/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkImage_Lazy.h" #include "SkBitmap.h" #include "SkBitmapCache.h" #include "SkCachedData.h" #include "SkData.h" #include "SkImageGenerator.h" #include "SkImagePriv.h" #include "SkNextID.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpuResourcePriv.h" #include "GrImageTextureMaker.h" #include "GrResourceKey.h" #include "GrProxyProvider.h" #include "GrSamplerState.h" #include "GrYUVProvider.h" #include "SkGr.h" #endif // Ref-counted tuple(SkImageGenerator, SkMutex) which allows sharing one generator among N images class SharedGenerator final : public SkNVRefCnt { public: static sk_sp Make(std::unique_ptr gen) { return gen ? sk_sp(new SharedGenerator(std::move(gen))) : nullptr; } // This is thread safe. It is a const field set in the constructor. const SkImageInfo& getInfo() { return fGenerator->getInfo(); } private: explicit SharedGenerator(std::unique_ptr gen) : fGenerator(std::move(gen)) { SkASSERT(fGenerator); } friend class ScopedGenerator; friend class SkImage_Lazy; std::unique_ptr fGenerator; SkMutex fMutex; }; /////////////////////////////////////////////////////////////////////////////// SkImage_Lazy::Validator::Validator(sk_sp gen, const SkIRect* subset, const SkColorType* colorType, sk_sp colorSpace) : fSharedGenerator(std::move(gen)) { if (!fSharedGenerator) { return; } // The following generator accessors are safe without acquiring the mutex (const getters). // TODO: refactor to use a ScopedGenerator instead, for clarity. const SkImageInfo& info = fSharedGenerator->fGenerator->getInfo(); if (info.isEmpty()) { fSharedGenerator.reset(); return; } fUniqueID = fSharedGenerator->fGenerator->uniqueID(); const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height()); if (subset) { if (!bounds.contains(*subset)) { fSharedGenerator.reset(); return; } if (*subset != bounds) { // we need a different uniqueID since we really are a subset of the raw generator fUniqueID = SkNextID::ImageID(); } } else { subset = &bounds; } fInfo = info.makeWH(subset->width(), subset->height()); fOrigin = SkIPoint::Make(subset->x(), subset->y()); if (colorType || colorSpace) { if (colorType) { fInfo = fInfo.makeColorType(*colorType); } if (colorSpace) { fInfo = fInfo.makeColorSpace(colorSpace); } fUniqueID = SkNextID::ImageID(); } } /////////////////////////////////////////////////////////////////////////////// // Helper for exclusive access to a shared generator. class SkImage_Lazy::ScopedGenerator { public: ScopedGenerator(const sk_sp& gen) : fSharedGenerator(gen) , fAutoAquire(gen->fMutex) {} SkImageGenerator* operator->() const { fSharedGenerator->fMutex.assertHeld(); return fSharedGenerator->fGenerator.get(); } operator SkImageGenerator*() const { fSharedGenerator->fMutex.assertHeld(); return fSharedGenerator->fGenerator.get(); } private: const sk_sp& fSharedGenerator; SkAutoExclusive fAutoAquire; }; /////////////////////////////////////////////////////////////////////////////// SkImage_Lazy::SkImage_Lazy(Validator* validator) : INHERITED(validator->fInfo.width(), validator->fInfo.height(), validator->fUniqueID) , fSharedGenerator(std::move(validator->fSharedGenerator)) , fInfo(validator->fInfo) , fOrigin(validator->fOrigin) { SkASSERT(fSharedGenerator); fUniqueID = validator->fUniqueID; } SkImage_Lazy::~SkImage_Lazy() { #if SK_SUPPORT_GPU for (int i = 0; i < fUniqueKeyInvalidatedMessages.count(); ++i) { SkMessageBus::Post(*fUniqueKeyInvalidatedMessages[i]); } fUniqueKeyInvalidatedMessages.deleteAll(); #endif } ////////////////////////////////////////////////////////////////////////////////////////////////// static bool generate_pixels(SkImageGenerator* gen, const SkPixmap& pmap, int originX, int originY) { const int genW = gen->getInfo().width(); const int genH = gen->getInfo().height(); const SkIRect srcR = SkIRect::MakeWH(genW, genH); const SkIRect dstR = SkIRect::MakeXYWH(originX, originY, pmap.width(), pmap.height()); if (!srcR.contains(dstR)) { return false; } // If they are requesting a subset, we have to have a temp allocation for full image, and // then copy the subset into their allocation SkBitmap full; SkPixmap fullPM; const SkPixmap* dstPM = &pmap; if (srcR != dstR) { if (!full.tryAllocPixels(pmap.info().makeWH(genW, genH))) { return false; } if (!full.peekPixels(&fullPM)) { return false; } dstPM = &fullPM; } if (!gen->getPixels(dstPM->info(), dstPM->writable_addr(), dstPM->rowBytes())) { return false; } if (srcR != dstR) { if (!full.readPixels(pmap, originX, originY)) { return false; } } return true; } bool SkImage_Lazy::getROPixels(SkBitmap* bitmap, SkImage::CachingHint chint) const { auto check_output_bitmap = [bitmap]() { SkASSERT(bitmap->isImmutable()); SkASSERT(bitmap->getPixels()); (void)bitmap; }; auto desc = SkBitmapCacheDesc::Make(this); if (SkBitmapCache::Find(desc, bitmap)) { check_output_bitmap(); return true; } if (SkImage::kAllow_CachingHint == chint) { SkPixmap pmap; SkBitmapCache::RecPtr cacheRec = SkBitmapCache::Alloc(desc, fInfo, &pmap); if (!cacheRec || !generate_pixels(ScopedGenerator(fSharedGenerator), pmap, fOrigin.x(), fOrigin.y())) { return false; } SkBitmapCache::Add(std::move(cacheRec), bitmap); this->notifyAddedToRasterCache(); } else { if (!bitmap->tryAllocPixels(fInfo) || !generate_pixels(ScopedGenerator(fSharedGenerator), bitmap->pixmap(), fOrigin.x(), fOrigin.y())) { return false; } bitmap->setImmutable(); } check_output_bitmap(); return true; } ////////////////////////////////////////////////////////////////////////////////////////////////// bool SkImage_Lazy::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB, int srcX, int srcY, CachingHint chint) const { SkBitmap bm; if (this->getROPixels(&bm, chint)) { return bm.readPixels(dstInfo, dstPixels, dstRB, srcX, srcY); } return false; } sk_sp SkImage_Lazy::onRefEncoded() const { ScopedGenerator generator(fSharedGenerator); return generator->refEncodedData(); } bool SkImage_Lazy::onIsValid(GrContext* context) const { ScopedGenerator generator(fSharedGenerator); return generator->isValid(context); } /////////////////////////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU sk_sp SkImage_Lazy::asTextureProxyRef(GrContext* context, const GrSamplerState& params, SkScalar scaleAdjust[2]) const { if (!context) { return nullptr; } GrImageTextureMaker textureMaker(context, this, kAllow_CachingHint); return textureMaker.refTextureProxyForParams(params, scaleAdjust); } #endif sk_sp SkImage_Lazy::onMakeSubset(const SkIRect& subset) const { SkASSERT(fInfo.bounds().contains(subset)); SkASSERT(fInfo.bounds() != subset); const SkIRect generatorSubset = subset.makeOffset(fOrigin.x(), fOrigin.y()); const SkColorType colorType = fInfo.colorType(); Validator validator(fSharedGenerator, &generatorSubset, &colorType, fInfo.refColorSpace()); return validator ? sk_sp(new SkImage_Lazy(&validator)) : nullptr; } sk_sp SkImage_Lazy::onMakeColorTypeAndColorSpace(SkColorType targetCT, sk_sp targetCS) const { SkAutoExclusive autoAquire(fOnMakeColorTypeAndSpaceMutex); if (fOnMakeColorTypeAndSpaceResult && targetCT == fOnMakeColorTypeAndSpaceResult->colorType() && SkColorSpace::Equals(targetCS.get(), fOnMakeColorTypeAndSpaceResult->colorSpace())) { return fOnMakeColorTypeAndSpaceResult; } const SkIRect generatorSubset = SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), fInfo.width(), fInfo.height()); Validator validator(fSharedGenerator, &generatorSubset, &targetCT, targetCS); sk_sp result = validator ? sk_sp(new SkImage_Lazy(&validator)) : nullptr; if (result) { fOnMakeColorTypeAndSpaceResult = result; } return result; } sk_sp SkImage::MakeFromGenerator(std::unique_ptr generator, const SkIRect* subset) { SkImage_Lazy::Validator validator(SharedGenerator::Make(std::move(generator)), subset, nullptr, nullptr); return validator ? sk_make_sp(&validator) : nullptr; } ////////////////////////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU void SkImage_Lazy::makeCacheKeyFromOrigKey(const GrUniqueKey& origKey, GrUniqueKey* cacheKey) const { SkASSERT(!cacheKey->isValid()); if (origKey.isValid()) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(cacheKey, origKey, kDomain, 0, "Image"); } } class Generator_GrYUVProvider : public GrYUVProvider { public: Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {} private: uint32_t onGetID() const override { return fGen->uniqueID(); } bool onQueryYUVA8(SkYUVASizeInfo* sizeInfo, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkYUVColorSpace* colorSpace) const override { return fGen->queryYUVA8(sizeInfo, yuvaIndices, colorSpace); } bool onGetYUVA8Planes(const SkYUVASizeInfo& sizeInfo, const SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], void* planes[]) override { return fGen->getYUVA8Planes(sizeInfo, yuvaIndices, planes); } SkImageGenerator* fGen; typedef GrYUVProvider INHERITED; }; static void set_key_on_proxy(GrProxyProvider* proxyProvider, GrTextureProxy* proxy, GrTextureProxy* originalProxy, const GrUniqueKey& key) { if (key.isValid()) { if (originalProxy && originalProxy->getUniqueKey().isValid()) { SkASSERT(originalProxy->getUniqueKey() == key); SkASSERT(GrMipMapped::kYes == proxy->mipMapped() && GrMipMapped::kNo == originalProxy->mipMapped()); // If we had an originalProxy with a valid key, that means there already is a proxy in // the cache which matches the key, but it does not have mip levels and we require them. // Thus we must remove the unique key from that proxy. SkASSERT(originalProxy->getUniqueKey() == key); proxyProvider->removeUniqueKeyFromProxy(originalProxy); } proxyProvider->assignUniqueKeyToProxy(key, proxy); } } sk_sp SkImage_Lazy::getPlanes(SkYUVASizeInfo* yuvaSizeInfo, SkYUVAIndex yuvaIndices[SkYUVAIndex::kIndexCount], SkYUVColorSpace* yuvColorSpace, const void* planes[SkYUVASizeInfo::kMaxCount]) { ScopedGenerator generator(fSharedGenerator); Generator_GrYUVProvider provider(generator); sk_sp data = provider.getPlanes(yuvaSizeInfo, yuvaIndices, yuvColorSpace, planes); if (!data) { return nullptr; } return data; } /* * We have 4 ways to try to return a texture (in sorted order) * * 1. Check the cache for a pre-existing one * 2. Ask the generator to natively create one * 3. Ask the generator to return YUV planes, which the GPU can convert * 4. Ask the generator to return RGB(A) data, which the GPU can convert */ sk_sp SkImage_Lazy::lockTextureProxy( GrContext* ctx, const GrUniqueKey& origKey, SkImage::CachingHint chint, bool willBeMipped, GrTextureMaker::AllowedTexGenType genType) const { // Values representing the various texture lock paths we can take. Used for logging the path // taken to a histogram. enum LockTexturePath { kFailure_LockTexturePath, kPreExisting_LockTexturePath, kNative_LockTexturePath, kCompressed_LockTexturePath, // Deprecated kYUV_LockTexturePath, kRGBA_LockTexturePath, }; enum { kLockTexturePathCount = kRGBA_LockTexturePath + 1 }; // Build our texture key. // Even though some proxies created here may have a specific origin and use that origin, we do // not include that in the key. Since SkImages are meant to be immutable, a given SkImage will // always have an associated proxy that is always one origin or the other. It never can change // origins. Thus we don't need to include that info in the key iteself. GrUniqueKey key; this->makeCacheKeyFromOrigKey(origKey, &key); GrProxyProvider* proxyProvider = ctx->contextPriv().proxyProvider(); sk_sp proxy; // 1. Check the cache for a pre-existing one if (key.isValid()) { proxy = proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin); if (proxy) { SK_HISTOGRAM_ENUMERATION("LockTexturePath", kPreExisting_LockTexturePath, kLockTexturePathCount); if (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped()) { return proxy; } } } // 2. Ask the generator to natively create one if (!proxy) { ScopedGenerator