// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Context.cpp: Implements the es2::Context class, managing all GL state and performing // rendering operations. It is the GLES2 specific implementation of EGLContext. #include "Context.h" #include "main.h" #include "mathutil.h" #include "utilities.h" #include "ResourceManager.h" #include "Buffer.h" #include "Fence.h" #include "Framebuffer.h" #include "Program.h" #include "Query.h" #include "Renderbuffer.h" #include "Sampler.h" #include "Shader.h" #include "Texture.h" #include "TransformFeedback.h" #include "VertexArray.h" #include "VertexDataManager.h" #include "IndexDataManager.h" #include "libEGL/Display.h" #include "common/Surface.hpp" #include "Common/Half.hpp" #include #include #include namespace es2 { Context::Context(egl::Display *display, const Context *shareContext, const egl::Config *config) : egl::Context(display), config(config) { sw::Context *context = new sw::Context(); device = new es2::Device(context); setClearColor(0.0f, 0.0f, 0.0f, 0.0f); mState.depthClearValue = 1.0f; mState.stencilClearValue = 0; mState.cullFaceEnabled = false; mState.cullMode = GL_BACK; mState.frontFace = GL_CCW; mState.depthTestEnabled = false; mState.depthFunc = GL_LESS; mState.blendEnabled = false; mState.sourceBlendRGB = GL_ONE; mState.sourceBlendAlpha = GL_ONE; mState.destBlendRGB = GL_ZERO; mState.destBlendAlpha = GL_ZERO; mState.blendEquationRGB = GL_FUNC_ADD; mState.blendEquationAlpha = GL_FUNC_ADD; mState.blendColor.red = 0; mState.blendColor.green = 0; mState.blendColor.blue = 0; mState.blendColor.alpha = 0; mState.stencilTestEnabled = false; mState.stencilFunc = GL_ALWAYS; mState.stencilRef = 0; mState.stencilMask = 0xFFFFFFFFu; mState.stencilWritemask = 0xFFFFFFFFu; mState.stencilBackFunc = GL_ALWAYS; mState.stencilBackRef = 0; mState.stencilBackMask = 0xFFFFFFFFu; mState.stencilBackWritemask = 0xFFFFFFFFu; mState.stencilFail = GL_KEEP; mState.stencilPassDepthFail = GL_KEEP; mState.stencilPassDepthPass = GL_KEEP; mState.stencilBackFail = GL_KEEP; mState.stencilBackPassDepthFail = GL_KEEP; mState.stencilBackPassDepthPass = GL_KEEP; mState.polygonOffsetFillEnabled = false; mState.polygonOffsetFactor = 0.0f; mState.polygonOffsetUnits = 0.0f; mState.sampleAlphaToCoverageEnabled = false; mState.sampleCoverageEnabled = false; mState.sampleCoverageValue = 1.0f; mState.sampleCoverageInvert = false; mState.scissorTestEnabled = false; mState.ditherEnabled = true; mState.primitiveRestartFixedIndexEnabled = false; mState.rasterizerDiscardEnabled = false; mState.generateMipmapHint = GL_DONT_CARE; mState.fragmentShaderDerivativeHint = GL_DONT_CARE; mState.textureFilteringHint = GL_DONT_CARE; mState.lineWidth = 1.0f; mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = 0; mState.viewportHeight = 0; mState.zNear = 0.0f; mState.zFar = 1.0f; mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = 0; mState.scissorHeight = 0; mState.colorMaskRed = true; mState.colorMaskGreen = true; mState.colorMaskBlue = true; mState.colorMaskAlpha = true; mState.depthMask = true; if(shareContext) { mResourceManager = shareContext->mResourceManager; mResourceManager->addRef(); } else { mResourceManager = new ResourceManager(); } // [OpenGL ES 2.0.24] section 3.7 page 83: // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional // and cube map texture state vectors respectively associated with them. // In order that access to these initial textures not be lost, they are treated as texture // objects all of whose names are 0. mTexture2DZero = new Texture2D(0); mTexture3DZero = new Texture3D(0); mTexture2DArrayZero = new Texture2DArray(0); mTextureCubeMapZero = new TextureCubeMap(0); mTexture2DRectZero = new Texture2DRect(0); mTextureExternalZero = new TextureExternal(0); mState.activeSampler = 0; for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { bindTexture((TextureType)type, 0); } bindVertexArray(0); bindArrayBuffer(0); bindElementArrayBuffer(0); bindReadFramebuffer(0); bindDrawFramebuffer(0); bindRenderbuffer(0); bindGenericUniformBuffer(0); bindTransformFeedback(0); mState.currentProgram = 0; mVertexDataManager = nullptr; mIndexDataManager = nullptr; mInvalidEnum = false; mInvalidValue = false; mInvalidOperation = false; mOutOfMemory = false; mInvalidFramebufferOperation = false; mHasBeenCurrent = false; markAllStateDirty(); } Context::~Context() { if(mState.currentProgram != 0) { Program *programObject = mResourceManager->getProgram(mState.currentProgram); if(programObject) { programObject->release(); } mState.currentProgram = 0; } while(!mFramebufferNameSpace.empty()) { deleteFramebuffer(mFramebufferNameSpace.firstName()); } while(!mFenceNameSpace.empty()) { deleteFence(mFenceNameSpace.firstName()); } while(!mQueryNameSpace.empty()) { deleteQuery(mQueryNameSpace.firstName()); } while(!mVertexArrayNameSpace.empty()) { deleteVertexArray(mVertexArrayNameSpace.lastName()); } while(!mTransformFeedbackNameSpace.empty()) { deleteTransformFeedback(mTransformFeedbackNameSpace.firstName()); } for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { mState.samplerTexture[type][sampler] = nullptr; } } for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { mState.vertexAttribute[i].mBoundBuffer = nullptr; } for(int i = 0; i < QUERY_TYPE_COUNT; i++) { mState.activeQuery[i] = nullptr; } mState.arrayBuffer = nullptr; mState.copyReadBuffer = nullptr; mState.copyWriteBuffer = nullptr; mState.pixelPackBuffer = nullptr; mState.pixelUnpackBuffer = nullptr; mState.genericUniformBuffer = nullptr; mState.genericTransformFeedbackBuffer = nullptr; for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; i++) { mState.uniformBuffers[i].set(nullptr, 0, 0); } mState.renderbuffer = nullptr; for(int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i) { mState.sampler[i] = nullptr; } mTexture2DZero = nullptr; mTexture3DZero = nullptr; mTexture2DArrayZero = nullptr; mTextureCubeMapZero = nullptr; mTexture2DRectZero = nullptr; mTextureExternalZero = nullptr; delete mVertexDataManager; delete mIndexDataManager; mResourceManager->release(); delete device; } void Context::makeCurrent(gl::Surface *surface) { if(!mHasBeenCurrent) { mVertexDataManager = new VertexDataManager(this); mIndexDataManager = new IndexDataManager(); mState.viewportX = 0; mState.viewportY = 0; mState.viewportWidth = surface ? surface->getWidth() : 0; mState.viewportHeight = surface ? surface->getHeight() : 0; mState.scissorX = 0; mState.scissorY = 0; mState.scissorWidth = surface ? surface->getWidth() : 0; mState.scissorHeight = surface ? surface->getHeight() : 0; mHasBeenCurrent = true; } if(surface) { // Wrap the existing resources into GL objects and assign them to the '0' names egl::Image *defaultRenderTarget = surface->getRenderTarget(); egl::Image *depthStencil = surface->getDepthStencil(); Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget); DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil); Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero); setFramebufferZero(framebufferZero); if(defaultRenderTarget) { defaultRenderTarget->release(); } if(depthStencil) { depthStencil->release(); } } else { setFramebufferZero(nullptr); } markAllStateDirty(); } EGLint Context::getClientVersion() const { return 3; } EGLint Context::getConfigID() const { return config->mConfigID; } // This function will set all of the state-related dirty flags, so that all state is set during next pre-draw. void Context::markAllStateDirty() { mAppliedProgramSerial = 0; mDepthStateDirty = true; mMaskStateDirty = true; mBlendStateDirty = true; mStencilStateDirty = true; mPolygonOffsetStateDirty = true; mSampleStateDirty = true; mDitherStateDirty = true; mFrontFaceDirty = true; } void Context::setClearColor(float red, float green, float blue, float alpha) { mState.colorClearValue.red = red; mState.colorClearValue.green = green; mState.colorClearValue.blue = blue; mState.colorClearValue.alpha = alpha; } void Context::setClearDepth(float depth) { mState.depthClearValue = depth; } void Context::setClearStencil(int stencil) { mState.stencilClearValue = stencil; } void Context::setCullFaceEnabled(bool enabled) { mState.cullFaceEnabled = enabled; } bool Context::isCullFaceEnabled() const { return mState.cullFaceEnabled; } void Context::setCullMode(GLenum mode) { mState.cullMode = mode; } void Context::setFrontFace(GLenum front) { if(mState.frontFace != front) { mState.frontFace = front; mFrontFaceDirty = true; } } void Context::setDepthTestEnabled(bool enabled) { if(mState.depthTestEnabled != enabled) { mState.depthTestEnabled = enabled; mDepthStateDirty = true; } } bool Context::isDepthTestEnabled() const { return mState.depthTestEnabled; } void Context::setDepthFunc(GLenum depthFunc) { if(mState.depthFunc != depthFunc) { mState.depthFunc = depthFunc; mDepthStateDirty = true; } } void Context::setDepthRange(float zNear, float zFar) { mState.zNear = zNear; mState.zFar = zFar; } void Context::setBlendEnabled(bool enabled) { if(mState.blendEnabled != enabled) { mState.blendEnabled = enabled; mBlendStateDirty = true; } } bool Context::isBlendEnabled() const { return mState.blendEnabled; } void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) { if(mState.sourceBlendRGB != sourceRGB || mState.sourceBlendAlpha != sourceAlpha || mState.destBlendRGB != destRGB || mState.destBlendAlpha != destAlpha) { mState.sourceBlendRGB = sourceRGB; mState.destBlendRGB = destRGB; mState.sourceBlendAlpha = sourceAlpha; mState.destBlendAlpha = destAlpha; mBlendStateDirty = true; } } void Context::setBlendColor(float red, float green, float blue, float alpha) { if(mState.blendColor.red != red || mState.blendColor.green != green || mState.blendColor.blue != blue || mState.blendColor.alpha != alpha) { mState.blendColor.red = red; mState.blendColor.green = green; mState.blendColor.blue = blue; mState.blendColor.alpha = alpha; mBlendStateDirty = true; } } void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) { if(mState.blendEquationRGB != rgbEquation || mState.blendEquationAlpha != alphaEquation) { mState.blendEquationRGB = rgbEquation; mState.blendEquationAlpha = alphaEquation; mBlendStateDirty = true; } } void Context::setStencilTestEnabled(bool enabled) { if(mState.stencilTestEnabled != enabled) { mState.stencilTestEnabled = enabled; mStencilStateDirty = true; } } bool Context::isStencilTestEnabled() const { return mState.stencilTestEnabled; } void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) { if(mState.stencilFunc != stencilFunc || mState.stencilRef != stencilRef || mState.stencilMask != stencilMask) { mState.stencilFunc = stencilFunc; mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; mState.stencilMask = stencilMask; mStencilStateDirty = true; } } void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) { if(mState.stencilBackFunc != stencilBackFunc || mState.stencilBackRef != stencilBackRef || mState.stencilBackMask != stencilBackMask) { mState.stencilBackFunc = stencilBackFunc; mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; mState.stencilBackMask = stencilBackMask; mStencilStateDirty = true; } } void Context::setStencilWritemask(GLuint stencilWritemask) { if(mState.stencilWritemask != stencilWritemask) { mState.stencilWritemask = stencilWritemask; mStencilStateDirty = true; } } void Context::setStencilBackWritemask(GLuint stencilBackWritemask) { if(mState.stencilBackWritemask != stencilBackWritemask) { mState.stencilBackWritemask = stencilBackWritemask; mStencilStateDirty = true; } } void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) { if(mState.stencilFail != stencilFail || mState.stencilPassDepthFail != stencilPassDepthFail || mState.stencilPassDepthPass != stencilPassDepthPass) { mState.stencilFail = stencilFail; mState.stencilPassDepthFail = stencilPassDepthFail; mState.stencilPassDepthPass = stencilPassDepthPass; mStencilStateDirty = true; } } void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) { if(mState.stencilBackFail != stencilBackFail || mState.stencilBackPassDepthFail != stencilBackPassDepthFail || mState.stencilBackPassDepthPass != stencilBackPassDepthPass) { mState.stencilBackFail = stencilBackFail; mState.stencilBackPassDepthFail = stencilBackPassDepthFail; mState.stencilBackPassDepthPass = stencilBackPassDepthPass; mStencilStateDirty = true; } } void Context::setPolygonOffsetFillEnabled(bool enabled) { if(mState.polygonOffsetFillEnabled != enabled) { mState.polygonOffsetFillEnabled = enabled; mPolygonOffsetStateDirty = true; } } bool Context::isPolygonOffsetFillEnabled() const { return mState.polygonOffsetFillEnabled; } void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) { if(mState.polygonOffsetFactor != factor || mState.polygonOffsetUnits != units) { mState.polygonOffsetFactor = factor; mState.polygonOffsetUnits = units; mPolygonOffsetStateDirty = true; } } void Context::setSampleAlphaToCoverageEnabled(bool enabled) { if(mState.sampleAlphaToCoverageEnabled != enabled) { mState.sampleAlphaToCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleAlphaToCoverageEnabled() const { return mState.sampleAlphaToCoverageEnabled; } void Context::setSampleCoverageEnabled(bool enabled) { if(mState.sampleCoverageEnabled != enabled) { mState.sampleCoverageEnabled = enabled; mSampleStateDirty = true; } } bool Context::isSampleCoverageEnabled() const { return mState.sampleCoverageEnabled; } void Context::setSampleCoverageParams(GLclampf value, bool invert) { if(mState.sampleCoverageValue != value || mState.sampleCoverageInvert != invert) { mState.sampleCoverageValue = value; mState.sampleCoverageInvert = invert; mSampleStateDirty = true; } } void Context::setScissorTestEnabled(bool enabled) { mState.scissorTestEnabled = enabled; } bool Context::isScissorTestEnabled() const { return mState.scissorTestEnabled; } void Context::setDitherEnabled(bool enabled) { if(mState.ditherEnabled != enabled) { mState.ditherEnabled = enabled; mDitherStateDirty = true; } } bool Context::isDitherEnabled() const { return mState.ditherEnabled; } void Context::setPrimitiveRestartFixedIndexEnabled(bool enabled) { mState.primitiveRestartFixedIndexEnabled = enabled; } bool Context::isPrimitiveRestartFixedIndexEnabled() const { return mState.primitiveRestartFixedIndexEnabled; } void Context::setRasterizerDiscardEnabled(bool enabled) { mState.rasterizerDiscardEnabled = enabled; } bool Context::isRasterizerDiscardEnabled() const { return mState.rasterizerDiscardEnabled; } void Context::setLineWidth(GLfloat width) { mState.lineWidth = width; device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX)); } void Context::setGenerateMipmapHint(GLenum hint) { mState.generateMipmapHint = hint; } void Context::setFragmentShaderDerivativeHint(GLenum hint) { mState.fragmentShaderDerivativeHint = hint; // TODO: Propagate the hint to shader translator so we can write // ddx, ddx_coarse, or ddx_fine depending on the hint. // Ignore for now. It is valid for implementations to ignore hint. } void Context::setTextureFilteringHint(GLenum hint) { mState.textureFilteringHint = hint; } void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.viewportX = x; mState.viewportY = y; mState.viewportWidth = std::min(width, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE); // GL_MAX_VIEWPORT_DIMS[0] mState.viewportHeight = std::min(height, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE); // GL_MAX_VIEWPORT_DIMS[1] } void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) { mState.scissorX = x; mState.scissorY = y; // An overflow happens when (infinite precision) X + Width > INT32_MAX. We // can change that formula to "X > INT32_MAX - Width". And when we bring it // down to 32-bit precision, we know it's safe because width is non-negative. if (x > INT32_MAX - width) { width = INT32_MAX - x; } if (y > INT32_MAX - height) { height = INT32_MAX - y; } mState.scissorWidth = width; mState.scissorHeight = height; } void Context::setColorMask(bool red, bool green, bool blue, bool alpha) { if(mState.colorMaskRed != red || mState.colorMaskGreen != green || mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha) { mState.colorMaskRed = red; mState.colorMaskGreen = green; mState.colorMaskBlue = blue; mState.colorMaskAlpha = alpha; mMaskStateDirty = true; } } unsigned int Context::getColorMask() const { return (mState.colorMaskRed ? 0x1 : 0) | (mState.colorMaskGreen ? 0x2 : 0) | (mState.colorMaskBlue ? 0x4 : 0) | (mState.colorMaskAlpha ? 0x8 : 0); } void Context::setDepthMask(bool mask) { if(mState.depthMask != mask) { mState.depthMask = mask; mMaskStateDirty = true; } } void Context::setActiveSampler(unsigned int active) { mState.activeSampler = active; } GLuint Context::getReadFramebufferName() const { return mState.readFramebuffer; } GLuint Context::getDrawFramebufferName() const { return mState.drawFramebuffer; } GLuint Context::getRenderbufferName() const { return mState.renderbuffer.name(); } void Context::setFramebufferReadBuffer(GLuint buf) { Framebuffer *framebuffer = getReadFramebuffer(); if(framebuffer) { framebuffer->setReadBuffer(buf); } else { return error(GL_INVALID_OPERATION); } } void Context::setFramebufferDrawBuffers(GLsizei n, const GLenum *bufs) { Framebuffer *drawFramebuffer = getDrawFramebuffer(); if(drawFramebuffer) { for(int i = 0; i < MAX_COLOR_ATTACHMENTS; i++) { drawFramebuffer->setDrawBuffer(i, (i < n) ? bufs[i] : GL_NONE); } } else { return error(GL_INVALID_OPERATION); } } GLuint Context::getArrayBufferName() const { return mState.arrayBuffer.name(); } GLuint Context::getElementArrayBufferName() const { Buffer* elementArrayBuffer = getCurrentVertexArray()->getElementArrayBuffer(); return elementArrayBuffer ? elementArrayBuffer->name : 0; } GLuint Context::getActiveQuery(GLenum target) const { Query *queryObject = nullptr; switch(target) { case GL_ANY_SAMPLES_PASSED_EXT: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED]; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE]; break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: queryObject = mState.activeQuery[QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN]; break; default: ASSERT(false); } if(queryObject) { return queryObject->name; } return 0; } void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled) { getCurrentVertexArray()->enableAttribute(attribNum, enabled); } void Context::setVertexAttribDivisor(unsigned int attribNum, GLuint divisor) { getCurrentVertexArray()->setVertexAttribDivisor(attribNum, divisor); } const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) const { return getCurrentVertexArray()->getVertexAttribute(attribNum); } void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, bool pureInteger, GLsizei stride, const void *pointer) { getCurrentVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, pureInteger, stride, pointer); } const void *Context::getVertexAttribPointer(unsigned int attribNum) const { return getCurrentVertexArray()->getVertexAttribute(attribNum).mPointer; } const VertexAttributeArray &Context::getVertexArrayAttributes() { return getCurrentVertexArray()->getVertexAttributes(); } const VertexAttributeArray &Context::getCurrentVertexAttributes() { return mState.vertexAttribute; } void Context::setPackAlignment(GLint alignment) { mState.packParameters.alignment = alignment; } void Context::setUnpackAlignment(GLint alignment) { mState.unpackParameters.alignment = alignment; } const gl::PixelStorageModes &Context::getUnpackParameters() const { return mState.unpackParameters; } void Context::setPackRowLength(GLint rowLength) { mState.packParameters.rowLength = rowLength; } void Context::setPackSkipPixels(GLint skipPixels) { mState.packParameters.skipPixels = skipPixels; } void Context::setPackSkipRows(GLint skipRows) { mState.packParameters.skipRows = skipRows; } void Context::setUnpackRowLength(GLint rowLength) { mState.unpackParameters.rowLength = rowLength; } void Context::setUnpackImageHeight(GLint imageHeight) { mState.unpackParameters.imageHeight = imageHeight; } void Context::setUnpackSkipPixels(GLint skipPixels) { mState.unpackParameters.skipPixels = skipPixels; } void Context::setUnpackSkipRows(GLint skipRows) { mState.unpackParameters.skipRows = skipRows; } void Context::setUnpackSkipImages(GLint skipImages) { mState.unpackParameters.skipImages = skipImages; } GLuint Context::createBuffer() { return mResourceManager->createBuffer(); } GLuint Context::createProgram() { return mResourceManager->createProgram(); } GLuint Context::createShader(GLenum type) { return mResourceManager->createShader(type); } GLuint Context::createTexture() { return mResourceManager->createTexture(); } GLuint Context::createRenderbuffer() { return mResourceManager->createRenderbuffer(); } // Returns an unused framebuffer name GLuint Context::createFramebuffer() { return mFramebufferNameSpace.allocate(); } GLuint Context::createFence() { return mFenceNameSpace.allocate(new Fence()); } // Returns an unused query name GLuint Context::createQuery() { return mQueryNameSpace.allocate(); } // Returns an unused vertex array name GLuint Context::createVertexArray() { return mVertexArrayNameSpace.allocate(); } GLsync Context::createFenceSync(GLenum condition, GLbitfield flags) { GLuint handle = mResourceManager->createFenceSync(condition, flags); return reinterpret_cast(static_cast(handle)); } // Returns an unused transform feedback name GLuint Context::createTransformFeedback() { return mTransformFeedbackNameSpace.allocate(); } // Returns an unused sampler name GLuint Context::createSampler() { return mResourceManager->createSampler(); } void Context::deleteBuffer(GLuint buffer) { detachBuffer(buffer); mResourceManager->deleteBuffer(buffer); } void Context::deleteShader(GLuint shader) { mResourceManager->deleteShader(shader); } void Context::deleteProgram(GLuint program) { mResourceManager->deleteProgram(program); } void Context::deleteTexture(GLuint texture) { detachTexture(texture); mResourceManager->deleteTexture(texture); } void Context::deleteRenderbuffer(GLuint renderbuffer) { if(mResourceManager->getRenderbuffer(renderbuffer)) { detachRenderbuffer(renderbuffer); } mResourceManager->deleteRenderbuffer(renderbuffer); } void Context::deleteFramebuffer(GLuint framebuffer) { detachFramebuffer(framebuffer); Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer); if(framebufferObject) { delete framebufferObject; } } void Context::deleteFence(GLuint fence) { Fence *fenceObject = mFenceNameSpace.remove(fence); if(fenceObject) { delete fenceObject; } } void Context::deleteQuery(GLuint query) { Query *queryObject = mQueryNameSpace.remove(query); if(queryObject) { queryObject->release(); } } void Context::deleteVertexArray(GLuint vertexArray) { // [OpenGL ES 3.0.2] section 2.10 page 43: // If a vertex array object that is currently bound is deleted, the binding // for that object reverts to zero and the default vertex array becomes current. if(getCurrentVertexArray()->name == vertexArray) { bindVertexArray(0); } VertexArray *vertexArrayObject = mVertexArrayNameSpace.remove(vertexArray); if(vertexArrayObject) { delete vertexArrayObject; } } void Context::deleteFenceSync(GLsync fenceSync) { // The spec specifies the underlying Fence object is not deleted until all current // wait commands finish. However, since the name becomes invalid, we cannot query the fence, // and since our API is currently designed for being called from a single thread, we can delete // the fence immediately. mResourceManager->deleteFenceSync(static_cast(reinterpret_cast(fenceSync))); } void Context::deleteTransformFeedback(GLuint transformFeedback) { TransformFeedback *transformFeedbackObject = mTransformFeedbackNameSpace.remove(transformFeedback); // Detach if currently bound. if(mState.transformFeedback == transformFeedback) { mState.transformFeedback = 0; } if(transformFeedbackObject) { delete