop over all of the installed processors and collect coord transforms. These will // be sent to the GrGLSLPrimitiveProcessor in its emitCode function SkString inputColor; SkString inputCoverage; this->emitAndInstallPrimProc(&inputColor, &inputCoverage); this->emitAndInstallFragProcs(&inputColor, &inputCoverage); this->emitAndInstallXferProc(inputColor, inputCoverage); this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput()); return this->checkSamplerCounts(); } void GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor, SkString* outputCoverage) { const GrPrimitiveProcessor& proc = this->primitiveProcessor(); const GrTextureProxy* const* primProcProxies = this->primProcProxies(); // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(outputColor, "outputColor"); this->nameExpression(outputCoverage, "outputCoverage"); SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); GrShaderFlags rtAdjustVisibility; if (proc.willUseGeoShader()) { rtAdjustVisibility = kGeometry_GrShaderFlag; } else { rtAdjustVisibility = kVertex_GrShaderFlag; } fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform( rtAdjustVisibility, kFloat4_GrSLType, SkSL::Compiler::RTADJUST_NAME); const char* rtAdjustName = this->uniformHandler()->getUniformCStr(fUniformHandles.fRTAdjustmentUni); // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name()); fFS.codeAppend(openBrace.c_str()); fVS.codeAppendf("// Primitive Processor %s\n", proc.name()); SkASSERT(!fGeometryProcessor); fGeometryProcessor.reset(proc.createGLSLInstance(*this->shaderCaps())); SkAutoSTMalloc<4, SamplerHandle> texSamplers(proc.numTextureSamplers()); for (int i = 0; i < proc.numTextureSamplers(); ++i) { SkString name; name.printf("TextureSampler_%d", i); const auto& sampler = proc.textureSampler(i); const GrTexture* texture = primProcProxies[i]->peekTexture(); SkASSERT(sampler.textureType() == texture->texturePriv().textureType()); SkASSERT(sampler.config() == texture->config()); texSamplers[i] = this->emitSampler(texture, sampler.samplerState(), name.c_str()); } GrGLSLPrimitiveProcessor::FPCoordTransformHandler transformHandler(fPipeline, &fTransformedCoordVars); GrGLSLGeometryProcessor::EmitArgs args(&fVS, proc.willUseGeoShader() ? &fGS : nullptr, &fFS, this->varyingHandler(), this->uniformHandler(), this->shaderCaps(), proc, outputColor->c_str(), outputCoverage->c_str(), rtAdjustName, texSamplers.get(), &transformHandler); fGeometryProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(proc);) fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) { int transformedCoordVarsIdx = 0; SkString** inOut = &color; SkSTArray<8, std::unique_ptr> glslFragmentProcessors; for (int i = 0; i < this->pipeline().numFragmentProcessors(); ++i) { if (i == this->pipeline().numColorFragmentProcessors()) { inOut = &coverage; } SkString output; const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); output = this->emitAndInstallFragProc(fp, i, transformedCoordVarsIdx, **inOut, output, &glslFragmentProcessors); GrFragmentProcessor::Iter iter(&fp); while (const GrFragmentProcessor* fp = iter.next()) { transformedCoordVarsIdx += fp->numCoordTransforms(); } **inOut = output; } fFragmentProcessorCnt = glslFragmentProcessors.count(); fFragmentProcessors.reset(new std::unique_ptr[fFragmentProcessorCnt]); for (int i = 0; i < fFragmentProcessorCnt; ++i) { fFragmentProcessors[i] = std::move(glslFragmentProcessors[i]); } } // TODO Processors cannot output zeros because an empty string is all 1s // the fix is to allow effects to take the SkString directly SkString GrGLSLProgramBuilder::emitAndInstallFragProc( const GrFragmentProcessor& fp, int index, int transformedCoordVarsIdx, const SkString& input, SkString output, SkTArray>* glslFragmentProcessors) { SkASSERT(input.size()); // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(&output, "output"); // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name()); fFS.codeAppend(openBrace.c_str()); GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance(); SkSTArray<4, SamplerHandle> texSamplers; GrFragmentProcessor::Iter fpIter(&fp); int samplerIdx = 0; while (const auto* subFP = fpIter.next()) { for (int i = 0; i < subFP->numTextureSamplers(); ++i) { SkString name; name.printf("TextureSampler_%d", samplerIdx++); const auto& sampler = subFP->textureSampler(i); texSamplers.emplace_back(this->emitSampler(sampler.peekTexture(), sampler.samplerState(), name.c_str())); } } const GrShaderVar* coordVars = fTransformedCoordVars.begin() + transformedCoordVarsIdx; GrGLSLFragmentProcessor::TransformedCoordVars coords(&fp, coordVars); GrGLSLFragmentProcessor::TextureSamplers