// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Texture.cpp: Implements the Texture class and its derived classes // Texture2D and TextureCubeMap. Implements GL texture objects and related // functionality. [OpenGL ES 2.0.24] section 3.7 page 63. #include "Texture.h" #include "main.h" #include "mathutil.h" #include "Framebuffer.h" #include "Device.hpp" #include "libEGL/Display.h" #include "common/Surface.hpp" #include "common/debug.h" #include namespace es1 { Texture::Texture(GLuint name) : egl::Texture(name) { mMinFilter = GL_NEAREST_MIPMAP_LINEAR; mMagFilter = GL_LINEAR; mWrapS = GL_REPEAT; mWrapT = GL_REPEAT; mMaxAnisotropy = 1.0f; generateMipmap = GL_FALSE; cropRectU = 0; cropRectV = 0; cropRectW = 0; cropRectH = 0; resource = new sw::Resource(0); } Texture::~Texture() { resource->destruct(); } sw::Resource *Texture::getResource() const { return resource; } // Returns true on successful filter state update (valid enum parameter) bool Texture::setMinFilter(GLenum filter) { switch(filter) { case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: if(getTarget() == GL_TEXTURE_EXTERNAL_OES) { return false; } // Fall through case GL_NEAREST: case GL_LINEAR: mMinFilter = filter; return true; default: return false; } } // Returns true on successful filter state update (valid enum parameter) bool Texture::setMagFilter(GLenum filter) { switch(filter) { case GL_NEAREST: case GL_LINEAR: mMagFilter = filter; return true; default: return false; } } // Returns true on successful wrap state update (valid enum parameter) bool Texture::setWrapS(GLenum wrap) { switch(wrap) { case GL_REPEAT: case GL_MIRRORED_REPEAT_OES: if(getTarget() == GL_TEXTURE_EXTERNAL_OES) { return false; } // Fall through case GL_CLAMP_TO_EDGE: mWrapS = wrap; return true; default: return false; } } // Returns true on successful wrap state update (valid enum parameter) bool Texture::setWrapT(GLenum wrap) { switch(wrap) { case GL_REPEAT: case GL_MIRRORED_REPEAT_OES: if(getTarget() == GL_TEXTURE_EXTERNAL_OES) { return false; } // Fall through case GL_CLAMP_TO_EDGE: mWrapT = wrap; return true; default: return false; } } // Returns true on successful max anisotropy update (valid anisotropy value) bool Texture::setMaxAnisotropy(float textureMaxAnisotropy) { textureMaxAnisotropy = std::min(textureMaxAnisotropy, MAX_TEXTURE_MAX_ANISOTROPY); if(textureMaxAnisotropy < 1.0f) { return false; } if(mMaxAnisotropy != textureMaxAnisotropy) { mMaxAnisotropy = textureMaxAnisotropy; } return true; } void Texture::setGenerateMipmap(GLboolean enable) { generateMipmap = enable; } void Texture::setCropRect(GLint u, GLint v, GLint w, GLint h) { cropRectU = u; cropRectV = v; cropRectW = w; cropRectH = h; } GLenum Texture::getMinFilter() const { return mMinFilter; } GLenum Texture::getMagFilter() const { return mMagFilter; } GLenum Texture::getWrapS() const { return mWrapS; } GLenum Texture::getWrapT() const { return mWrapT; } GLfloat Texture::getMaxAnisotropy() const { return mMaxAnisotropy; } GLboolean Texture::getGenerateMipmap() const { return generateMipmap; } GLint Texture::getCropRectU() const { return cropRectU; } GLint Texture::getCropRectV() const { return cropRectV; } GLint Texture::getCropRectW() const { return cropRectW; } GLint Texture::getCropRectH() const { return cropRectH; } egl::Image *Texture::createSharedImage(GLenum target, unsigned int level) { egl::Image *image = getRenderTarget(target, level); // Increments reference count if(image) { image->markShared(); } return image; } void Texture::setImage(GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, egl::Image *image) { if(pixels && image) { gl::PixelStorageModes unpackParameters; unpackParameters.alignment = unpackAlignment; image->loadImageData(0, 0, 0, image->getWidth(), image->getHeight(), 1, format, type, unpackParameters, pixels); } } void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, egl::Image *image) { if(pixels && image && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level { image->loadCompressedData(0, 0, 0, image->getWidth(), image->getHeight(), 1, imageSize, pixels); } } void Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, egl::Image *image) { if(!image) { return error(GL_INVALID_OPERATION); } if(pixels) { gl::PixelStorageModes unpackParameters; unpackParameters.alignment = unpackAlignment; image->loadImageData(xoffset, yoffset, 0, width, height, 1, format, type, unpackParameters, pixels); } } void Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, egl::Image *image) { if(!image) { return error(GL_INVALID_OPERATION); } if(pixels && (imageSize > 0)) // imageSize's correlation to width and height is already validated with gl::ComputeCompressedSize() at the API level { image->loadCompressedData(xoffset, yoffset, 0, width, height, 1, imageSize, pixels); } } bool Texture::copy(egl::Image *source, const sw::Rect &sourceRect, GLenum destFormat, GLint xoffset, GLint