/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLCPPCodeGenerator.h" #include "SkSLCompiler.h" #include "SkSLCPPUniformCTypes.h" #include "SkSLHCodeGenerator.h" #include namespace SkSL { static bool needs_uniform_var(const Variable& var) { return (var.fModifiers.fFlags & Modifiers::kUniform_Flag) && var.fType.kind() != Type::kSampler_Kind; } CPPCodeGenerator::CPPCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, String name, OutputStream* out) : INHERITED(context, program, errors, out) , fName(std::move(name)) , fFullName(String::printf("Gr%s", fName.c_str())) , fSectionAndParameterHelper(*program, *errors) { fLineEnding = "\\n"; } void CPPCodeGenerator::writef(const char* s, va_list va) { static constexpr int BUFFER_SIZE = 1024; va_list copy; va_copy(copy, va); char buffer[BUFFER_SIZE]; int length = vsnprintf(buffer, BUFFER_SIZE, s, va); if (length < BUFFER_SIZE) { fOut->write(buffer, length); } else { std::unique_ptr heap(new char[length + 1]); vsprintf(heap.get(), s, copy); fOut->write(heap.get(), length); } va_end(copy); } void CPPCodeGenerator::writef(const char* s, ...) { va_list va; va_start(va, s); this->writef(s, va); va_end(va); } void CPPCodeGenerator::writeHeader() { } bool CPPCodeGenerator::usesPrecisionModifiers() const { return false; } String CPPCodeGenerator::getTypeName(const Type& type) { return type.name(); } void CPPCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { if (b.fOperator == Token::PERCENT) { // need to use "%%" instead of "%" b/c the code will be inside of a printf Precedence precedence = GetBinaryPrecedence(b.fOperator); if (precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*b.fLeft, precedence); this->write(" %% "); this->writeExpression(*b.fRight, precedence); if (precedence >= parentPrecedence) { this->write(")"); } } else { INHERITED::writeBinaryExpression(b, parentPrecedence); } } void CPPCodeGenerator::writeIndexExpression(const IndexExpression& i) { const Expression& base = *i.fBase; if (base.fKind == Expression::kVariableReference_Kind) { int builtin = ((VariableReference&) base).fVariable.fModifiers.fLayout.fBuiltin; if (SK_TRANSFORMEDCOORDS2D_BUILTIN == builtin) { this->write("%s"); if (i.fIndex->fKind != Expression::kIntLiteral_Kind) { fErrors.error(i.fIndex->fOffset, "index into sk_TransformedCoords2D must be an integer literal"); return; } int64_t index = ((IntLiteral&) *i.fIndex).fValue; String name = "sk_TransformedCoords2D_" + to_string(index); fFormatArgs.push_back(name + ".c_str()"); if (fWrittenTransformedCoords.find(index) == fWrittenTransformedCoords.end()) { addExtraEmitCodeLine("SkString " + name + " = fragBuilder->ensureCoords2D(args.fTransformedCoords[" + to_string(index) + "]);"); fWrittenTransformedCoords.insert(index); } return; } else if (SK_TEXTURESAMPLERS_BUILTIN == builtin) { this->write("%s"); if (i.fIndex->fKind != Expression::kIntLiteral_Kind) { fErrors.error(i.fIndex->fOffset, "index into sk_TextureSamplers must be an integer literal"); return; } int64_t index = ((IntLiteral&) *i.fIndex).fValue; fFormatArgs.push_back(" fragBuilder->getProgramBuilder()->samplerVariable(" "args.fTexSamplers[" + to_string(index) + "]).c_str()"); return; } } INHERITED::writeIndexExpression(i); } static String default_value(const Type& type) { if (type.fName == "bool") { return "false"; } switch (type.kind()) { case Type::kScalar_Kind: return "0"; case Type::kVector_Kind: return type.name() + "(0)"; case Type::kMatrix_Kind: return type.name() + "(1)"; default: ABORT("unsupported default_value type\n"); } } static String default_value(const Variable& var) { if (var.fModifiers.fLayout.fCType == SkSL::Layout::CType::kSkPMColor4f) { return "{SK_FloatNaN, SK_FloatNaN, SK_FloatNaN, SK_FloatNaN}"; } return default_value(var.fType); } static bool is_private(const Variable& var) { return !(var.fModifiers.fFlags & Modifiers::kUniform_Flag) && !(var.fModifiers.fFlags & Modifiers::kIn_Flag) && var.fStorage == Variable::kGlobal_Storage && var.fModifiers.fLayout.fBuiltin == -1; } static bool is_uniform_in(const Variable& var) { return (var.fModifiers.fFlags & Modifiers::kUniform_Flag) && (var.fModifiers.fFlags & Modifiers::kIn_Flag) && var.fType.kind() != Type::kSampler_Kind; } void CPPCodeGenerator::writeRuntimeValue(const Type& type, const Layout& layout, const String& cppCode) { if (type.isFloat()) { this->write("%f"); fFormatArgs.push_back(cppCode); } else if (type == *fContext.fInt_Type) { this->write("%d"); fFormatArgs.push_back(cppCode); } else if (type == *fContext.fBool_Type) { this->write("%s"); fFormatArgs.push_back("(" + cppCode + " ? \"true\" : \"false\")"); } else if (type == *fContext.fFloat2_Type || type == *fContext.fHalf2_Type) { this->write(type.name() + "(%f, %f)"); fFormatArgs.push_back(cppCode + ".fX"); fFormatArgs.push_back(cppCode + ".fY"); } else if (type == *fContext.fFloat4_Type || type == *fContext.fHalf4_Type) { this->write(type.name() + "(%f, %f, %f, %f)"); switch (layout.fCType) { case Layout::CType::kSkPMColor: fFormatArgs.push_back("SkGetPackedR32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedG32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedB32(" + cppCode + ") / 255.0"); fFormatArgs.push_back("SkGetPackedA32(" + cppCode + ") / 255.0"); break; case Layout::CType::kSkPMColor4f: fFormatArgs.push_back(cppCode + ".fR"); fFormatArgs.push_back(cppCode + ".fG"); fFormatArgs.push_back(cppCode + ".fB"); fFormatArgs.push_back(cppCode + ".fA"); break; case Layout::CType::kSkRect: // fall through case Layout::CType::kDefault: fFormatArgs.push_back(cppCode + ".left()"); fFormatArgs.push_back(cppCode + ".top()"); fFormatArgs.push_back(cppCode + ".right()"); fFormatArgs.push_back(cppCode + ".bottom()"); break; default: SkASSERT(false); } } else if (type.kind() == Type::kEnum_Kind) { this->write("%d"); fFormatArgs.push_back("(int) " + cppCode); } else if (type == *fContext.fInt4_Type || type == *fContext.fShort4_Type || type == *fContext.fByte4_Type) { this->write(type.name() + "(%d, %d, %d, %d)"); fFormatArgs.push_back(cppCode + ".left()"); fFormatArgs.push_back(cppCode + ".top()"); fFormatArgs.push_back(cppCode + ".right()"); fFormatArgs.push_back(cppCode + ".bottom()"); } else { printf("unsupported runtime value type '%s'\n", String(type.fName).c_str()); SkASSERT(false); } } void CPPCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { if (is_private(var)) { this->writeRuntimeValue(var.fType, var.fModifiers.fLayout, var.fName); } else { this->writeExpression(value, kTopLevel_Precedence); } } String CPPCodeGenerator::getSamplerHandle(const Variable& var) { int samplerCount = 0; for (const auto param : fSectionAndParameterHelper.getParameters()) { if (&var == param) { return "args.fTexSamplers[" + to_string(samplerCount) + "]"; } if (param->fType.kind() == Type::kSampler_Kind) { ++samplerCount; } } ABORT("should have found sampler in parameters\n"); } void CPPCodeGenerator::writeIntLiteral(const IntLiteral& i) { this->write(to_string((int32_t) i.fValue)); } void CPPCodeGenerator::writeSwizzle(const Swizzle& swizzle) { if (fCPPMode) { SkASSERT(swizzle.fComponents.size() == 1); // no support for multiple swizzle components yet this->writeExpression(*swizzle.fBase, kPostfix_Precedence); switch (swizzle.fComponents[0]) { case 0: this->write(".left()"); break; case 1: this->write(".top()"); break; case 2: this->write(".right()"); break; case 3: this->write(".bottom()"); break; } } else { INHERITED::writeSwizzle(swizzle); } } void CPPCodeGenerator::writeVariableReference(const VariableReference& ref) { if (fCPPMode) { this->write(ref.fVariable.fName); return; } switch (ref.fVariable.fModifiers.fLayout.fBuiltin) { case SK_INCOLOR_BUILTIN: this->write("%s"); // EmitArgs.fInputColor is automatically set to half4(1) if // no input was specified fFormatArgs.push_back(String("args.fInputColor")); break; case SK_OUTCOLOR_BUILTIN: this->write("%s"); fFormatArgs.push_back(String("args.fOutputColor")); break; case SK_WIDTH_BUILTIN: this->write("sk_Width"); break; case SK_HEIGHT_BUILTIN: this->write("sk_Height"); break; default: if (ref.fVariable.fType.kind() == Type::kSampler_Kind) { this->write("%s"); fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerVariable(" + this->getSamplerHandle(ref.fVariable) + ").c_str()"); return; } if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag) { this->write("%s"); String name = ref.fVariable.fName; String var = String::printf("args.fUniformHandler->getUniformCStr(%sVar)", HCodeGenerator::FieldName(name.c_str()).c_str()); String code; if (ref.fVariable.fModifiers.fLayout.fWhen.size()) { code = String::printf("%sVar.isValid() ? %s : \"%s\"", HCodeGenerator::FieldName(name.c_str()).c_str(), var.c_str(), default_value(ref.fVariable.fType).c_str()); } else { code = var; } fFormatArgs.push_back(code); } else if (SectionAndParameterHelper::IsParameter(ref.fVariable)) { String name(ref.fVariable.fName); this->writeRuntimeValue(ref.fVariable.fType, ref.fVariable.fModifiers.fLayout, String::printf("_outer.