transformFeedbackObject; } } void Context::deleteSampler(GLuint sampler) { detachSampler(sampler); mResourceManager->deleteSampler(sampler); } Buffer *Context::getBuffer(GLuint handle) const { return mResourceManager->getBuffer(handle); } Shader *Context::getShader(GLuint handle) const { return mResourceManager->getShader(handle); } Program *Context::getProgram(GLuint handle) const { return mResourceManager->getProgram(handle); } Texture *Context::getTexture(GLuint handle) const { return mResourceManager->getTexture(handle); } Renderbuffer *Context::getRenderbuffer(GLuint handle) const { return mResourceManager->getRenderbuffer(handle); } Framebuffer *Context::getReadFramebuffer() const { return getFramebuffer(mState.readFramebuffer); } Framebuffer *Context::getDrawFramebuffer() const { return getFramebuffer(mState.drawFramebuffer); } void Context::bindArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); mState.arrayBuffer = getBuffer(buffer); } void Context::bindElementArrayBuffer(unsigned int buffer) { mResourceManager->checkBufferAllocation(buffer); getCurrentVertexArray()->setElementArrayBuffer(getBuffer(buffer)); } void Context::bindCopyReadBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.copyReadBuffer = getBuffer(buffer); } void Context::bindCopyWriteBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.copyWriteBuffer = getBuffer(buffer); } void Context::bindPixelPackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.pixelPackBuffer = getBuffer(buffer); } void Context::bindPixelUnpackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.pixelUnpackBuffer = getBuffer(buffer); } void Context::bindTransformFeedbackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.genericTransformFeedbackBuffer = getBuffer(buffer); } void Context::bindTexture(TextureType type, GLuint texture) { mResourceManager->checkTextureAllocation(texture, type); mState.samplerTexture[type][mState.activeSampler] = getTexture(texture); } void Context::bindReadFramebuffer(GLuint framebuffer) { if(!getFramebuffer(framebuffer)) { if(framebuffer == 0) { mFramebufferNameSpace.insert(framebuffer, new DefaultFramebuffer()); } else { mFramebufferNameSpace.insert(framebuffer, new Framebuffer()); } } mState.readFramebuffer = framebuffer; } void Context::bindDrawFramebuffer(GLuint framebuffer) { if(!getFramebuffer(framebuffer)) { if(framebuffer == 0) { mFramebufferNameSpace.insert(framebuffer, new DefaultFramebuffer()); } else { mFramebufferNameSpace.insert(framebuffer, new Framebuffer()); } } mState.drawFramebuffer = framebuffer; } void Context::bindRenderbuffer(GLuint renderbuffer) { mResourceManager->checkRenderbufferAllocation(renderbuffer); mState.renderbuffer = getRenderbuffer(renderbuffer); } void Context::bindVertexArray(GLuint array) { VertexArray *vertexArray = getVertexArray(array); if(!vertexArray) { vertexArray = new VertexArray(array); mVertexArrayNameSpace.insert(array, vertexArray); } mState.vertexArray = array; } void Context::bindGenericUniformBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.genericUniformBuffer = getBuffer(buffer); } void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); Buffer* bufferObject = getBuffer(buffer); mState.uniformBuffers[index].set(bufferObject, static_cast(offset), static_cast(size)); } void Context::bindGenericTransformFeedbackBuffer(GLuint buffer) { mResourceManager->checkBufferAllocation(buffer); mState.genericTransformFeedbackBuffer = getBuffer(buffer); } void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size) { mResourceManager->checkBufferAllocation(buffer); Buffer* bufferObject = getBuffer(buffer); getTransformFeedback()->setBuffer(index, bufferObject, offset, size); mState.genericTransformFeedbackBuffer = bufferObject; } void Context::bindTransformFeedback(GLuint id) { if(!getTransformFeedback(id)) { mTransformFeedbackNameSpace.insert(id, new TransformFeedback(id)); } mState.transformFeedback = id; } bool Context::bindSampler(GLuint unit, GLuint sampler) { mResourceManager->checkSamplerAllocation(sampler); Sampler* samplerObject = getSampler(sampler); mState.sampler[unit] = samplerObject; return !!samplerObject; } void Context::useProgram(GLuint program) { GLuint priorProgram = mState.currentProgram; mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. if(priorProgram != program) { Program *newProgram = mResourceManager->getProgram(program); Program *oldProgram = mResourceManager->getProgram(priorProgram); if(newProgram) { newProgram->addRef(); } if(oldProgram) { oldProgram->release(); } } } void Context::beginQuery(GLenum target, GLuint query) { // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an // of zero, if the active query object name for is non-zero (for the // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if // the active query for either target is non-zero), if is the name of an // existing query object whose type does not match , or if is the // active query object name for any query type, the error INVALID_OPERATION is // generated. // Ensure no other queries are active // NOTE: If other queries than occlusion are supported, we will need to check // separately that: // a) The query ID passed is not the current active query for any target/type // b) There are no active queries for the requested target (and in the case // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, // no query may be active for either if glBeginQuery targets either. for(int i = 0; i < QUERY_TYPE_COUNT; i++) { if(mState.activeQuery[i]) { switch(mState.activeQuery[i]->getType()) { case GL_ANY_SAMPLES_PASSED_EXT: case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: if((target == GL_ANY_SAMPLES_PASSED_EXT) || (target == GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT)) { return error(GL_INVALID_OPERATION); } break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: if(target == GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN) { return error(GL_INVALID_OPERATION); } break; default: break; } } } QueryType qType; switch(target) { case GL_ANY_SAMPLES_PASSED_EXT: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN; break; default: UNREACHABLE(target); return error(GL_INVALID_ENUM); } Query *queryObject = createQuery(query, target); // Check that name was obtained with glGenQueries if(!queryObject) { return error(GL_INVALID_OPERATION); } // Check for type mismatch if(queryObject->getType() != target) { return error(GL_INVALID_OPERATION); } // Set query as active for specified target mState.activeQuery[qType] = queryObject; // Begin query queryObject->begin(); } void Context::endQuery(GLenum target) { QueryType qType; switch(target) { case GL_ANY_SAMPLES_PASSED_EXT: qType = QUERY_ANY_SAMPLES_PASSED; break; case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break; case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN; break; default: UNREACHABLE(target); return; } Query *queryObject = mState.activeQuery[qType]; if(!queryObject) { return error(GL_INVALID_OPERATION); } queryObject->end(); mState.activeQuery[qType] = nullptr; } void Context::setFramebufferZero(Framebuffer *buffer) { delete mFramebufferNameSpace.remove(0); mFramebufferNameSpace.insert(0, buffer); } void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer) { Renderbuffer *renderbufferObject = mState.renderbuffer; renderbufferObject->setStorage(renderbuffer); } Framebuffer *Context::getFramebuffer(unsigned int handle) const { return mFramebufferNameSpace.find(handle); } Fence *Context::getFence(unsigned int handle) const { return mFenceNameSpace.find(handle); } FenceSync *Context::getFenceSync(GLsync handle) const { return mResourceManager->getFenceSync(static_cast(reinterpret_cast(handle))); } Query *Context::getQuery(unsigned int handle) const { return mQueryNameSpace.find(handle); } Query *Context::createQuery(unsigned int handle, GLenum type) { if(!mQueryNameSpace.isReserved(handle)) { return nullptr; } else { Query *query = mQueryNameSpace.find(handle); if(!query) { query = new Query(handle, type); query->addRef(); mQueryNameSpace.insert(handle, query); } return query; } } VertexArray *Context::getVertexArray(GLuint array) const { return mVertexArrayNameSpace.find(array); } VertexArray *Context::getCurrentVertexArray() const { return getVertexArray(mState.vertexArray); } bool Context::isVertexArray(GLuint array) const { return mVertexArrayNameSpace.isReserved(array); } bool Context::hasZeroDivisor() const { // Verify there is at least one active attribute with a divisor of zero es2::Program *programObject = getCurrentProgram(); for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { bool active = (programObject->getAttributeStream(attributeIndex) != -1); if(active && getCurrentVertexArray()->getVertexAttribute(attributeIndex).mDivisor == 0) { return true; } } return false; } TransformFeedback *Context::getTransformFeedback(GLuint transformFeedback) const { return mTransformFeedbackNameSpace.find(transformFeedback); } bool Context::isTransformFeedback(GLuint array) const { return mTransformFeedbackNameSpace.isReserved(array); } Sampler *Context::getSampler(GLuint sampler) const { return mResourceManager->getSampler(sampler); } bool Context::isSampler(GLuint sampler) const { return mResourceManager->isSampler(sampler); } Buffer *Context::getArrayBuffer() const { return mState.arrayBuffer; } Buffer *Context::getElementArrayBuffer() const { return getCurrentVertexArray()->getElementArrayBuffer(); } Buffer *Context::getCopyReadBuffer() const { return mState.copyReadBuffer; } Buffer *Context::getCopyWriteBuffer() const { return mState.copyWriteBuffer; } Buffer *Context::getPixelPackBuffer() const { return mState.pixelPackBuffer; } Buffer *Context::getPixelUnpackBuffer() const { return mState.pixelUnpackBuffer; } Buffer *Context::getGenericUniformBuffer() const { return mState.genericUniformBuffer; } // The "required buffer size" is the number of bytes from the start of the // buffer to the last byte referenced within the buffer. If the caller of this // function has to worry about offsets within the buffer, it only needs to add // that byte offset to this function's return value to get its required buffer // size. size_t Context::getRequiredBufferSize(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type) const { // 0-dimensional images have no bytes in them. if (width == 0 || height == 0 || depth == 0) { return 0; } GLint pixelsPerRow = (mState.unpackParameters.rowLength) > 0 ? mState.unpackParameters.rowLength : width; GLint rowsPerImage = (mState.unpackParameters.imageHeight) > 0 ? mState.unpackParameters.imageHeight : height; GLint bytesPerPixel = gl::ComputePixelSize(format, type); GLint bytesPerRow = gl::ComputePitch(pixelsPerRow, format, type, mState.unpackParameters.alignment); GLint bytesPerImage = rowsPerImage * bytesPerRow; // Depth and height are subtracted by 1, while width is not, because we're not // reading the full last row or image, but we are reading the full last pixel. return (mState.unpackParameters.skipImages + (depth - 1)) * bytesPerImage + (mState.unpackParameters.skipRows + (height - 1)) * bytesPerRow + (mState.unpackParameters.skipPixels + (width)) * bytesPerPixel; } GLenum Context::getPixels(const GLvoid **pixels, GLenum type, size_t imageSize) const { if(mState.pixelUnpackBuffer) { ASSERT(mState.pixelUnpackBuffer->name != 0); if(mState.pixelUnpackBuffer->isMapped()) { return GL_INVALID_OPERATION; } size_t offset = static_cast((ptrdiff_t)(*pixels)); if(offset % GetTypeSize(type) != 0) { return GL_INVALID_OPERATION; } if(offset > mState.pixelUnpackBuffer->size()) { return GL_INVALID_OPERATION; } if(mState.pixelUnpackBuffer->size() - offset < imageSize) { return GL_INVALID_OPERATION; } *pixels = static_cast(mState.pixelUnpackBuffer->data()) + offset; } return GL_NO_ERROR; } bool Context::getBuffer(GLenum target, es2::Buffer **buffer) const { switch(target) { case