/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkImage.h" #include "GrGpuResourcePriv.h" #include "GrVkGpu.h" #include "GrVkMemory.h" #include "GrVkTexture.h" #include "GrVkUtil.h" #define VK_CALL(GPU, X) GR_VK_CALL(GPU->vkInterface(), X) VkPipelineStageFlags GrVkImage::LayoutToPipelineSrcStageFlags(const VkImageLayout layout) { if (VK_IMAGE_LAYOUT_GENERAL == layout) { return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { return VK_PIPELINE_STAGE_TRANSFER_BIT; } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { return VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout) { return VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { return VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { return VK_PIPELINE_STAGE_HOST_BIT; } SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout); return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; } VkAccessFlags GrVkImage::LayoutToSrcAccessMask(const VkImageLayout layout) { // Currently we assume we will never being doing any explict shader writes (this doesn't include // color attachment or depth/stencil writes). So we will ignore the // VK_MEMORY_OUTPUT_SHADER_WRITE_BIT. // We can only directly access the host memory if we are in preinitialized or general layout, // and the image is linear. // TODO: Add check for linear here so we are not always adding host to general, and we should // only be in preinitialized if we are linear VkAccessFlags flags = 0; if (VK_IMAGE_LAYOUT_GENERAL == layout) { flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_HOST_READ_BIT; } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { flags = VK_ACCESS_HOST_WRITE_BIT; } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) { flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { flags = VK_ACCESS_TRANSFER_WRITE_BIT; } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { flags = VK_ACCESS_TRANSFER_READ_BIT; } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { flags = VK_ACCESS_SHADER_READ_BIT; } return flags; } VkImageAspectFlags vk_format_to_aspect_flags(VkFormat format) { switch (format) { case VK_FORMAT_S8_UINT: return VK_IMAGE_ASPECT_STENCIL_BIT; case VK_FORMAT_D24_UNORM_S8_UINT: // fallthrough case VK_FORMAT_D32_SFLOAT_S8_UINT: return VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; default: SkASSERT(GrVkFormatIsSupported(format)); return VK_IMAGE_ASPECT_COLOR_BIT; } } void GrVkImage::setImageLayout(const GrVkGpu* gpu, VkImageLayout newLayout, VkAccessFlags dstAccessMask, VkPipelineStageFlags dstStageMask, bool byRegion, bool releaseFamilyQueue) { SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED != newLayout && VK_IMAGE_LAYOUT_PREINITIALIZED != newLayout); VkImageLayout currentLayout = this->currentLayout(); if (releaseFamilyQueue && fInfo.fCurrentQueueFamily == fInitialQueueFamily) { // We never transfered the image to this queue and we are releasing it so don't do anything. return; } // If the old and new layout are the same and the layout is a read only layout, there is no need // to put in a barrier. if (newLayout == currentLayout && (VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == currentLayout || VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == currentLayout || VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == currentLayout)) { return; } VkAccessFlags srcAccessMask = GrVkImage::LayoutToSrcAccessMask(currentLayout); VkPipelineStageFlags srcStageMask = GrVkImage::LayoutToPipelineSrcStageFlags(currentLayout); VkImageAspectFlags aspectFlags = vk_format_to_aspect_flags(fInfo.fFormat); uint32_t srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; uint32_t dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; if (fInfo.fCurrentQueueFamily != VK_QUEUE_FAMILY_IGNORED && gpu->queueIndex() != fInfo.fCurrentQueueFamily) { // The image still is owned by its original queue family and we need to transfer it into // ours. SkASSERT(!releaseFamilyQueue); SkASSERT(fInfo.fCurrentQueueFamily == fInitialQueueFamily); srcQueueFamilyIndex = fInfo.fCurrentQueueFamily; dstQueueFamilyIndex = gpu->queueIndex(); fInfo.fCurrentQueueFamily = gpu->queueIndex(); } else if (releaseFamilyQueue) { // We are releasing the image so we must transfer the image back to its original queue // family. SkASSERT(fInfo.fCurrentQueueFamily == gpu->queueIndex()); srcQueueFamilyIndex = fInfo.fCurrentQueueFamily; dstQueueFamilyIndex = fInitialQueueFamily; fInfo.fCurrentQueueFamily = fInitialQueueFamily; } VkImageMemoryBarrier imageMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType nullptr, // pNext srcAccessMask, // outputMask dstAccessMask, // inputMask currentLayout, // oldLayout newLayout, // newLayout srcQueueFamilyIndex, // srcQueueFamilyIndex dstQueueFamilyIndex, // dstQueueFamilyIndex fInfo.fImage, // image { aspectFlags, 0, fInfo.fLevelCount, 0, 1 } // subresourceRange }; gpu->addImageMemoryBarrier(srcStageMask, dstStageMask, byRegion, &imageMemoryBarrier); this->updateImageLayout(newLayout); } bool GrVkImage::InitImageInfo(const GrVkGpu* gpu, const ImageDesc& imageDesc, GrVkImageInfo* info) { if (0 == imageDesc.fWidth || 0 == imageDesc.fHeight) { return false; } VkImage image = 0; GrVkAlloc alloc; bool isLinear = VK_IMAGE_TILING_LINEAR == imageDesc.fImageTiling; VkImageLayout initialLayout = isLinear ? VK_IMAGE_LAYOUT_PREINITIALIZED : VK_IMAGE_LAYOUT_UNDEFINED; // Create Image VkSampleCountFlagBits vkSamples; if (!GrSampleCountToVkSampleCount(imageDesc.fSamples, &vkSamples)) { return false; } SkASSERT(VK_IMAGE_TILING_OPTIMAL == imageDesc.fImageTiling || VK_SAMPLE_COUNT_1_BIT == vkSamples); const VkImageCreateInfo imageCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType nullptr, // pNext 0, // VkImageCreateFlags imageDesc.fImageType, // VkImageType imageDesc.fFormat, // VkFormat { imageDesc.fWidth, imageDesc.fHeight, 1 }, // VkExtent3D imageDesc.fLevels, // mipLevels 1, // arrayLayers vkSamples, // samples imageDesc.fImageTiling, // VkImageTiling imageDesc.fUsageFlags, // VkImageUsageFlags VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode 0, // queueFamilyCount 0, // pQueueFamilyIndices initialLayout // initialLayout }; GR_VK_CALL_ERRCHECK(gpu->vkInterface(), CreateImage(gpu->device(), &imageCreateInfo, nullptr, &image)); if (!GrVkMemory::AllocAndBindImageMemory(gpu, image, isLinear, &alloc)) { VK_CALL(gpu, DestroyImage(gpu->device(), image, nullptr)); return false; } info->fImage = image; info->fAlloc = alloc; info->fImageTiling = imageDesc.fImageTiling; info->fImageLayout = initialLayout; info->fFormat = imageDesc.fFormat; info->fLevelCount = imageDesc.fLevels; info->fCurrentQueueFamily = VK_QUEUE_FAMILY_IGNORED; return true; } void GrVkImage::DestroyImageInfo(const GrVkGpu* gpu, GrVkImageInfo* info) { VK_CALL(gpu, DestroyImage(gpu->device(), info->fImage, nullptr)); bool isLinear = VK_IMAGE_TILING_LINEAR == info->fImageTiling; GrVkMemory::FreeImageMemory(gpu, isLinear, info->fAlloc); } GrVkImage::~GrVkImage() { // should have been released or abandoned first SkASSERT(!fResource); } void GrVkImage::releaseImage(GrVkGpu* gpu) { if (fInfo.fCurrentQueueFamily != fInitialQueueFamily) { this->setImageLayout(gpu, this->currentLayout(), 0, 0, false, true); } if (fResource) { fResource->removeOwningTexture(); fResource->unref(gpu); fResource = nullptr; } } void GrVkImage::abandonImage() { if (fResource) { fResource->removeOwningTexture(); fResource->unrefAndAbandon(); fResource = nullptr; } } void GrVkImage::setResourceRelease(sk_sp releaseHelper) { SkASSERT(fResource); // Forward the release proc on to GrVkImage::Resource fResource->setRelease(std::move(releaseHelper)); } void GrVkImage::Resource::freeGPUData(GrVkGpu* gpu) const { SkASSERT(!fReleaseHelper); VK_CALL(gpu, DestroyImage(gpu->device(), fImage, nullptr)); bool isLinear = (VK_IMAGE_TILING_LINEAR == fImageTiling); GrVkMemory::FreeImageMemory(gpu, isLinear, fAlloc); } void GrVkImage::Resource::setIdleProc(GrVkTexture* owner, GrTexture::IdleProc proc, void* context) const { fOwningTexture = owner; fIdleProc = proc; fIdleProcContext = context; } void GrVkImage::Resource::removeOwningTexture() const { fOwningTexture = nullptr; } void GrVkImage::Resource::notifyAddedToCommandBuffer() const { ++fNumCommandBufferOwners; } void GrVkImage::Resource::notifyRemovedFromCommandBuffer() const { SkASSERT(fNumCommandBufferOwners); if (--fNumCommandBufferOwners || !fIdleProc) { return; } if (fOwningTexture && fOwningTexture->resourcePriv().hasRefOrPendingIO()) { return; } fIdleProc(fIdleProcContext); if (fOwningTexture) { fOwningTexture->setIdleProc(nullptr, nullptr); // Changing the texture's proc should change ours. SkASSERT(!fIdleProc); SkASSERT(!fIdleProc); } else { fIdleProc = nullptr; fIdleProcContext = nullptr; } } void GrVkImage::BorrowedResource::freeGPUData(GrVkGpu* gpu) const { this->invokeReleaseProc(); } void GrVkImage::BorrowedResource::abandonGPUData() const { this->invokeReleaseProc(); }