%s()", name.c_str()).c_str()); } else { this->write(ref.fVariable.fName); } } } void CPPCodeGenerator::writeIfStatement(const IfStatement& s) { if (s.fIsStatic) { this->write("@"); } INHERITED::writeIfStatement(s); } void CPPCodeGenerator::writeReturnStatement(const ReturnStatement& s) { if (fInMain) { fErrors.error(s.fOffset, "fragmentProcessor main() may not contain return statements"); } INHERITED::writeReturnStatement(s); } void CPPCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { if (s.fIsStatic) { this->write("@"); } INHERITED::writeSwitchStatement(s); } void CPPCodeGenerator::writeFieldAccess(const FieldAccess& access) { if (access.fBase->fType.name() == "fragmentProcessor") { // Special field access on fragment processors are converted into function calls on // GrFragmentProcessor's getters. if (access.fBase->fKind != Expression::kVariableReference_Kind) { fErrors.error(access.fBase->fOffset, "fragmentProcessor must be a reference\n"); return; } const Type::Field& field = fContext.fFragmentProcessor_Type->fields()[access.fFieldIndex]; int index = getChildFPIndex((const VariableReference&) *access.fBase); String cppAccess = String::printf("_outer.childProcessor(%s).%s()", to_string(index).c_str(), String(field.fName).c_str()); if (fCPPMode) { this->write(cppAccess.c_str()); } else { writeRuntimeValue(*field.fType, Layout(), cppAccess); } return; } INHERITED::writeFieldAccess(access); } int CPPCodeGenerator::getChildFPIndex(const VariableReference& reference) const { int index = 0; bool found = false; for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { const VarDeclaration& decl = (VarDeclaration&) *raw; if (decl.fVar == &reference.fVariable) { found = true; } else if (decl.fVar->fType == *fContext.fFragmentProcessor_Type) { ++index; } } } if (found) { break; } } SkASSERT(found); return index; } void CPPCodeGenerator::writeFunctionCall(const FunctionCall& c) { if (c.fFunction.fBuiltin && c.fFunction.fName == "process") { // Sanity checks that are detected by function definition in sksl_fp.inc SkASSERT(c.fArguments.size() == 1 || c.fArguments.size() == 2); SkASSERT("fragmentProcessor" == c.fArguments[0]->fType.name()); // Actually fail during compilation if arguments with valid types are // provided that are not variable references, since process() is a // special function that impacts code emission. if (c.fArguments[0]->fKind != Expression::kVariableReference_Kind) { fErrors.error(c.fArguments[0]->fOffset, "process()'s fragmentProcessor argument must be a variable reference\n"); return; } if (c.fArguments.size() > 1) { // Second argument must also be a half4 expression SkASSERT("half4" == c.fArguments[1]->fType.name()); } int index = getChildFPIndex((const VariableReference&) *c.fArguments[0]); // Start a new extra emit code section so that the emitted child processor can depend on // sksl variables defined in earlier sksl code. this->newExtraEmitCodeBlock(); // Set to the empty string when no input color parameter should be emitted, which means this // must be properly formatted with a prefixed comma when the parameter should be inserted // into the emitChild() parameter list. String inputArg; if (c.fArguments.size() > 1) { SkASSERT(c.fArguments.size() == 2); // Use the emitChild() variant that accepts an input color, so convert the 2nd // argument's expression into C++ code that produces sksl stored in an SkString. String inputName = "_input" + to_string(index); addExtraEmitCodeLine(convertSKSLExpressionToCPP(*c.fArguments[1], inputName)); // emitChild() needs a char* inputArg = ", " + inputName + ".c_str()"; } // Write the output handling after the possible input handling String childName = "_child" + to_string(index); addExtraEmitCodeLine("SkString " + childName + "(\"" + childName + "\");"); addExtraEmitCodeLine("this->emitChild(" + to_string(index) + inputArg + ", &" + childName + ", args);"); this->write("%s"); fFormatArgs.push_back(childName + ".c_str()"); return; } INHERITED::writeFunctionCall(c); if (c.fFunction.fBuiltin && c.fFunction.fName == "texture") { this->write(".%s"); SkASSERT(c.fArguments.size() >= 1); SkASSERT(c.fArguments[0]->fKind == Expression::kVariableReference_Kind); String sampler = this->getSamplerHandle(((VariableReference&) *c.fArguments[0]).fVariable); fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerSwizzle(" + sampler + ").c_str()"); } } void CPPCodeGenerator::writeFunction(const FunctionDefinition& f) { if (f.fDeclaration.fName == "main") { fFunctionHeader = ""; OutputStream* oldOut = fOut; StringStream buffer; fOut = &buffer; fInMain = true; for (const auto& s : ((Block&) *f.fBody).fStatements) { this->writeStatement(*s); this->writeLine(); } fInMain = false; fOut = oldOut; this->write(fFunctionHeader); this->write(buffer.str()); } else { INHERITED::writeFunction(f); } } void CPPCodeGenerator::writeSetting(const Setting& s) { static constexpr const char* kPrefix = "sk_Args."; if (!strncmp(s.fName.c_str(), kPrefix, strlen(kPrefix))) { const char* name = s.fName.c_str() + strlen(kPrefix); this->writeRuntimeValue(s.fType, Layout(), HCodeGenerator::FieldName(name).c_str()); } else { this->write(s.fName.c_str()); } } bool CPPCodeGenerator::writeSection(const char* name, const char* prefix) { const Section* s = fSectionAndParameterHelper.getSection(name); if (s) { this->writef("%s%s", prefix, s->fText.c_str()); return true; } return false; } void CPPCodeGenerator::writeProgramElement(const ProgramElement& p) { if (p.fKind == ProgramElement::kSection_Kind) { return; } if (p.fKind == ProgramElement::kVar_Kind) { const VarDeclarations& decls = (const VarDeclarations&) p; if (!decls.fVars.size()) { return; } const Variable& var = *((VarDeclaration&) *decls.fVars[0]).fVar; if (var.fModifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kUniform_Flag) || -1 != var.fModifiers.fLayout.fBuiltin) { return; } } INHERITED::writeProgramElement(p); } void CPPCodeGenerator::addUniform(const Variable& var) { if (!needs_uniform_var(var)) { return; } const char* precision; if (var.fModifiers.fFlags & Modifiers::kHighp_Flag) { precision = "kHigh_GrSLPrecision"; } else if (var.fModifiers.fFlags & Modifiers::kMediump_Flag) { precision = "kMedium_GrSLPrecision"; } else if (var.fModifiers.fFlags & Modifiers::kLowp_Flag) { precision = "kLow_GrSLPrecision"; } else { precision = "kDefault_GrSLPrecision"; } const char* type; if (var.fType == *fContext.fFloat_Type) { type = "kFloat_GrSLType"; } else if (var.fType == *fContext.fHalf_Type) { type = "kHalf_GrSLType"; } else if (var.fType == *fContext.fFloat2_Type) { type = "kFloat2_GrSLType"; } else if (var.fType == *fContext.fHalf2_Type) { type = "kHalf2_GrSLType"; } else if (var.fType == *fContext.fFloat4_Type) { type = "kFloat4_GrSLType"; } else if (var.fType == *fContext.fHalf4_Type) { type = "kHalf4_GrSLType"; } else if (var.fType == *fContext.fFloat4x4_Type) { type = "kFloat4x4_GrSLType"; } else if (var.fType == *fContext.fHalf4x4_Type) { type = "kHalf4x4_GrSLType"; } else { ABORT("unsupported uniform type: %s %s;\n", String(var.fType.fName).c_str(), String(var.fName).c_str()); } if (var.fModifiers.fLayout.fWhen.size()) { this->writef(" if (%s) {\n ", var.fModifiers.fLayout.fWhen.c_str()); } String name(var.fName); this->writef(" %sVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, %s, " "%s, \"%s\");\n", HCodeGenerator::FieldName(name.c_str()).c_str(), type, precision, name.c_str()); if (var.fModifiers.fLayout.fWhen.size()) { this->write(" }\n"); } } void CPPCodeGenerator::writeInputVars() { } void CPPCodeGenerator::writePrivateVars() { for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if (is_private(*decl.fVar)) { if (decl.fVar->fType == *fContext.fFragmentProcessor_Type) { fErrors.error(decl.fOffset, "fragmentProcessor variables must be declared 'in'"); return; } this->writef("%s %s = %s;\n", HCodeGenerator::FieldType(fContext, decl.fVar->fType, decl.fVar->fModifiers.fLayout).c_str(), String(decl.fVar->fName).c_str(), default_value(*decl.fVar).c_str()); } else if (decl.fVar->fModifiers.fLayout.fFlags & Layout::kTracked_Flag) { // An auto-tracked uniform in variable, so add a field to hold onto the prior // state. Note that tracked variables must be uniform in's and that is validated // before writePrivateVars() is called. const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, *decl.fVar); SkASSERT(mapper && mapper->supportsTracking()); String name = HCodeGenerator::FieldName(String(decl.fVar->fName).c_str()); // The member statement is different if the mapper reports a default value if (mapper->defaultValue().size() > 0) { this->writef("%s %sPrev = %s;\n", Layout::CTypeToStr(mapper->ctype()), name.c_str(), mapper->defaultValue().c_str()); } else { this->writef("%s %sPrev;\n", Layout::CTypeToStr(mapper->ctype()), name.c_str()); } } } } } } void CPPCodeGenerator::writePrivateVarValues() { for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if (is_private(*decl.fVar) && decl.fValue) { this->writef("%s = ", String(decl.fVar->fName).c_str()); fCPPMode = true; this->writeExpression(*decl.fValue, kAssignment_Precedence); fCPPMode = false; this->write(";\n"); } } } } } static bool is_accessible(const Variable& var) { return Type::kSampler_Kind != var.fType.kind() && Type::kOther_Kind != var.fType.kind(); } void CPPCodeGenerator::newExtraEmitCodeBlock() { // This should only be called when emitting SKSL for emitCode(), which can be detected if the // cpp buffer is not null, and the cpp buffer is not the current output. SkASSERT(fCPPBuffer && fCPPBuffer != fOut); // Start a new block as an empty string fExtraEmitCodeBlocks.push_back(""); // Mark its location in the output buffer, uses ${\d} for the token since ${} will not occur in // valid sksl and makes