GL_ARRAY_BUFFER: *buffer = getArrayBuffer(); break; case GL_ELEMENT_ARRAY_BUFFER: *buffer = getElementArrayBuffer(); break; case GL_COPY_READ_BUFFER: *buffer = getCopyReadBuffer(); break; case GL_COPY_WRITE_BUFFER: *buffer = getCopyWriteBuffer(); break; case GL_PIXEL_PACK_BUFFER: *buffer = getPixelPackBuffer(); break; case GL_PIXEL_UNPACK_BUFFER: *buffer = getPixelUnpackBuffer(); break; case GL_TRANSFORM_FEEDBACK_BUFFER: *buffer = static_cast(mState.genericTransformFeedbackBuffer); break; case GL_UNIFORM_BUFFER: *buffer = getGenericUniformBuffer(); break; default: return false; } return true; } TransformFeedback *Context::getTransformFeedback() const { return getTransformFeedback(mState.transformFeedback); } Program *Context::getCurrentProgram() const { return mResourceManager->getProgram(mState.currentProgram); } Texture *Context::getTargetTexture(GLenum target) const { Texture *texture = nullptr; switch(target) { case GL_TEXTURE_2D: texture = getTexture2D(); break; case GL_TEXTURE_2D_ARRAY: texture = getTexture2DArray(); break; case GL_TEXTURE_3D: texture = getTexture3D(); break; case GL_TEXTURE_CUBE_MAP: texture = getTextureCubeMap(); break; case GL_TEXTURE_EXTERNAL_OES: texture = getTextureExternal(); break; case GL_TEXTURE_RECTANGLE_ARB: texture = getTexture2DRect(); break; default: return error(GL_INVALID_ENUM, nullptr); } ASSERT(texture); // Must always have a default texture to fall back to. return texture; } Texture2D *Context::getTexture2D() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); } Texture2D *Context::getTexture2D(GLenum target) const { switch(target) { case GL_TEXTURE_2D: return getTexture2D(); case GL_TEXTURE_RECTANGLE_ARB: return getTexture2DRect(); case GL_TEXTURE_EXTERNAL_OES: return getTextureExternal(); default: UNREACHABLE(target); } return nullptr; } Texture3D *Context::getTexture3D() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_3D)); } Texture2DArray *Context::getTexture2DArray() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_2D_ARRAY)); } TextureCubeMap *Context::getTextureCubeMap() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); } Texture2DRect *Context::getTexture2DRect() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_2D_RECT)); } TextureExternal *Context::getTextureExternal() const { return static_cast(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL)); } Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const { GLuint texid = mState.samplerTexture[type][sampler].name(); if(texid == 0) // Special case: 0 refers to different initial textures based on the target { switch(type) { case TEXTURE_2D: return mTexture2DZero; case TEXTURE_3D: return mTexture3DZero; case TEXTURE_2D_ARRAY: return mTexture2DArrayZero; case TEXTURE_CUBE: return mTextureCubeMapZero; case TEXTURE_2D_RECT: return mTexture2DRectZero; case TEXTURE_EXTERNAL: return mTextureExternalZero; default: UNREACHABLE(type); } } return mState.samplerTexture[type][sampler]; } void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch(pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast(param)); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast(param)); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast(param)); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast(param)); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast(param)); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast(param)); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast(param)); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setCompareMode(static_cast(param)); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setCompareFunc(static_cast(param)); break; case GL_TEXTURE_MAX_ANISOTROPY_EXT: samplerObject->setMaxAnisotropy(static_cast(param)); break; default: UNREACHABLE(pname); break; } } void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch(pname) { case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast(roundf(param))); break; case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast(roundf(param))); break; case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast(roundf(param))); break; case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast(roundf(param))); break; case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast(roundf(param))); break; case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break; case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break; case GL_TEXTURE_COMPARE_MODE: samplerObject->setCompareMode(static_cast(roundf(param))); break; case GL_TEXTURE_COMPARE_FUNC: samplerObject->setCompareFunc(static_cast(roundf(param))); break; case GL_TEXTURE_MAX_ANISOTROPY_EXT: samplerObject->setMaxAnisotropy(param); break; default: UNREACHABLE(pname); break; } } GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch(pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return static_cast(roundf(samplerObject->getMinLod())); case GL_TEXTURE_MAX_LOD: return static_cast(roundf(samplerObject->getMaxLod())); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getCompareMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getCompareFunc()); case GL_TEXTURE_MAX_ANISOTROPY_EXT: return static_cast(samplerObject->getMaxAnisotropy()); default: UNREACHABLE(pname); return 0; } } GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname) { mResourceManager->checkSamplerAllocation(sampler); Sampler *samplerObject = getSampler(sampler); ASSERT(samplerObject); switch(pname) { case GL_TEXTURE_MIN_FILTER: return static_cast(samplerObject->getMinFilter()); case GL_TEXTURE_MAG_FILTER: return static_cast(samplerObject->getMagFilter()); case GL_TEXTURE_WRAP_S: return static_cast(samplerObject->getWrapS()); case GL_TEXTURE_WRAP_T: return static_cast(samplerObject->getWrapT()); case GL_TEXTURE_WRAP_R: return static_cast(samplerObject->getWrapR()); case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod(); case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod(); case GL_TEXTURE_COMPARE_MODE: return static_cast(samplerObject->getCompareMode()); case GL_TEXTURE_COMPARE_FUNC: return static_cast(samplerObject->getCompareFunc()); case GL_TEXTURE_MAX_ANISOTROPY_EXT: return samplerObject->getMaxAnisotropy(); default: UNREACHABLE(pname); return 0; } } bool Context::getBooleanv(GLenum pname, GLboolean *params) const { switch(pname) { case GL_SHADER_COMPILER: *params = GL_TRUE; break; case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break; case GL_COLOR_WRITEMASK: params[0] = mState.colorMaskRed; params[1] = mState.colorMaskGreen; params[2] = mState.colorMaskBlue; params[3] = mState.colorMaskAlpha; break; case GL_CULL_FACE: *params = mState.cullFaceEnabled; break; case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFillEnabled; break; case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break; case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverageEnabled; break; case GL_SCISSOR_TEST: *params = mState.scissorTestEnabled; break; case GL_STENCIL_TEST: *params = mState.stencilTestEnabled; break; case GL_DEPTH_TEST: *params = mState.depthTestEnabled; break; case GL_BLEND: *params = mState.blendEnabled; break; case GL_DITHER: *params = mState.ditherEnabled; break; case GL_PRIMITIVE_RESTART_FIXED_INDEX: *params = mState.primitiveRestartFixedIndexEnabled; break; case GL_RASTERIZER_DISCARD: *params = mState.rasterizerDiscardEnabled; break; case GL_TRANSFORM_FEEDBACK_ACTIVE: { TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback); if(transformFeedback) { *params = transformFeedback->isActive(); break; } else return false; } case GL_TRANSFORM_FEEDBACK_PAUSED: { TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback); if(transformFeedback) { *params = transformFeedback->isPaused(); break; } else return false; } default: return false; } return true; } bool Context::getFloatv(GLenum pname, GLfloat *params) const { // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. switch(pname) { case GL_LINE_WIDTH: *params = mState.lineWidth; break; case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break; case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break; case GL_ALIASED_LINE_WIDTH_RANGE: params[0] = ALIASED_LINE_WIDTH_RANGE_MIN; params[1] = ALIASED_LINE_WIDTH_RANGE_MAX; break; case GL_ALIASED_POINT_SIZE_RANGE: params[0] = ALIASED_POINT_SIZE_RANGE_MIN; params[1] = ALIASED_POINT_SIZE_RANGE_MAX; break; case GL_DEPTH_RANGE: params[0] = mState.zNear; params[1] = mState.zFar; break; case GL_COLOR_CLEAR_VALUE: params[0] = mState.colorClearValue.red; params[1] = mState.colorClearValue.green; params[2] = mState.colorClearValue.blue; params[3] = mState.colorClearValue.alpha; break; case GL_BLEND_COLOR: params[0] = mState.blendColor.red; params[1] = mState.blendColor.green; params[2] = mState.blendColor.blue; params[3] = mState.blendColor.alpha; break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: *params = MAX_TEXTURE_MAX_ANISOTROPY; break; default: return false; } return true; } template bool Context::getIntegerv(GLenum pname, GLint *params) const; template bool Context::getIntegerv(GLenum pname, GLint64 *params) const; template bool Context::getIntegerv(GLenum pname, T *params) const { // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation // because it is stored as a float, despite the fact that the GL ES 2.0 spec names // GetIntegerv as its native query function. As it would require conversion in any // case, this should make no difference to the calling application. You may find it in // Context::getFloatv. switch(pname) { case GL_MAX_VERTEX_ATTRIBS: *params = MAX_VERTEX_ATTRIBS; return true; case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = MAX_VERTEX_UNIFORM_VECTORS; return true; case GL_MAX_VARYING_VECTORS: *params = MAX_VARYING_VECTORS; return true; case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; return true; case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS; return true; case GL_MAX_TEXTURE_IMAGE_UNITS: *params = MAX_TEXTURE_IMAGE_UNITS; return true; case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = MAX_FRAGMENT_UNIFORM_VECTORS; return true; case GL_MAX_RENDERBUFFER_SIZE: *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; return true; case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; return true; case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ return true; case GL_ARRAY_BUFFER_BINDING: *params = getArrayBufferName(); return true; case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = getElementArrayBufferName(); return true; // case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_DRAW_FRAMEBUFFER_BINDING: *params = mState.drawFramebuffer; return true; case GL_READ_FRAMEBUFFER_BINDING: *params = mState.readFramebuffer; return true; case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.name(); return true; case GL_CURRENT_PROGRAM: *params = mState.currentProgram; return true; case GL_PACK_ALIGNMENT: *params = mState.packParameters.alignment; return true; case GL_UNPACK_ALIGNMENT: *params = mState.unpackParameters.alignment; return true; case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; return true; case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; return true; case GL_TEXTURE_FILTERING_HINT_CHROMIUM: *params = mState.textureFilteringHint; return true; case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); return true; case GL_STENCIL_FUNC: *params = mState.stencilFunc; return true; case GL_STENCIL_REF: *params = mState.stencilRef; return true; case GL_STENCIL_VALUE_MASK: *params = sw::clampToSignedInt(mState.stencilMask); return true; case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; return true; case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; return true; case GL_STENCIL_BACK_VALUE_MASK: *params = sw::clampToSignedInt(mState.stencilBackMask); return true; case GL_STENCIL_FAIL: *params = mState.stencilFail; return