yoffset, egl::Image *dest) { Device *device = getDevice(); sw::SliceRect destRect(xoffset, yoffset, xoffset + (sourceRect.x1 - sourceRect.x0), yoffset + (sourceRect.y1 - sourceRect.y0), 0); sw::SliceRect sourceSliceRect(sourceRect); bool success = device->stretchRect(source, &sourceSliceRect, dest, &destRect, false); if(!success) { return error(GL_OUT_OF_MEMORY, false); } return true; } bool Texture::isMipmapFiltered() const { switch(mMinFilter) { case GL_NEAREST: case GL_LINEAR: return false; case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: return true; default: UNREACHABLE(mMinFilter); } return false; } Texture2D::Texture2D(GLuint name) : Texture(name) { for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { image[i] = nullptr; } mSurface = nullptr; mColorbufferProxy = nullptr; mProxyRefs = 0; } Texture2D::~Texture2D() { for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { if(image[i]) { image[i]->unbind(this); image[i] = nullptr; } } if(mSurface) { mSurface->setBoundTexture(nullptr); mSurface = nullptr; } mColorbufferProxy = nullptr; } // We need to maintain a count of references to renderbuffers acting as // proxies for this texture, so that we do not attempt to use a pointer // to a renderbuffer proxy which has been deleted. void Texture2D::addProxyRef(const Renderbuffer *proxy) { mProxyRefs++; } void Texture2D::releaseProxy(const Renderbuffer *proxy) { if(mProxyRefs > 0) { mProxyRefs--; } if(mProxyRefs == 0) { mColorbufferProxy = nullptr; } } void Texture2D::sweep() { int imageCount = 0; for(int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++) { if(image[i] && image[i]->isChildOf(this)) { if(!image[i]->hasSingleReference()) { return; } imageCount++; } } if(imageCount == referenceCount) { destroy(); } } GLenum Texture2D::getTarget() const { return GL_TEXTURE_2D; } GLsizei Texture2D::getWidth(GLenum target, GLint level) const { ASSERT(target == GL_TEXTURE_2D); return image[level] ? image[level]->getWidth() : 0; } GLsizei Texture2D::getHeight(GLenum target, GLint level) const { ASSERT(target == GL_TEXTURE_2D); return image[level] ? image[level]->getHeight() : 0; } GLint Texture2D::getFormat(GLenum target, GLint level) const { ASSERT(target == GL_TEXTURE_2D); return image[level] ? image[level]->getFormat() : GL_NONE; } int Texture2D::getTopLevel() const { ASSERT(isSamplerComplete()); int level = 0; while(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS && image[level]) { level++; } return level - 1; } void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLint internalformat, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) { if(image[level]) { image[level]->release(); } image[level] = egl::Image::create(this, width, height, internalformat); if(!image[level]) { return error(GL_OUT_OF_MEMORY); } Texture::setImage(format, type, unpackAlignment, pixels, image[level]); } void Texture2D::bindTexImage(gl::Surface *surface) { for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { if(image[level]) { image[level]->release(); image[level] = nullptr; } } image[0] = surface->getRenderTarget(); assert(!mSurface); // eglBindTexImage called before eglReleaseTexImage mSurface = surface; mSurface->setBoundTexture(this); } void Texture2D::releaseTexImage() { for(int level = 0; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++) { if(image[level]) { image[level]->release(); image[level] = nullptr; } } } void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels) { if(image[level]) { image[level]->release(); } image[level] = egl::Image::create(this, width, height, format); if(!image[level]) { return error(GL_OUT_OF_MEMORY); } Texture::setCompressedImage(imageSize, pixels, image[level]); } void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels) { Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, image[level]); } void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels) { Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, image[level]); } void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) { if(image[level]) { image[level]->release(); } image[level] = egl::Image::create(this, width, height, format); if(!image[level]) { return error(GL_OUT_OF_MEMORY); } if(width != 0 && height != 0) { egl::Image *renderTarget = source->getRenderTarget(); if(!renderTarget) { ERR("Failed to retrieve the render target."); return error(GL_OUT_OF_MEMORY); } sw::Rect sourceRect = {x, y, x + width, y + height}; sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); copy(renderTarget, sourceRect, format, 0, 0, image[level]); renderTarget->release(); } } void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source) { if(!image[level]) { return error(GL_INVALID_OPERATION); } if(xoffset + width > image[level]->getWidth() || yoffset + height > image[level]->getHeight()) { return error(GL_INVALID_VALUE); } egl::Image *renderTarget = source->getRenderTarget(); if(!renderTarget) { ERR("Failed to retrieve the