detection trivial. this->writef("${%zu}", fExtraEmitCodeBlocks.size() - 1); } void CPPCodeGenerator::addExtraEmitCodeLine(const String& toAppend) { SkASSERT(fExtraEmitCodeBlocks.size() > 0); String& currentBlock = fExtraEmitCodeBlocks[fExtraEmitCodeBlocks.size() - 1]; // Automatically add indentation and newline currentBlock += " " + toAppend + "\n"; } void CPPCodeGenerator::flushEmittedCode() { if (fCPPBuffer == nullptr) { // Not actually within writeEmitCode() so nothing to flush return; } StringStream* skslBuffer = static_cast(fOut); String sksl = skslBuffer->str(); // Empty the accumulation buffer since its current contents are consumed. skslBuffer->reset(); // Switch to the cpp buffer fOut = fCPPBuffer; // Iterate through the sksl, keeping track of where the last statement ended (e.g. the latest // encountered ';', '{', or '}'). If an extra emit code block token is encountered then the // code from 0 to last statement end is sent to writeCodeAppend, the extra code block is // appended to the cpp buffer, and then the sksl string is trimmed to start where the last // statement left off (minus the encountered token). size_t i = 0; int flushPoint = -1; int tokenStart = -1; while (i < sksl.size()) { if (tokenStart >= 0) { // Looking for the end of the token if (sksl[i] == '}') { // Must append the sksl from 0 to flushPoint (inclusive) then the extra code // accumulated in the block with index parsed from chars [tokenStart+2, i-1] String toFlush = String(sksl.c_str(), flushPoint + 1); // writeCodeAppend automatically removes the format args that it consumed, so // fFormatArgs will be in a valid state for any future sksl this->writeCodeAppend(toFlush); int codeBlock = stoi(String(sksl.c_str() + tokenStart + 2, i - tokenStart - 2)); SkASSERT(codeBlock < (int) fExtraEmitCodeBlocks.size()); if (fExtraEmitCodeBlocks[codeBlock].size() > 0) { this->write(fExtraEmitCodeBlocks[codeBlock].c_str()); } // Now reset the sksl buffer to start after the flush point, but remove the token. String compacted = String(sksl.c_str() + flushPoint + 1, tokenStart - flushPoint - 1); if (i < sksl.size() - 1) { compacted += String(sksl.c_str() + i + 1, sksl.size() - i - 1); } sksl = compacted; // And reset iteration i = -1; flushPoint = -1; tokenStart = -1; } } else { // Looking for the start of extra emit block tokens, and tracking when statements end if (sksl[i] == ';' || sksl[i] == '{' || sksl[i] == '}') { flushPoint = i; } else if (i < sksl.size() - 1 && sksl[i] == '$' && sksl[i + 1] == '{') { // found an extra emit code block token tokenStart = i++; } } i++; } // Once we've gone through the sksl string to this point, there are no remaining extra emit // code blocks to interleave, so append the remainder as usual. this->writeCodeAppend(sksl); // After appending, switch back to the emptied sksl buffer and reset the extra code blocks fOut = skslBuffer; fExtraEmitCodeBlocks.clear(); } void CPPCodeGenerator::writeCodeAppend(const String& code) { // codeAppendf can only handle appending 1024 bytes at a time, so we need to break the string // into chunks. Unfortunately we can't tell exactly how long the string is going to end up, // because printf escape sequences get replaced by strings of unknown length, but keeping the // format string below 512 bytes is probably safe. static constexpr size_t maxChunkSize = 512; size_t start = 0; size_t index = 0; size_t argStart = 0; size_t argCount; while (index < code.size()) { argCount = 0; this->write(" fragBuilder->codeAppendf(\""); while (index < code.size() && index < start + maxChunkSize) { if ('%' == code[index]) { if (index == start + maxChunkSize - 1 || index == code.size() - 1) { break; } if (code[index + 1] != '%') { ++argCount; } } else if ('\\' == code[index] && index == start + maxChunkSize - 1) { // avoid splitting an escape sequence that happens to fall across a chunk boundary break; } ++index; } fOut->write(code.c_str() + start, index - start); this->write("\""); for (size_t i = argStart; i < argStart + argCount; ++i) { this->writef(", %s", fFormatArgs[i].c_str()); } this->write(");\n"); argStart += argCount; start = index; } // argStart is equal to the number of fFormatArgs that were consumed // so they should be removed from the list if (argStart > 0) { fFormatArgs.erase(fFormatArgs.begin(), fFormatArgs.begin() + argStart); } } String CPPCodeGenerator::convertSKSLExpressionToCPP(const Expression& e, const String& cppVar) { // To do this conversion, we temporarily switch the sksl output stream // to an empty stringstream and reset the format args to empty. OutputStream* oldSKSL = fOut; StringStream exprBuffer; fOut = &exprBuffer; std::vector