textureSamplers(&fp, texSamplers.begin()); GrGLSLFragmentProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->shaderCaps(), fp, output.c_str(), input.c_str(), coords, textureSamplers); fragProc->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(fp);) glslFragmentProcessors->emplace_back(fragProc); fFS.codeAppend("}"); return output; } void GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn, const SkString& coverageIn) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); SkASSERT(!fXferProcessor); const GrXferProcessor& xp = fPipeline.getXferProcessor(); fXferProcessor.reset(xp.createGLSLInstance()); // Enable dual source secondary output if we have one if (xp.hasSecondaryOutput()) { fFS.enableSecondaryOutput(); } if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) { fFS.enableCustomOutput(); } SkString openBrace; openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); fFS.codeAppend(openBrace.c_str()); SamplerHandle dstTextureSamplerHandle; GrSurfaceOrigin dstTextureOrigin = kTopLeft_GrSurfaceOrigin; if (GrTexture* dstTexture = fPipeline.peekDstTexture()) { // GrProcessor::TextureSampler sampler(dstTexture); SkString name("DstTextureSampler"); dstTextureSamplerHandle = this->emitSampler(dstTexture, GrSamplerState(), "DstTextureSampler"); dstTextureOrigin = fPipeline.dstTextureProxy()->origin(); SkASSERT(dstTexture->texturePriv().textureType() != GrTextureType::kExternal); } GrGLSLXferProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->shaderCaps(), xp, colorIn.size() ? colorIn.c_str() : "float4(1)", coverageIn.size() ? coverageIn.c_str() : "float4(1)", fFS.getPrimaryColorOutputName(), fFS.getSecondaryColorOutputName(), dstTextureSamplerHandle, dstTextureOrigin); fXferProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(xp);) fFS.codeAppend("}"); } GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(const GrTexture* texture, const GrSamplerState& state, const char* name) { ++fNumFragmentSamplers; return this->uniformHandler()->addSampler(texture, state, name, this->shaderCaps()); } void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) { // Swizzle the fragment shader outputs if necessary. GrSwizzle swizzle; swizzle.setFromKey(this->desc()->header().fOutputSwizzle); if (swizzle != GrSwizzle::RGBA()) { fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(), fFS.getPrimaryColorOutputName(), swizzle.c_str()); if (hasSecondaryOutput) { fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(), fFS.getSecondaryColorOutputName(), swizzle.c_str()); } } } bool GrGLSLProgramBuilder::checkSamplerCounts() { const GrShaderCaps& shaderCaps = *this->shaderCaps(); if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) { GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); return false; } return true; } #ifdef SK_DEBUG void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) { } void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor()); } void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { } #endif void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) { if ('\0' == prefix) { *out = name; } else { out->printf("%c%s", prefix, name); } if (mangle) { if (out->endsWith('_')) { // Names containing "__" are reserved. out->append("x"); } out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str()); } } void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) { // create var to hold stage result. If we already have a valid output name, just use that // otherwise create a new mangled one. This name is only valid if we are reordering stages // and have to tell stage exactly where to put its output. SkString outName; if (output->size()) { outName = output->c_str(); } else { this->nameVariable(&outName, '\0', baseName); } fFS.codeAppendf("half4 %s;", outName.c_str()); *output = outName; } void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { this->uniformHandler()->appendUniformDecls(visibility, out); } void GrGLSLProgramBuilder::addRTWidthUniform(const char* name) { SkASSERT(!fUniformHandles.fRTWidthUni.isValid()); GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); fUniformHandles.fRTWidthUni = uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, kDefault_GrSLPrecision, name, false, 0, nullptr); } void GrGLSLProgramBuilder::addRTHeightUniform(const char* name) { SkASSERT(!fUniformHandles.fRTHeightUni.isValid()); GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); fUniformHandles.fRTHeightUni = uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, kDefault_GrSLPrecision, name, false, 0, nullptr); } void GrGLSLProgramBuilder::finalizeShaders() { this->varyingHandler()->finalize(); fVS.finalize(kVertex_GrShaderFlag); if (this->primitiveProcessor().willUseGeoShader()) { SkASSERT(this->shaderCaps()->geometryShaderSupport()); fGS.finalize(kGeometry_GrShaderFlag); } fFS.finalize(kFragment_GrShaderFlag); }