render target."); return error(GL_OUT_OF_MEMORY); } sw::Rect sourceRect = {x, y, x + width, y + height}; sourceRect.clip(0, 0, source->getColorbuffer()->getWidth(), source->getColorbuffer()->getHeight()); copy(renderTarget, sourceRect, image[level]->getFormat(), xoffset, yoffset, image[level]); renderTarget->release(); } void Texture2D::setSharedImage(egl::Image *sharedImage) { sharedImage->addRef(); if(image[0]) { image[0]->release(); } image[0] = sharedImage; } // Tests for 2D texture sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 85. bool Texture2D::isSamplerComplete() const { if(!image[0]) { return false; } GLsizei width = image[0]->getWidth(); GLsizei height = image[0]->getHeight(); if(width <= 0 || height <= 0) { return false; } if(isMipmapFiltered()) { if(!generateMipmap && !isMipmapComplete()) { return false; } } return true; } // Tests for 2D texture (mipmap) completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81. bool Texture2D::isMipmapComplete() const { GLsizei width = image[0]->getWidth(); GLsizei height = image[0]->getHeight(); int q = log2(std::max(width, height)); for(int level = 1; level <= q; level++) { if(!image[level]) { return false; } if(image[level]->getFormat() != image[0]->getFormat()) { return false; } if(image[level]->getWidth() != std::max(1, width >> level)) { return false; } if(image[level]->getHeight() != std::max(1, height >> level)) { return false; } } return true; } bool Texture2D::isCompressed(GLenum target, GLint level) const { return IsCompressed(getFormat(target, level)); } bool Texture2D::isDepth(GLenum target, GLint level) const { return IsDepthTexture(getFormat(target, level)); } void Texture2D::generateMipmaps() { if(!image[0]) { return; // FIXME: error? } unsigned int q = log2(std::max(image[0]->getWidth(), image[0]->getHeight())); for(unsigned int i = 1; i <= q; i++) { if(image[i]) { image[i]->release(); } image[i] = egl::Image::create(this, std::max(image[0]->getWidth() >> i, 1), std::max(image[0]->getHeight() >> i, 1), image[0]->getFormat()); if(!image[i]) { return error(GL_OUT_OF_MEMORY); } getDevice()->stretchRect(image[i - 1], 0, image[i], 0, true); } } void Texture2D::autoGenerateMipmaps() { if(generateMipmap && image[0]->hasDirtyContents()) { generateMipmaps(); image[0]->markContentsClean(); } } egl::Image *Texture2D::getImage(unsigned int level) { return image[level]; } Renderbuffer *Texture2D::getRenderbuffer(GLenum target, GLint level) { if(target != GL_TEXTURE_2D) { return error(GL_INVALID_OPERATION, (Renderbuffer*)nullptr); } if(!mColorbufferProxy) { mColorbufferProxy = new Renderbuffer(name, new RenderbufferTexture2D(this, level)); } else { mColorbufferProxy->setLevel(level); } return mColorbufferProxy; } egl::Image *Texture2D::getRenderTarget(GLenum target, unsigned int level) { ASSERT(target == GL_TEXTURE_2D); ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); if(image[level]) { image[level]->addRef(); } return image[level]; } bool Texture2D::isShared(GLenum target, unsigned int level) const { ASSERT(target == GL_TEXTURE_2D); ASSERT(level < IMPLEMENTATION_MAX_TEXTURE_LEVELS); if(mSurface) // Bound to an EGLSurface { return true; } if(!image[level]) { return false; } return image[level]->isShared(); } TextureExternal::TextureExternal(GLuint name) : Texture2D(name) { mMinFilter = GL_LINEAR; mMagFilter = GL_LINEAR; mWrapS = GL_CLAMP_TO_EDGE; mWrapT = GL_CLAMP_TO_EDGE; } TextureExternal::~TextureExternal() { } GLenum TextureExternal::getTarget() const { return GL_TEXTURE_EXTERNAL_OES; } } egl::Image *createBackBuffer(int width, int height, sw::Format format, int multiSampleDepth) { if(width > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE) { ERR("Invalid parameters: %dx%d", width, height); return nullptr; } GLenum internalformat = sw2es::ConvertBackBufferFormat(format); return egl::Image::create(width, height, internalformat, multiSampleDepth, false); } egl::Image *createDepthStencil(int width, int height, sw::Format format, int multiSampleDepth) { if(width > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || height > es1::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE) { ERR("Invalid parameters: %dx%d", width, height); return nullptr; } bool lockable = true; switch(format) { // case sw::FORMAT_D15S1: case sw::FORMAT_D24S8: case sw::FORMAT_D24X8: // case sw::FORMAT_D24X4S4: case sw::FORMAT_D24FS8: case sw::FORMAT_D32: case sw::FORMAT_D16: lockable = false; break; // case sw::FORMAT_S8_LOCKABLE: // case sw::FORMAT_D16_LOCKABLE: case sw::FORMAT_D32F_LOCKABLE: // case sw::FORMAT_D32_LOCKABLE: case sw::FORMAT_DF24S8: case sw::FORMAT_DF16S8: lockable = true; break; default: UNREACHABLE(format); } GLenum internalformat = sw2es::ConvertDepthStencilFormat(format); egl::Image *surface = egl::Image::create(width, height, internalformat, multiSampleDepth, lockable); if(!surface) { ERR("Out of memory"); return nullptr; } return surface; }