oldArgs(fFormatArgs); fFormatArgs.clear(); // Convert the argument expression into a format string and args this->writeExpression(e, Precedence::kTopLevel_Precedence); std::vector newArgs(fFormatArgs); String expr = exprBuffer.str(); // After generating, restore the original output stream and format args fFormatArgs = oldArgs; fOut = oldSKSL; // The sksl written to exprBuffer is not processed by flushEmittedCode(), so any extra emit code // block tokens won't get handled. So we need to strip them from the expression and stick them // to the end of the original sksl stream. String exprFormat = ""; int tokenStart = -1; for (size_t i = 0; i < expr.size(); i++) { if (tokenStart >= 0) { if (expr[i] == '}') { // End of the token, so append the token to fOut fOut->write(expr.c_str() + tokenStart, i - tokenStart + 1); tokenStart = -1; } } else { if (i < expr.size() - 1 && expr[i] == '$' && expr[i + 1] == '{') { tokenStart = i++; } else { exprFormat += expr[i]; } } } // Now build the final C++ code snippet from the format string and args String cppExpr; if (newArgs.size() == 0) { // This was a static expression, so we can simplify the input // color declaration in the emitted code to just a static string cppExpr = "SkString " + cppVar + "(\"" + exprFormat + "\");"; } else { // String formatting must occur dynamically, so have the C++ declaration // use SkStringPrintf with the format args that were accumulated // when the expression was written. cppExpr = "SkString " + cppVar + " = SkStringPrintf(\"" + exprFormat + "\""; for (size_t i = 0; i < newArgs.size(); i++) { cppExpr += ", " + newArgs[i]; } cppExpr += ");"; } return cppExpr; } bool CPPCodeGenerator::writeEmitCode(std::vector& uniforms) { this->write(" void emitCode(EmitArgs& args) override {\n" " GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;\n"); this->writef(" const %s& _outer = args.fFp.cast<%s>();\n" " (void) _outer;\n", fFullName.c_str(), fFullName.c_str()); for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; String nameString(decl.fVar->fName); const char* name = nameString.c_str(); if (SectionAndParameterHelper::IsParameter(*decl.fVar) && is_accessible(*decl.fVar)) { this->writef(" auto %s = _outer.%s();\n" " (void) %s;\n", name, name, name); } } } } this->writePrivateVarValues(); for (const auto u : uniforms) { this->addUniform(*u); } this->writeSection(EMIT_CODE_SECTION); // Save original buffer as the CPP buffer for flushEmittedCode() fCPPBuffer = fOut; StringStream skslBuffer; fOut = &skslBuffer; this->newExtraEmitCodeBlock(); bool result = INHERITED::generateCode(); this->flushEmittedCode(); // Then restore the original CPP buffer and close the function fOut = fCPPBuffer; fCPPBuffer = nullptr; this->write(" }\n"); return result; } void CPPCodeGenerator::writeSetData(std::vector& uniforms) { const char* fullName = fFullName.c_str(); const Section* section = fSectionAndParameterHelper.getSection(SET_DATA_SECTION); const char* pdman = section ? section->fArgument.c_str() : "pdman"; this->writef(" void onSetData(const GrGLSLProgramDataManager& %s, " "const GrFragmentProcessor& _proc) override {\n", pdman); bool wroteProcessor = false; for (const auto u : uniforms) { if (is_uniform_in(*u)) { if (!wroteProcessor) { this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName); wroteProcessor = true; this->writef(" {\n"); } const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, *u); SkASSERT(mapper); String nameString(u->fName); const char* name = nameString.c_str(); // Switches for setData behavior in the generated code bool conditionalUniform = u->fModifiers.fLayout.fWhen != ""; bool isTracked = u->fModifiers.fLayout.fFlags & Layout::kTracked_Flag; bool needsValueDeclaration = isTracked || !mapper->canInlineUniformValue(); String uniformName = HCodeGenerator::FieldName(name) + "Var"; String indent = " "; // 8 by default, 12 when nested for conditional uniforms if (conditionalUniform) { // Add a pre-check to make sure the uniform was emitted // before trying to send any data to the GPU this->writef(" if (%s.isValid()) {\n", uniformName.c_str()); indent += " "; } String valueVar = ""; if (needsValueDeclaration) { valueVar.appendf("%sValue", name); // Use AccessType since that will match the return type of _outer's public API. String valueType = HCodeGenerator::AccessType(fContext, u->fType, u->fModifiers.fLayout); this->writef("%s%s %s = _outer.%s();\n", indent.c_str(), valueType.c_str(), valueVar.c_str(), name); } else { // Not tracked and the mapper only needs to use the value once // so send it a safe expression instead of the variable name valueVar.appendf("(_outer.