true; case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; return true; case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; return true; case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; return true; case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; return true; case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; return true; case GL_DEPTH_FUNC: *params = mState.depthFunc; return true; case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; return true; case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; return true; case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; return true; case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; return true; case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; return true; case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; return true; case GL_STENCIL_WRITEMASK: *params = sw::clampToSignedInt(mState.stencilWritemask); return true; case GL_STENCIL_BACK_WRITEMASK: *params = sw::clampToSignedInt(mState.stencilBackWritemask); return true; case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; return true; case GL_SUBPIXEL_BITS: *params = 4; return true; case GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB: case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; return true; case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; return true; case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; return true; case GL_MAX_SAMPLES: *params = IMPLEMENTATION_MAX_SAMPLES; return true; case GL_SAMPLE_BUFFERS: case GL_SAMPLES: { Framebuffer *framebuffer = getDrawFramebuffer(); int width, height, samples; if(framebuffer && (framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE)) { switch(pname) { case GL_SAMPLE_BUFFERS: if(samples > 1) { *params = 1; } else { *params = 0; } break; case GL_SAMPLES: *params = samples; break; } } else { *params = 0; } } return true; case GL_IMPLEMENTATION_COLOR_READ_TYPE: { Framebuffer *framebuffer = getReadFramebuffer(); if(framebuffer) { *params = framebuffer->getImplementationColorReadType(); } else { return error(GL_INVALID_OPERATION, true); } } return true; case GL_IMPLEMENTATION_COLOR_READ_FORMAT: { Framebuffer *framebuffer = getReadFramebuffer(); if(framebuffer) { *params = framebuffer->getImplementationColorReadFormat(); } else { return error(GL_INVALID_OPERATION, true); } } return true; case GL_MAX_VIEWPORT_DIMS: { int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; params[0] = maxDimension; params[1] = maxDimension; } return true; case GL_COMPRESSED_TEXTURE_FORMATS: { for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++) { params[i] = compressedTextureFormats[i]; } } return true; case GL_VIEWPORT: params[0] = mState.viewportX; params[1] = mState.viewportY; params[2] = mState.viewportWidth; params[3] = mState.viewportHeight; return true; case GL_SCISSOR_BOX: params[0] = mState.scissorX; params[1] = mState.scissorY; params[2] = mState.scissorWidth; params[3] = mState.scissorHeight; return true; case GL_CULL_FACE_MODE: *params = mState.cullMode; return true; case GL_FRONT_FACE: *params = mState.frontFace; return true; case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *colorbuffer = framebuffer ? framebuffer->getColorbuffer(0) : nullptr; if(colorbuffer) { switch(pname) { case GL_RED_BITS: *params = colorbuffer->getRedSize(); return true; case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); return true; case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); return true; case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); return true; } } else { *params = 0; } } return true; case GL_DEPTH_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *depthbuffer = framebuffer ? framebuffer->getDepthbuffer() : nullptr; if(depthbuffer) { *params = depthbuffer->getDepthSize(); } else { *params = 0; } } return true; case GL_STENCIL_BITS: { Framebuffer *framebuffer = getDrawFramebuffer(); Renderbuffer *stencilbuffer = framebuffer ? framebuffer->getStencilbuffer() : nullptr; if(stencilbuffer) { *params = stencilbuffer->getStencilSize(); } else { *params = 0; } } return true; case GL_TEXTURE_BINDING_2D: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name(); return true; case GL_TEXTURE_BINDING_CUBE_MAP: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name(); return true; case GL_TEXTURE_BINDING_RECTANGLE_ARB: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_2D_RECT][mState.activeSampler].name(); return true; case GL_TEXTURE_BINDING_EXTERNAL_OES: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name(); return true; case GL_TEXTURE_BINDING_3D_OES: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_3D][mState.activeSampler].name(); return true; case GL_DRAW_BUFFER0: case GL_DRAW_BUFFER1: case GL_DRAW_BUFFER2: case GL_DRAW_BUFFER3: case GL_DRAW_BUFFER4: case GL_DRAW_BUFFER5: case GL_DRAW_BUFFER6: case GL_DRAW_BUFFER7: case GL_DRAW_BUFFER8: case GL_DRAW_BUFFER9: case GL_DRAW_BUFFER10: case GL_DRAW_BUFFER11: case GL_DRAW_BUFFER12: case GL_DRAW_BUFFER13: case GL_DRAW_BUFFER14: case GL_DRAW_BUFFER15: if((pname - GL_DRAW_BUFFER0) < MAX_DRAW_BUFFERS) { Framebuffer* framebuffer = getDrawFramebuffer(); *params = framebuffer ? framebuffer->getDrawBuffer(pname - GL_DRAW_BUFFER0) : GL_NONE; } else { return false; } return true; case GL_MAX_DRAW_BUFFERS: *params = MAX_DRAW_BUFFERS; return true; case GL_MAX_COLOR_ATTACHMENTS: // Note: MAX_COLOR_ATTACHMENTS_EXT added by GL_EXT_draw_buffers *params = MAX_COLOR_ATTACHMENTS; return true; case GL_TEXTURE_BINDING_2D_ARRAY: if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1) { error(GL_INVALID_OPERATION); return false; } *params = mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].name(); return true; case GL_COPY_READ_BUFFER_BINDING: *params = mState.copyReadBuffer.name(); return true; case GL_COPY_WRITE_BUFFER_BINDING: *params = mState.copyWriteBuffer.name(); return true; case GL_MAJOR_VERSION: *params = 3; return true; case GL_MINOR_VERSION: *params = 0; return true; case GL_MAX_3D_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_3D_TEXTURE_SIZE; return true; case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; return true; case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: *params = MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS; return true; case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = MAX_VERTEX_UNIFORM_BLOCKS + MAX_FRAGMENT_UNIFORM_BLOCKS; return true; case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: *params = MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS; return true; case GL_MAX_ELEMENT_INDEX: *params = MAX_ELEMENT_INDEX; return true; case GL_MAX_ELEMENTS_INDICES: *params = MAX_ELEMENTS_INDICES; return true; case GL_MAX_ELEMENTS_VERTICES: *params = MAX_ELEMENTS_VERTICES; return true; case GL_MAX_FRAGMENT_INPUT_COMPONENTS: *params = MAX_FRAGMENT_INPUT_VECTORS * 4; return true; case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = MAX_FRAGMENT_UNIFORM_BLOCKS; return true; case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = MAX_FRAGMENT_UNIFORM_COMPONENTS; return true; case GL_MAX_PROGRAM_TEXEL_OFFSET: // Note: SwiftShader has no actual texel offset limit, so this limit can be modified if required. // In any case, any behavior outside the specified range is valid since the spec mentions: // (see OpenGL ES 3.0.5, 3.8.10.1 Scale Factor and Level of Detail, p.153) // "If any of the offset values are outside the range of the implementation-defined values // MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of the texture lookup are // undefined." *params = MAX_PROGRAM_TEXEL_OFFSET; return true; case GL_MAX_SERVER_WAIT_TIMEOUT: *params = 0; return true; case GL_MAX_TEXTURE_LOD_BIAS: *params = MAX_TEXTURE_LOD_BIAS; return true; case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; return true; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS; return true; case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS; return true; case GL_MAX_UNIFORM_BLOCK_SIZE: *params = MAX_UNIFORM_BLOCK_SIZE; return true; case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = MAX_UNIFORM_BUFFER_BINDINGS; return true; case GL_MAX_VARYING_COMPONENTS: *params = MAX_VARYING_VECTORS * 4; return true; case GL_MAX_VERTEX_OUTPUT_COMPONENTS: *params = MAX_VERTEX_OUTPUT_VECTORS * 4; return true; case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = MAX_VERTEX_UNIFORM_BLOCKS; return true; case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = MAX_VERTEX_UNIFORM_COMPONENTS; return true; case GL_MIN_PROGRAM_TEXEL_OFFSET: // Note: SwiftShader has no actual texel offset limit, so this limit can be modified if required. // In any case, any behavior outside the specified range is valid since the spec mentions: // (see OpenGL ES 3.0.5, 3.8.10.1 Scale Factor and Level of Detail, p.153) // "If any of the offset values are outside the range of the implementation-defined values // MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of the texture lookup are // undefined." *params = MIN_PROGRAM_TEXEL_OFFSET; return true; case GL_NUM_EXTENSIONS: GLuint numExtensions; getExtensions(0, &numExtensions); *params = numExtensions; return true; case GL_NUM_PROGRAM_BINARY_FORMATS: *params = NUM_PROGRAM_BINARY_FORMATS; return true; case GL_PACK_ROW_LENGTH: *params = mState.packParameters.rowLength; return true; case GL_PACK_SKIP_PIXELS: *params = mState.packParameters.skipPixels; return true; case GL_PACK_SKIP_ROWS: *params = mState.packParameters.skipRows; return true; case GL_PIXEL_PACK_BUFFER_BINDING: *params = mState.pixelPackBuffer.name(); return true; case GL_PIXEL_UNPACK_BUFFER_BINDING: *params = mState.pixelUnpackBuffer.name(); return true; case GL_PROGRAM_BINARY_FORMATS: // Since NUM_PROGRAM_BINARY_FORMATS is 0, the input // should be a 0 sized array, so don't write to params return true; case GL_READ_BUFFER: { Framebuffer* framebuffer = getReadFramebuffer(); *params = framebuffer ? framebuffer->getReadBuffer() : GL_NONE; } return true; case GL_SAMPLER_BINDING: *params = mState.sampler[mState.activeSampler].name(); return true; case GL_UNIFORM_BUFFER_BINDING: *params = mState.genericUniformBuffer.name(); return true; case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = UNIFORM_BUFFER_OFFSET_ALIGNMENT; return true; case GL_UNPACK_IMAGE_HEIGHT: *params = mState.unpackParameters.imageHeight; return true; case GL_UNPACK_ROW_LENGTH: *params = mState.unpackParameters.rowLength; return true; case GL_UNPACK_SKIP_IMAGES: *params = mState.unpackParameters.skipImages; return true; case GL_UNPACK_SKIP_PIXELS: *params = mState.unpackParameters.skipPixels; return true; case GL_UNPACK_SKIP_ROWS: *params = mState.unpackParameters.skipRows; return true; case GL_VERTEX_ARRAY_BINDING: *params = getCurrentVertexArray()->name; return true; case GL_TRANSFORM_FEEDBACK_BINDING: { TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback); if(transformFeedback) { *params = transformFeedback->name; } else { return false; } } return true; case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: { TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback); if(transformFeedback) { *params = mState.genericTransformFeedbackBuffer.name(); } else { return false; } } return true; default: break; } return false; } template bool Context::getTransformFeedbackiv(GLuint index, GLenum pname, GLint *param) const; template bool Context::getTransformFeedbackiv(GLuint index, GLenum pname, GLint64 *param) const; template bool Context::getTransformFeedbackiv(GLuint index, GLenum pname, T *param) const { TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback); if(!transformFeedback) { return false; } switch(pname) { case GL_TRANSFORM_FEEDBACK_BINDING: // GLint, initially 0 *param = transformFeedback->name; break; case GL_TRANSFORM_FEEDBACK_ACTIVE: // boolean, initially GL_FALSE *param = transformFeedback->isActive(); break; case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: // name, initially 0 *param = transformFeedback->getBufferName(index); break; case GL_TRANSFORM_FEEDBACK_PAUSED: // boolean, initially GL_FALSE *param = transformFeedback->isPaused(); break; case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0 if(transformFeedback->getBuffer(index)) { *param = transformFeedback->getSize(index); break; } else return false; case GL_TRANSFORM_FEEDBACK_BUFFER_START: // indexed[n] 64-bit integer, initially 0 if(transformFeedback->getBuffer(index)) { *param = transformFeedback->getOffset(index); break; } else return false; default: return false; } return true; } template bool Context::getUniformBufferiv(GLuint index, GLenum pname, GLint *param) const; template bool Context::getUniformBufferiv(GLuint index, GLenum pname, GLint64 *param) const; template bool Context::getUniformBufferiv(GLuint index, GLenum pname, T *param) const { switch(pname) { case GL_UNIFORM_BUFFER_BINDING: case GL_UNIFORM_BUFFER_SIZE: case GL_UNIFORM_BUFFER_START: break; default: return false; } if(index >= MAX_UNIFORM_BUFFER_BINDINGS) { return error(GL_INVALID_VALUE, true); } const BufferBinding& uniformBuffer = mState.uniformBuffers[index]; switch(pname) { case GL_UNIFORM_BUFFER_BINDING: // name, initially 0 *param = uniformBuffer.get().name(); break; case GL_UNIFORM_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0 *param = uniformBuffer.getSize(); break; case GL_UNIFORM_BUFFER_START: // indexed[n] 64-bit integer, initially 0 *param = uniformBuffer.getOffset(); break; default: return false; } return true; } bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) const { // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due // to the fact that it is stored internally as a float, and so would require conversion // if returned from Context::getIntegerv. Since this conversion is already implemented // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling // application. switch(pname) { case GL_COMPRESSED_TEXTURE_FORMATS: { *type = GL_INT; *numParams = NUM_COMPRESSED_TEXTURE_FORMATS; } break; case GL_SHADER_BINARY_FORMATS: { *type = GL_INT; *numParams = 0; } break; case GL_MAX_VERTEX_ATTRIBS: case GL_MAX_VERTEX_UNIFORM_VECTORS: case GL_MAX_VARYING_VECTORS: case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: case GL_MAX_TEXTURE_IMAGE_UNITS: case GL_MAX_FRAGMENT_UNIFORM_VECTORS: case GL_MAX_RENDERBUFFER_SIZE: case GL_NUM_SHADER_BINARY_FORMATS: case GL_NUM_COMPRESSED_TEXTURE_FORMATS: case GL_ARRAY_BUFFER_BINDING: case GL_FRAMEBUFFER_BINDING: // Same as GL_DRAW_FRAMEBUFFER_BINDING_ANGLE case GL_READ_FRAMEBUFFER_BINDING: // Same as GL_READ_FRAMEBUFFER_BINDING_ANGLE case GL_RENDERBUFFER_BINDING: case GL_CURRENT_PROGRAM: case GL_PACK_ALIGNMENT: case GL_UNPACK_ALIGNMENT: case GL_GENERATE_MIPMAP_HINT: case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: case GL_TEXTURE_FILTERING_HINT_CHROMIUM: case GL_RED_BITS: case GL_GREEN_BITS: case GL_BLUE_BITS: case GL_ALPHA_BITS: case GL_DEPTH_BITS: case GL_STENCIL_BITS: case GL_ELEMENT_ARRAY_BUFFER_BINDING: case GL_CULL_FACE_MODE: case GL_FRONT_FACE: case GL_ACTIVE_TEXTURE: case GL_STENCIL_FUNC: case GL_STENCIL_VALUE_MASK: case GL_STENCIL_REF: case GL_STENCIL_FAIL: case GL_STENCIL_PASS_DEPTH_FAIL: case GL_STENCIL_PASS_DEPTH_PASS: case GL_STENCIL_BACK_FUNC: case GL_STENCIL_BACK_VALUE_MASK: case GL_STENCIL_BACK_REF: case GL_STENCIL_BACK_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_FAIL: case GL_STENCIL_BACK_PASS_DEPTH_PASS: case GL_DEPTH_FUNC: case GL_BLEND_SRC_RGB: case GL_BLEND_SRC_ALPHA: case GL_BLEND_DST_RGB: case GL_BLEND_DST_ALPHA: case GL_BLEND_EQUATION_RGB: case GL_BLEND_EQUATION_ALPHA: case GL_STENCIL_WRITEMASK: case GL_STENCIL_BACK_WRITEMASK: case GL_STENCIL_CLEAR_VALUE: case GL_SUBPIXEL_BITS: case GL_MAX_TEXTURE_SIZE: case GL_MAX_CUBE_MAP_TEXTURE_SIZE: case GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB: case GL_SAMPLE_BUFFERS: case GL_SAMPLES: case GL_IMPLEMENTATION_COLOR_READ_TYPE: case GL_IMPLEMENTATION_COLOR_READ_FORMAT: case GL_TEXTURE_BINDING_2D: case GL_TEXTURE_BINDING_CUBE_MAP: case GL_TEXTURE_BINDING_RECTANGLE_ARB: case GL_TEXTURE_BINDING_EXTERNAL_OES: case GL_TEXTURE_BINDING_3D_OES: case GL_COPY_READ_BUFFER_BINDING: case GL_COPY_WRITE_BUFFER_BINDING: case GL_DRAW_BUFFER0: case GL_DRAW_BUFFER1: case GL_DRAW_BUFFER2: case GL_DRAW_BUFFER3: case GL_DRAW_BUFFER4: case GL_DRAW_BUFFER5: case GL_DRAW_BUFFER6: case GL_DRAW_BUFFER7: case GL_DRAW_BUFFER8: case GL_DRAW_BUFFER9: case GL_DRAW_BUFFER10: case GL_DRAW_BUFFER11: case GL_DRAW_BUFFER12: case GL_DRAW_BUFFER13: case GL_DRAW_BUFFER14: case GL_DRAW_BUFFER15: case GL_MAJOR_VERSION: case GL_MAX_3D_TEXTURE_SIZE: case GL_MAX_ARRAY_TEXTURE_LAYERS: case GL_MAX_COLOR_ATTACHMENTS: case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_COMBINED_UNIFORM_BLOCKS: case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS: case GL_MAX_DRAW_BUFFERS: case GL_MAX_ELEMENT_INDEX: case GL_MAX_ELEMENTS_INDICES: case GL_MAX_ELEMENTS_VERTICES: case GL_MAX_FRAGMENT_INPUT_COMPONENTS: case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: case GL_MAX_PROGRAM_TEXEL_OFFSET: case GL_MAX_SERVER_WAIT_TIMEOUT: case GL_MAX_TEXTURE_LOD_BIAS: case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: case GL_MAX_UNIFORM_BLOCK_SIZE: case GL_MAX_UNIFORM_BUFFER_BINDINGS: case GL_MAX_VARYING_COMPONENTS: case GL_MAX_VERTEX_OUTPUT_COMPONENTS: case GL_MAX_VERTEX_UNIFORM_BLOCKS: case GL_MAX_VERTEX_UNIFORM_COMPONENTS: case GL_MIN_PROGRAM_TEXEL_OFFSET: case GL_MINOR_VERSION: case GL_NUM_EXTENSIONS: case GL_NUM_PROGRAM_BINARY_FORMATS: case GL_PACK_ROW_LENGTH: case GL_PACK_SKIP_PIXELS: case GL_PACK_SKIP_ROWS: case GL_PIXEL_PACK_BUFFER_BINDING: case GL_PIXEL_UNPACK_BUFFER_BINDING: case GL_PROGRAM_BINARY_FORMATS: case GL_READ_BUFFER: case GL_SAMPLER_BINDING: case GL_TEXTURE_BINDING_2D_ARRAY: case GL_UNIFORM_BUFFER_BINDING: case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: case GL_UNPACK_IMAGE_HEIGHT: case GL_UNPACK_ROW_LENGTH: case GL_UNPACK_SKIP_IMAGES: case GL_UNPACK_SKIP_PIXELS: case GL_UNPACK_SKIP_ROWS: case GL_VERTEX_ARRAY_BINDING: case GL_TRANSFORM_FEEDBACK_BINDING: case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: { *type = GL_INT; *numParams = 1; } break; case GL_MAX_SAMPLES: { *type = GL_INT; *numParams = 1; } break; case GL_MAX_VIEWPORT_DIMS: { *type = GL_INT; *numParams = 2; } break; case GL_VIEWPORT: case GL_SCISSOR_BOX: { *type = GL_INT; *numParams = 4; } break; case GL_SHADER_COMPILER: case GL_SAMPLE_COVERAGE_INVERT: case GL_DEPTH_WRITEMASK: case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural case GL_SAMPLE_COVERAGE: case GL_SCISSOR_TEST: case GL_STENCIL_TEST: case GL_DEPTH_TEST: case GL_BLEND: case GL_DITHER: case GL_PRIMITIVE_RESTART_FIXED_INDEX: case GL_RASTERIZER_DISCARD: case GL_TRANSFORM_FEEDBACK_ACTIVE: case GL_TRANSFORM_FEEDBACK_PAUSED: { *type = GL_BOOL; *numParams = 1; } break; case GL_COLOR_WRITEMASK: { *type = GL_BOOL; *numParams = 4; } break; case GL_POLYGON_OFFSET_FACTOR: case GL_POLYGON_OFFSET_UNITS: case GL_SAMPLE_COVERAGE_VALUE: case GL_DEPTH_CLEAR_VALUE: case GL_LINE_WIDTH: { *type = GL_FLOAT; *numParams = 1; } break; case GL_ALIASED_LINE_WIDTH_RANGE: case GL_ALIASED_POINT_SIZE_RANGE: case GL_DEPTH_RANGE: { *type = GL_FLOAT; *numParams = 2; } break; case GL_COLOR_CLEAR_VALUE: case GL_BLEND_COLOR: { *type = GL_FLOAT; *numParams = 4; } break; case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: *type = GL_FLOAT; *numParams = 1; break; default: return false; } return true; } void Context::applyScissor(int width, int height) { if(mState.scissorTestEnabled) { sw::Rect scissor = { mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight }; scissor.clip(0, 0, width, height); device->setScissorRect(scissor); device->setScissorEnable(true); } else { device->setScissorEnable(false); } } // Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle bool Context::applyRenderTarget() { Framebuffer *framebuffer = getDrawFramebuffer(); int width, height, samples; if(!framebuffer || (framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION, false); } for(int i = 0; i < MAX_DRAW_BUFFERS; i++) { if(framebuffer->getDrawBuffer(i) != GL_NONE) { egl::Image *renderTarget = framebuffer->getRenderTarget(i); GLint layer = framebuffer->getColorbufferLayer(i); device->setRenderTarget(i, renderTarget, layer); if(renderTarget) renderTarget->release(); } else { device->setRenderTarget(i, nullptr, 0); } } egl::Image *depthBuffer = framebuffer->getDepthBuffer(); GLint dLayer = framebuffer->getDepthbufferLayer(); device->setDepthBuffer(depthBuffer, dLayer); if(depthBuffer) depthBuffer->release(); egl::Image *stencilBuffer = framebuffer->getStencilBuffer(); GLint sLayer = framebuffer->getStencilbufferLayer(); device->setStencilBuffer(stencilBuffer, sLayer); if(stencilBuffer) stencilBuffer->release(); Viewport viewport; float zNear = clamp01(mState.zNear); float zFar = clamp01(mState.zFar); viewport.x0 = mState.viewportX; viewport.y0 = mState.viewportY; viewport.width = mState.viewportWidth; viewport.height = mState.viewportHeight; viewport.minZ = zNear; viewport.maxZ = zFar; if (viewport.x0 > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE || viewport.y0 > es2::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE) { TransformFeedback* transformFeedback = getTransformFeedback(); if (!transformFeedback->isActive() || transformFeedback->isPaused()) { return false; } else { viewport.x0 = 0; viewport.y0 = 0; viewport.width = 0; viewport.height = 0; } } device->setViewport(viewport); applyScissor(width, height); Program *program = getCurrentProgram(); if(program) { GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear}; program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]); program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]); program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]); } return true; } // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) void Context::applyState(GLenum drawMode) { Framebuffer *framebuffer = getDrawFramebuffer(); bool frontFaceCCW = (mState.frontFace == GL_CCW); if(mState.cullFaceEnabled) { device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace), frontFaceCCW); } else { device->setCullMode(sw::CULL_NONE, frontFaceCCW); } if(mDepthStateDirty) { if(mState.depthTestEnabled) { device->setDepthBufferEnable(true); device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc)); } else { device->setDepthBufferEnable(false); } mDepthStateDirty = false; } if(mBlendStateDirty) { if(mState.blendEnabled) { device->setAlphaBlendEnable(true); device->setSeparateAlphaBlendEnable(true); device->setBlendConstant(es2sw::ConvertColor(mState.blendColor)); device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB)); device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB)); device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB)); device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha)); device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha)); device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha)); } else { device->setAlphaBlendEnable(false); } mBlendStateDirty = false; } if(mStencilStateDirty || mFrontFaceDirty) { if(mState.stencilTestEnabled && framebuffer->hasStencil()) { device->setStencilEnable(true); device->setTwoSidedStencil(true); // get the maximum size of the stencil ref Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1; if(mState.frontFace == GL_CCW) { device->setStencilWriteMask(mState.stencilWritemask); device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMask(mState.stencilMask); device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); device->setStencilWriteMaskCCW(mState.stencilBackWritemask); device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); device->setStencilMaskCCW(mState.stencilBackMask); device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail)); device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); } else { device->setStencilWriteMaskCCW(mState.stencilWritemask); device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc)); device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); device->setStencilMaskCCW(mState.stencilMask); device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail)); device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); device->setStencilWriteMask(mState.stencilBackWritemask); device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc)); device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil); device->setStencilMask(mState.stencilBackMask); device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail)); device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail)); device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass)); } } else { device->setStencilEnable(false); } mStencilStateDirty = false; mFrontFaceDirty = false; } if(mMaskStateDirty) { for(int i = 0; i < MAX_DRAW_BUFFERS; i++) { device->setColorWriteMask(i, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha)); } device->setDepthWriteEnable(mState.depthMask); mMaskStateDirty = false; } if(mPolygonOffsetStateDirty) { if(mState.polygonOffsetFillEnabled) { Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); if(depthbuffer) { device->setSlopeDepthBias(mState.polygonOffsetFactor); float depthBias = ldexp(mState.polygonOffsetUnits, -23); // We use 32-bit floating-point for all depth formats, with 23 mantissa bits. device->setDepthBias(depthBias); } } else { device->setSlopeDepthBias(0); device->setDepthBias(0); } mPolygonOffsetStateDirty = false; } if(mSampleStateDirty) { if(mState.sampleAlphaToCoverageEnabled) { device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE); } else { device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE); } if(mState.sampleCoverageEnabled) { unsigned int mask = 0; if(mState.sampleCoverageValue != 0) { int width, height, samples; framebuffer->completeness(width, height, samples); float threshold = 0.5f; for(int i = 0; i < samples; i++) { mask <<= 1; if((i + 1) * mState.sampleCoverageValue >= threshold) { threshold += 1.0f; mask |= 1; } } } if(mState.sampleCoverageInvert) { mask = ~mask; } device->setMultiSampleMask(mask); } else { device->setMultiSampleMask(0xFFFFFFFF); } mSampleStateDirty = false; } if(mDitherStateDirty) { // UNIMPLEMENTED(); // FIXME mDitherStateDirty = false; } device->setRasterizerDiscard(mState.rasterizerDiscardEnabled); } GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count, GLsizei instanceId) { TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS]; GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes, instanceId); if(err != GL_NO_ERROR) { return err; } Program *program = getCurrentProgram(); device->resetInputStreams(false); for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) { if(program->getAttributeStream(i) == -1) { continue; } sw::Resource *resource = attributes[i].vertexBuffer; const void *buffer = (char*)resource->data() + attributes[i].offset; int stride = attributes[i].stride; buffer = (char*)buffer + stride * base; sw::Stream attribute(resource, buffer, stride); attribute.type = attributes[i].type; attribute.count = attributes[i].count; attribute.normalized = attributes[i].normalized; int stream = program->getAttributeStream(i); device->setInputStream(stream, attribute); } return GL_NO_ERROR; } // Applies the indices and element array bindings GLenum Context::applyIndexBuffer(const void *indices, GLuint start, GLuint end, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) { GLenum err = mIndexDataManager->prepareIndexData(mode, type, start, end, count, getCurrentVertexArray()->getElementArrayBuffer(), indices, indexInfo, isPrimitiveRestartFixedIndexEnabled()); if(err == GL_NO_ERROR) { device->setIndexBuffer(indexInfo->indexBuffer); } return err; } // Applies the shaders and shader constants void Context::applyShaders() { Program *programObject = getCurrentProgram(); sw::VertexShader *vertexShader = programObject->getVertexShader(); sw::PixelShader *pixelShader = programObject->getPixelShader(); device->setVertexShader(vertexShader); device->setPixelShader(pixelShader); if(programObject->getSerial() != mAppliedProgramSerial) { programObject->dirtyAllUniforms(); mAppliedProgramSerial = programObject->getSerial(); } programObject->applyTransformFeedback(device, getTransformFeedback()); programObject->applyUniformBuffers(device, mState.uniformBuffers); programObject->applyUniforms(device); } void Context::applyTextures() { applyTextures(sw::SAMPLER_PIXEL); applyTextures(sw::SAMPLER_VERTEX); } void Context::applyTextures(sw::SamplerType samplerType) { Program *programObject = getCurrentProgram(); int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS; // Range of samplers of given sampler type for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++) { int textureUnit = programObject->getSamplerMapping(samplerType, samplerIndex); // OpenGL texture image unit index if(textureUnit != -1) { TextureType textureType = programObject->getSamplerTextureType(samplerType, samplerIndex); Texture *texture = getSamplerTexture(textureUnit, textureType); Sampler *samplerObject = mState.sampler[textureUnit]; if(texture->isSamplerComplete(samplerObject)) { GLenum wrapS, wrapT, wrapR, minFilter, magFilter, compFunc, compMode; GLfloat minLOD, maxLOD, maxAnisotropy; if(samplerObject) { wrapS = samplerObject->getWrapS(); wrapT = samplerObject->getWrapT(); wrapR = samplerObject->getWrapR(); minFilter = samplerObject->getMinFilter(); magFilter = samplerObject->getMagFilter(); minLOD = samplerObject->getMinLod(); maxLOD = samplerObject->getMaxLod(); compFunc = samplerObject->getCompareFunc(); compMode = samplerObject->getCompareMode(); maxAnisotropy = samplerObject->getMaxAnisotropy(); } else { wrapS = texture->getWrapS(); wrapT = texture->getWrapT(); wrapR = texture->getWrapR(); minFilter = texture->getMinFilter(); magFilter = texture->getMagFilter(); minLOD = texture->getMinLOD(); maxLOD = texture->getMaxLOD(); compFunc = texture->getCompareFunc(); compMode = texture->getCompareMode(); maxAnisotropy = texture->getMaxAnisotropy(); } GLint baseLevel = texture->getBaseLevel(); GLint maxLevel = texture->getMaxLevel(); GLenum swizzleR = texture->getSwizzleR(); GLenum swizzleG = texture->getSwizzleG(); GLenum swizzleB = texture->getSwizzleB(); GLenum swizzleA = texture->getSwizzleA(); device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS)); device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT)); device->setAddressingModeW(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapR)); device->setCompareFunc(samplerType, samplerIndex, es2sw::ConvertCompareFunc(compFunc, compMode)); device->setSwizzleR(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleR)); device->setSwizzleG(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleG)); device->setSwizzleB(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleB)); device->setSwizzleA(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleA)); device->setMinLod(samplerType, samplerIndex, minLOD); device->setMaxLod(samplerType, samplerIndex, maxLOD); device->setBaseLevel(samplerType, samplerIndex, baseLevel); device->setMaxLevel(samplerType, samplerIndex, maxLevel); device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy)); device->setMipmapFilter(samplerType, samplerIndex, es2sw::ConvertMipMapFilter(minFilter)); device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy); device->setHighPrecisionFiltering(samplerType, samplerIndex, mState.textureFilteringHint == GL_NICEST); device->setSyncRequired(samplerType, samplerIndex, texture->requiresSync()); applyTexture(samplerType, samplerIndex, texture); } else { applyTexture(samplerType, samplerIndex, nullptr); } } else { applyTexture(samplerType, samplerIndex, nullptr); } } } void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture) { Program *program = getCurrentProgram(); int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index; bool textureUsed = false; if(type == sw::SAMPLER_PIXEL) { textureUsed = program->getPixelShader()->usesSampler(index); } else if(type == sw::SAMPLER_VERTEX) { textureUsed = program->getVertexShader()->usesSampler(index); } else UNREACHABLE(type); sw::Resource *resource = nullptr; if(baseTexture && textureUsed) { resource = baseTexture->getResource(); } device->setTextureResource(sampler, resource); if(baseTexture && textureUsed) { int baseLevel = baseTexture->getBaseLevel(); int maxLevel = std::min(baseTexture->getTopLevel(), baseTexture->getMaxLevel()); GLenum target = baseTexture->getTarget(); switch(target) { case GL_TEXTURE_2D: case GL_TEXTURE_EXTERNAL_OES: case GL_TEXTURE_RECTANGLE_ARB: { Texture2D *texture = static_cast(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel + baseLevel; if(surfaceLevel > maxLevel) { surfaceLevel = maxLevel; } egl::Image *surface = texture->getImage(surfaceLevel); device->setTextureLevel(sampler, 0, mipmapLevel, surface, (target == GL_TEXTURE_RECTANGLE_ARB) ? sw::TEXTURE_RECTANGLE : sw::TEXTURE_2D); } } break; case GL_TEXTURE_3D: { Texture3D *texture = static_cast(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel + baseLevel; if(surfaceLevel > maxLevel) { surfaceLevel = maxLevel; } egl::Image *surface = texture->getImage(surfaceLevel); device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_3D); } } break; case GL_TEXTURE_2D_ARRAY: { Texture2DArray *texture = static_cast(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { int surfaceLevel = mipmapLevel + baseLevel; if(surfaceLevel > maxLevel) { surfaceLevel = maxLevel; } egl::Image *surface = texture->getImage(surfaceLevel); device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D_ARRAY); } } break; case GL_TEXTURE_CUBE_MAP: { TextureCubeMap *cubeTexture = static_cast(baseTexture); for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++) { cubeTexture->updateBorders(mipmapLevel); for(int face = 0; face < 6; face++) { int surfaceLevel = mipmapLevel + baseLevel; if(surfaceLevel > maxLevel) { surfaceLevel = maxLevel; } egl::Image *surface = cubeTexture->getImage(face, surfaceLevel); device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE); } } } break; default: UNIMPLEMENTED(); break; } } else { device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL); } } void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels) { Framebuffer *framebuffer = getReadFramebuffer(); int framebufferWidth, framebufferHeight, framebufferSamples; if(!framebuffer || (framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(getReadFramebufferName() != 0 && framebufferSamples != 0) { return error(GL_INVALID_OPERATION); } if(!ValidateReadPixelsFormatType(framebuffer, format, type)) { return; } GLsizei outputWidth = (mState.packParameters.rowLength > 0) ? mState.packParameters.rowLength : width; GLsizei outputPitch = gl::ComputePitch(outputWidth, format, type, mState.packParameters.alignment); GLsizei outputHeight = (mState.packParameters.imageHeight == 0) ? height : mState.packParameters.imageHeight; pixels = getPixelPackBuffer() ? (unsigned char*)getPixelPackBuffer()->data() + (ptrdiff_t)pixels : (unsigned char*)pixels; pixels = ((char*)pixels) + gl::ComputePackingOffset(format, type, outputWidth, outputHeight, mState.packParameters); // Sized query sanity check if(bufSize) { int requiredSize = outputPitch * height; if(requiredSize > *bufSize) { return error(GL_INVALID_OPERATION); } } egl::Image *renderTarget = nullptr; switch(format) { case GL_DEPTH_COMPONENT: // GL_NV_read_depth renderTarget = framebuffer->getDepthBuffer(); break; case GL_STENCIL_INDEX_OES: // GL_NV_read_stencil renderTarget = framebuffer->getStencilBuffer(); break; default: renderTarget = framebuffer->getReadRenderTarget(); break; } if(!renderTarget) { return error(GL_INVALID_OPERATION); } sw::SliceRectF