generator(fSharedGenerator); if (GrTextureMaker::AllowedTexGenType::kCheap == genType && SkImageGenerator::TexGenType::kCheap != generator->onCanGenerateTexture()) { return nullptr; } if ((proxy = generator->generateTexture(ctx, fInfo, fOrigin, willBeMipped))) { SK_HISTOGRAM_ENUMERATION("LockTexturePath", kNative_LockTexturePath, kLockTexturePathCount); set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key); if (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped()) { *fUniqueKeyInvalidatedMessages.append() = new GrUniqueKeyInvalidatedMessage(key, ctx->contextPriv().contextID()); return proxy; } } } // 3. Ask the generator to return YUV planes, which the GPU can convert. If we will be mipping // the texture we fall through here and have the CPU generate the mip maps for us. if (!proxy && !willBeMipped && !ctx->contextPriv().disableGpuYUVConversion()) { const GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(fInfo); SkColorType colorType = fInfo.colorType(); GrBackendFormat format = ctx->contextPriv().caps()->getBackendFormatFromColorType(colorType); ScopedGenerator generator(fSharedGenerator); Generator_GrYUVProvider provider(generator); // The pixels in the texture will be in the generator's color space. // If onMakeColorTypeAndColorSpace has been called then this will not match this image's // color space. To correct this, apply a color space conversion from the generator's color // space to this image's color space. SkColorSpace* generatorColorSpace = fSharedGenerator->fGenerator->getInfo().colorSpace(); SkColorSpace* thisColorSpace = fInfo.colorSpace(); // TODO: Update to create the mipped surface in the YUV generator and draw the base // layer directly into the mipped surface. proxy = provider.refAsTextureProxy(ctx, format, desc, generatorColorSpace, thisColorSpace); if (proxy) { SK_HISTOGRAM_ENUMERATION("LockTexturePath", kYUV_LockTexturePath, kLockTexturePathCount); set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key); *fUniqueKeyInvalidatedMessages.append() = new GrUniqueKeyInvalidatedMessage(key, ctx->contextPriv().contextID()); return proxy; } } // 4. Ask the generator to return RGB(A) data, which the GPU can convert SkBitmap bitmap; if (!proxy && this->getROPixels(&bitmap, chint)) { if (willBeMipped) { proxy = proxyProvider->createMipMapProxyFromBitmap(bitmap); } if (!proxy) { proxy = GrUploadBitmapToTextureProxy(proxyProvider, bitmap); } if (proxy && (!willBeMipped || GrMipMapped::kYes == proxy->mipMapped())) { SK_HISTOGRAM_ENUMERATION("LockTexturePath", kRGBA_LockTexturePath, kLockTexturePathCount); set_key_on_proxy(proxyProvider, proxy.get(), nullptr, key); *fUniqueKeyInvalidatedMessages.append() = new GrUniqueKeyInvalidatedMessage(key, ctx->contextPriv().contextID()); return proxy; } } if (proxy) { // We need a mipped proxy, but we either found a proxy earlier that wasn't mipped, generated // a native non mipped proxy, or generated a non-mipped yuv proxy. Thus we generate a new // mipped surface and copy the original proxy into the base layer. We will then let the gpu // generate the rest of the mips. SkASSERT(willBeMipped); SkASSERT(GrMipMapped::kNo == proxy->mipMapped()); *fUniqueKeyInvalidatedMessages.append() = new GrUniqueKeyInvalidatedMessage(key, ctx->contextPriv().contextID()); if (auto mippedProxy = GrCopyBaseMipMapToTextureProxy(ctx, proxy.get())) { set_key_on_proxy(proxyProvider, mippedProxy.get(), proxy.get(), key); return mippedProxy; } // We failed to make a mipped proxy with the base copied into it. This could have // been from failure to make the proxy or failure to do the copy. Thus we will fall // back to just using the non mipped proxy; See skbug.com/7094. return proxy; } SK_HISTOGRAM_ENUMERATION("LockTexturePath", kFailure_LockTexturePath, kLockTexturePathCount); return nullptr; } /////////////////////////////////////////////////////////////////////////////////////////////////// #endif