%s())", name); } if (isTracked) { SkASSERT(mapper->supportsTracking()); String prevVar = HCodeGenerator::FieldName(name) + "Prev"; this->writef("%sif (%s) {\n" "%s %s;\n" "%s %s;\n" "%s}\n", indent.c_str(), mapper->dirtyExpression(valueVar, prevVar).c_str(), indent.c_str(), mapper->saveState(valueVar, prevVar).c_str(), indent.c_str(), mapper->setUniform(pdman, uniformName, valueVar).c_str(), indent.c_str()); } else { this->writef("%s%s;\n", indent.c_str(), mapper->setUniform(pdman, uniformName, valueVar).c_str()); } if (conditionalUniform) { // Close the earlier precheck block this->writef(" }\n"); } } } if (wroteProcessor) { this->writef(" }\n"); } if (section) { int samplerIndex = 0; for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; String nameString(decl.fVar->fName); const char* name = nameString.c_str(); if (decl.fVar->fType.kind() == Type::kSampler_Kind) { this->writef(" GrSurfaceProxy& %sProxy = " "*_outer.textureSampler(%d).proxy();\n", name, samplerIndex); this->writef(" GrTexture& %s = *%sProxy.peekTexture();\n", name, name); this->writef(" (void) %s;\n", name); ++samplerIndex; } else if (needs_uniform_var(*decl.fVar)) { this->writef(" UniformHandle& %s = %sVar;\n" " (void) %s;\n", name, HCodeGenerator::FieldName(name).c_str(), name); } else if (SectionAndParameterHelper::IsParameter(*decl.fVar) && decl.fVar->fType != *fContext.fFragmentProcessor_Type) { if (!wroteProcessor) { this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName); wroteProcessor = true; } this->writef(" auto %s = _outer.%s();\n" " (void) %s;\n", name, name, name); } } } } this->writeSection(SET_DATA_SECTION); } this->write(" }\n"); } void CPPCodeGenerator::writeOnTextureSampler() { bool foundSampler = false; for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType.kind() == Type::kSampler_Kind) { if (!foundSampler) { this->writef( "const GrFragmentProcessor::TextureSampler& %s::onTextureSampler(int " "index) const {\n", fFullName.c_str()); this->writef(" return IthTextureSampler(index, %s", HCodeGenerator::FieldName(String(param->fName).c_str()).c_str()); foundSampler = true; } else { this->writef(", %s", HCodeGenerator::FieldName(String(param->fName).c_str()).c_str()); } } } if (foundSampler) { this->write(");\n}\n"); } } void CPPCodeGenerator::writeClone() { if (!this->writeSection(CLONE_SECTION)) { if (fSectionAndParameterHelper.getSection(FIELDS_SECTION)) { fErrors.error(0, "fragment processors with custom @fields must also have a custom" "@clone"); } this->writef("%s::%s(const %s& src)\n" ": INHERITED(k%s_ClassID, src.optimizationFlags())", fFullName.c_str(), fFullName.c_str(), fFullName.c_str(), fFullName.c_str()); for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType == *fContext.fFragmentProcessor_Type) { continue; } String fieldName = HCodeGenerator::FieldName(String(param->fName).c_str()); this->writef("\n, %s(src.%s)", fieldName.c_str(), fieldName.c_str()); } const auto transforms = fSectionAndParameterHelper.getSections(COORD_TRANSFORM_SECTION); for (size_t i = 0; i < transforms.size(); ++i) { const Section& s = *transforms[i]; String fieldName = HCodeGenerator::CoordTransformName(s.fArgument, i); this->writef("\n, %s(src.%s)", fieldName.c_str(), fieldName.c_str()); } this->writef(" {\n"); int childCount = 0; int samplerCount = 0; for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType.kind() == Type::kSampler_Kind) { ++samplerCount; } else if (param->fType == *fContext.fFragmentProcessor_Type) { this->writef(" this->registerChildProcessor(src.childProcessor(%d).clone());" "\n", childCount++); } } if (samplerCount) { this->writef(" this->setTextureSamplerCnt(%d);", samplerCount); } for (size_t i = 0; i < transforms.size(); ++i) { const Section& s = *transforms[i]; String fieldName = HCodeGenerator::CoordTransformName(s.fArgument, i); this->writef(" this->addCoordTransform(&%s);\n", fieldName.c_str()); } this->write("}\n"); this->writef("std::unique_ptr %s::clone() const {\n", fFullName.c_str()); this->writef(" return std::unique_ptr(new %s(*this));\n", fFullName.c_str()); this->write("}\n"); } } void CPPCodeGenerator::writeTest() { const Section* test = fSectionAndParameterHelper.getSection(TEST_CODE_SECTION); if (test) { this->writef( "GR_DEFINE_FRAGMENT_PROCESSOR_TEST(%s);\n" "#if GR_TEST_UTILS\n" "std::unique_ptr %s::TestCreate(GrProcessorTestData* %s) {\n", fFullName.c_str(), fFullName.c_str(), test->fArgument.c_str()); this->writeSection(TEST_CODE_SECTION); this->write("}\n" "#endif\n"); } } void CPPCodeGenerator::writeGetKey() { this->writef("void %s::onGetGLSLProcessorKey(const GrShaderCaps& caps, " "GrProcessorKeyBuilder* b) const {\n", fFullName.c_str()); for (const auto& param : fSectionAndParameterHelper.getParameters()) { String nameString(param->fName); const char* name = nameString.c_str(); if (param->fModifiers.fLayout.fKey != Layout::kNo_Key && (param->fModifiers.fFlags & Modifiers::kUniform_Flag)) { fErrors.error(param->fOffset, "layout(key) may not be specified on uniforms"); } switch (param->fModifiers.fLayout.fKey) { case Layout::kKey_Key: if (param->fType == *fContext.fFloat4x4_Type) { ABORT("no automatic key handling for float4x4\n"); } else if (param->fType == *fContext.fFloat2_Type) { this->writef(" b->add32(%s.fX);\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.fY);\n", HCodeGenerator::FieldName(name).c_str()); } else if (param->fType == *fContext.fFloat4_Type) { this->writef(" b->add32(%s.x());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.y());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.width());\n", HCodeGenerator::FieldName(name).c_str()); this->writef(" b->add32(%s.height());\n", HCodeGenerator::FieldName(name).c_str()); } else { this->writef(" b->add32((int32_t) %s);\n", HCodeGenerator::FieldName(name).c_str()); } break; case Layout::kIdentity_Key: if (param->fType.kind() != Type::kMatrix_Kind) { fErrors.error(param->fOffset, "layout(key=identity) requires matrix type"); } this->writef(" b->add32(%s.isIdentity() ? 1 : 0);\n", HCodeGenerator::FieldName(name).c_str()); break; case Layout::kNo_Key: break; } } this->write("}\n"); } bool CPPCodeGenerator::generateCode() { std::vector uniforms; for (const auto& p : fProgram) { if (ProgramElement::kVar_Kind == p.fKind) { const VarDeclarations& decls = (const VarDeclarations&) p; for (const auto& raw : decls.fVars) { VarDeclaration& decl = (VarDeclaration&) *raw; if ((decl.fVar->fModifiers.fFlags & Modifiers::kUniform_Flag) && decl.fVar->fType.kind() != Type::kSampler_Kind) { uniforms.push_back(decl.fVar); } if (is_uniform_in(*decl.fVar)) { // Validate the "uniform in" declarations to make sure they are fully supported, // instead of generating surprising C++ const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, *decl.fVar); if (mapper == nullptr) { fErrors.error(decl.fOffset, String(decl.fVar->fName) + "'s type is not supported for use as a 'uniform in'"); return false; } if (decl.fVar->fModifiers.fLayout.fFlags & Layout::kTracked_Flag) { if (!mapper->supportsTracking()) { fErrors.error(decl.fOffset, String(decl.fVar->fName) + "'s type does not support state tracking"); return false; } } } else { // If it's not a uniform_in, it's an error to be tracked if (decl.fVar->fModifiers.fLayout.fFlags & Layout::kTracked_Flag) { fErrors.error(decl.fOffset, "Non-'in uniforms' cannot be tracked"); return false; } } } } } const char* baseName = fName.c_str(); const char* fullName = fFullName.c_str(); this->writef("%s\n", HCodeGenerator::GetHeader(fProgram, fErrors).c_str()); this->writef(kFragmentProcessorHeader, fullName); this->writef("#include \"%s.h\"\n", fullName); this->writeSection(CPP_SECTION); this->writef("#include \"glsl/GrGLSLFragmentProcessor.h\"\n" "#include \"glsl/GrGLSLFragmentShaderBuilder.h\"\n" "#include \"glsl/GrGLSLProgramBuilder.h\"\n" "#include \"GrTexture.h\"\n" "#include \"SkSLCPP.h\"\n" "#include \"SkSLUtil.h\"\n" "class GrGLSL%s : public GrGLSLFragmentProcessor {\n" "public:\n" " GrGLSL%s() {}\n", baseName, baseName); bool result = this->writeEmitCode(uniforms); this->write("private:\n"); this->writeSetData(uniforms); this->writePrivateVars(); for (const auto& u : uniforms) { if (needs_uniform_var(*u) && !(u->fModifiers.fFlags & Modifiers::kIn_Flag)) { this->writef(" UniformHandle %sVar;\n", HCodeGenerator::FieldName(String(u->fName).c_str()).c_str()); } } for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (needs_uniform_var(*param)) { this->writef(" UniformHandle %sVar;\n", HCodeGenerator::FieldName(String(param->fName).c_str()).c_str()); } } this->writef("};\n" "GrGLSLFragmentProcessor* %s::onCreateGLSLInstance() const {\n" " return new GrGLSL%s();\n" "}\n", fullName, baseName); this->writeGetKey(); this->writef("bool %s::onIsEqual(const GrFragmentProcessor& other) const {\n" " const %s& that = other.cast<%s>();\n" " (void) that;\n", fullName, fullName, fullName); for (const auto& param : fSectionAndParameterHelper.getParameters()) { if (param->fType == *fContext.fFragmentProcessor_Type) { continue; } String nameString(param->fName); const char* name = nameString.c_str(); this->writef(" if (%s != that.%s) return false;\n", HCodeGenerator::FieldName(name).c_str(), HCodeGenerator::FieldName(name).c_str()); } this->write(" return true;\n" "}\n"); this->writeClone(); this->writeOnTextureSampler(); this->writeTest(); this->writeSection(CPP_END_SECTION); result &= 0 == fErrors.errorCount(); return result; } } // namespace