srcRect((float)x, (float)y, (float)(x + width), (float)(y + height), 0); sw::SliceRect dstRect(0, 0, width, height, 0); srcRect.clip(0.0f, 0.0f, (float)renderTarget->getWidth(), (float)renderTarget->getHeight()); ASSERT(format != GL_DEPTH_STENCIL_OES); // The blitter only handles reading either depth or stencil. sw::Surface *externalSurface = sw::Surface::create(width, height, 1, es2::ConvertReadFormatType(format, type), pixels, outputPitch, outputPitch * outputHeight); device->blit(renderTarget, srcRect, externalSurface, dstRect, false, false, false); externalSurface->lockExternal(0, 0, 0, sw::LOCK_READONLY, sw::PUBLIC); externalSurface->unlockExternal(); delete externalSurface; renderTarget->release(); } void Context::clear(GLbitfield mask) { if(mState.rasterizerDiscardEnabled) { return; } Framebuffer *framebuffer = getDrawFramebuffer(); if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(!applyRenderTarget()) { return; } if(mask & GL_COLOR_BUFFER_BIT) { unsigned int rgbaMask = getColorMask(); if(rgbaMask != 0) { device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask); } } if(mask & GL_DEPTH_BUFFER_BIT) { if(mState.depthMask != 0) { float depth = clamp01(mState.depthClearValue); device->clearDepth(depth); } } if(mask & GL_STENCIL_BUFFER_BIT) { if(mState.stencilWritemask != 0) { int stencil = mState.stencilClearValue & 0x000000FF; device->clearStencil(stencil, mState.stencilWritemask); } } } void Context::clearColorBuffer(GLint drawbuffer, void *value, sw::Format format) { unsigned int rgbaMask = getColorMask(); if(rgbaMask && !mState.rasterizerDiscardEnabled) { Framebuffer *framebuffer = getDrawFramebuffer(); if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } egl::Image *colorbuffer = framebuffer->getRenderTarget(drawbuffer); if(colorbuffer) { sw::Rect clearRect = colorbuffer->getRect(); if(mState.scissorTestEnabled) { clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight); } device->clear(value, format, colorbuffer, clearRect, rgbaMask); colorbuffer->release(); } } } void Context::clearColorBuffer(GLint drawbuffer, const GLint *value) { clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32I); } void Context::clearColorBuffer(GLint drawbuffer, const GLuint *value) { clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32UI); } void Context::clearColorBuffer(GLint drawbuffer, const GLfloat *value) { clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32F); } void Context::clearDepthBuffer(const GLfloat value) { if(mState.depthMask && !mState.rasterizerDiscardEnabled) { Framebuffer *framebuffer = getDrawFramebuffer(); if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } egl::Image *depthbuffer = framebuffer->getDepthBuffer(); if(depthbuffer) { float depth = clamp01(value); sw::Rect clearRect = depthbuffer->getRect(); if(mState.scissorTestEnabled) { clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight); } depthbuffer->clearDepth(depth, clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height()); depthbuffer->release(); } } } void Context::clearStencilBuffer(const GLint value) { if(mState.stencilWritemask && !mState.rasterizerDiscardEnabled) { Framebuffer *framebuffer = getDrawFramebuffer(); if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } egl::Image *stencilbuffer = framebuffer->getStencilBuffer(); if(stencilbuffer) { unsigned char stencil = value < 0 ? 0 : static_cast(value & 0x000000FF); sw::Rect clearRect = stencilbuffer->getRect(); if(mState.scissorTestEnabled) { clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight); } stencilbuffer->clearStencil(stencil, static_cast(mState.stencilWritemask), clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height()); stencilbuffer->release(); } } } void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instanceCount) { if(!applyRenderTarget()) { return; } if(mState.currentProgram == 0) { return; // Nothing to process. } sw::DrawType primitiveType; int primitiveCount; int verticesPerPrimitive; if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount, verticesPerPrimitive)) { return error(GL_INVALID_ENUM); } applyState(mode); for(int i = 0; i < instanceCount; ++i) { device->setInstanceID(i); GLenum err = applyVertexBuffer(0, first, count, i); if(err != GL_NO_ERROR) { return error(err); } applyShaders(); applyTextures(); if(!getCurrentProgram()->validateSamplers(false)) { return error(GL_INVALID_OPERATION); } if(primitiveCount <= 0) { return; } TransformFeedback* transformFeedback = getTransformFeedback(); if(!cullSkipsDraw(mode) || (transformFeedback->isActive() && !transformFeedback->isPaused())) { device->drawPrimitive(primitiveType, primitiveCount); } if(transformFeedback) { transformFeedback->addVertexOffset(primitiveCount * verticesPerPrimitive); } } } void Context::drawElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void *indices, GLsizei instanceCount) { if(!applyRenderTarget()) { return; } if(mState.currentProgram == 0) { return; // Nothing to process. } if(count == 0) { return; } if(!indices && !getCurrentVertexArray()->getElementArrayBuffer()) { return error(GL_INVALID_OPERATION); } GLenum internalMode = mode; if(isPrimitiveRestartFixedIndexEnabled()) { switch(mode) { case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: internalMode = GL_TRIANGLES; break; case GL_LINE_LOOP: case GL_LINE_STRIP: internalMode = GL_LINES; break; default: break; } } sw::DrawType primitiveType; int primitiveCount; int verticesPerPrimitive; if(!es2sw::ConvertPrimitiveType(internalMode, count, type, primitiveType, primitiveCount, verticesPerPrimitive)) { return error(GL_INVALID_ENUM); } TranslatedIndexData indexInfo(primitiveCount); GLenum err = applyIndexBuffer(indices, start, end, count, mode, type, &indexInfo); if(err != GL_NO_ERROR) { return error(err); } applyState(internalMode); for(int i = 0; i < instanceCount; ++i) { device->setInstanceID(i); GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount, i); if(err != GL_NO_ERROR) { return error(err); } applyShaders(); applyTextures(); if(!getCurrentProgram()->validateSamplers(false)) { return error(GL_INVALID_OPERATION); } if(primitiveCount <= 0) { return; } TransformFeedback* transformFeedback = getTransformFeedback(); if(!cullSkipsDraw(internalMode) || (transformFeedback->isActive() && !transformFeedback->isPaused())) { device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, indexInfo.primitiveCount); } if(transformFeedback) { transformFeedback->addVertexOffset(indexInfo.primitiveCount * verticesPerPrimitive); } } } void Context::blit(sw::Surface *source, const sw::SliceRect &sRect, sw::Surface *dest, const sw::SliceRect &dRect) { sw::SliceRectF sRectF((float)sRect.x0, (float)sRect.y0, (float)sRect.x1, (float)sRect.y1, sRect.slice); device->blit(source, sRectF, dest, dRect, false); } void Context::finish() { device->finish(); } void Context::flush() { // We don't queue anything without processing it as fast as possible } void Context::recordInvalidEnum() { mInvalidEnum = true; } void Context::recordInvalidValue() { mInvalidValue = true; } void Context::recordInvalidOperation() { mInvalidOperation = true; } void Context::recordOutOfMemory() { mOutOfMemory = true; } void Context::recordInvalidFramebufferOperation() { mInvalidFramebufferOperation = true; } // Get one of the recorded errors and clear its flag, if any. // [OpenGL ES 2.0.24] section 2.5 page 13. GLenum Context::getError() { if(mInvalidEnum) { mInvalidEnum = false; return GL_INVALID_ENUM; } if(mInvalidValue) { mInvalidValue = false; return GL_INVALID_VALUE; } if(mInvalidOperation) { mInvalidOperation = false; return GL_INVALID_OPERATION; } if(mOutOfMemory) { mOutOfMemory = false; return GL_OUT_OF_MEMORY; } if(mInvalidFramebufferOperation) { mInvalidFramebufferOperation = false; return GL_INVALID_FRAMEBUFFER_OPERATION; } return GL_NO_ERROR; } int Context::getSupportedMultisampleCount(int requested) { int supported = 0; for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--) { if(supported >= requested) { return supported; } supported = multisampleCount[i]; } return supported; } void Context::detachBuffer(GLuint buffer) { // [OpenGL ES 2.0.24] section 2.9 page 22: // If a buffer object is deleted while it is bound, all bindings to that object in the current context // (i.e. in the thread that called Delete-Buffers) are reset to zero. if(mState.copyReadBuffer.name() == buffer) { mState.copyReadBuffer = nullptr; } if(mState.copyWriteBuffer.name() == buffer) { mState.copyWriteBuffer = nullptr; } if(mState.pixelPackBuffer.name() == buffer) { mState.pixelPackBuffer = nullptr; } if(mState.pixelUnpackBuffer.name() == buffer) { mState.pixelUnpackBuffer = nullptr; } if(mState.genericUniformBuffer.name() == buffer) { mState.genericUniformBuffer = nullptr; } if (mState.genericTransformFeedbackBuffer.name() == buffer) { mState.genericTransformFeedbackBuffer = nullptr; } if(getArrayBufferName() == buffer) { mState.arrayBuffer = nullptr; } // Only detach from the current transform feedback TransformFeedback* currentTransformFeedback = getTransformFeedback(); if(currentTransformFeedback) { currentTransformFeedback->detachBuffer(buffer); } // Only detach from the current vertex array VertexArray* currentVertexArray = getCurrentVertexArray(); if(currentVertexArray) { currentVertexArray->detachBuffer(buffer); } for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) { if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer) { mState.vertexAttribute[attribute].mBoundBuffer = nullptr; } } } void Context::detachTexture(GLuint texture) { // [OpenGL ES 2.0.24] section 3.8 page 84: // If a texture object is deleted, it is as if all texture units which are bound to that texture object are // rebound to texture object zero for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) { for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) { if(mState.samplerTexture[type][sampler].name() == texture) { mState.samplerTexture[type][sampler] = nullptr; } } } // [OpenGL ES 2.0.24] section 4.4 page 112: // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this // image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if(readFramebuffer) { readFramebuffer->detachTexture(texture); } if(drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachTexture(texture); } } void Context::detachFramebuffer(GLuint framebuffer) { // [OpenGL ES 2.0.24] section 4.4 page 107: // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. if(mState.readFramebuffer == framebuffer) { bindReadFramebuffer(0); } if(mState.drawFramebuffer == framebuffer) { bindDrawFramebuffer(0); } } void Context::detachRenderbuffer(GLuint renderbuffer) { // [OpenGL ES 2.0.24] section 4.4 page 109: // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer // had been executed with the target RENDERBUFFER and name of zero. if(mState.renderbuffer.name() == renderbuffer) { bindRenderbuffer(0); } // [OpenGL ES 2.0.24] section 4.4 page 111: // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment // point to which this image was attached in the currently bound framebuffer. Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); if(readFramebuffer) { readFramebuffer->detachRenderbuffer(renderbuffer); } if(drawFramebuffer && drawFramebuffer != readFramebuffer) { drawFramebuffer->detachRenderbuffer(renderbuffer); } } void Context::detachSampler(GLuint sampler) { // [OpenGL ES 3.0.2] section 3.8.2 pages 123-124: // If a sampler object that is currently bound to one or more texture units is // deleted, it is as though BindSampler is called once for each texture unit to // which the sampler is bound, with unit set to the texture unit and sampler set to zero. for(size_t textureUnit = 0; textureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++textureUnit) { gl::BindingPointer &samplerBinding = mState.sampler[textureUnit]; if(samplerBinding.name() == sampler) { samplerBinding = nullptr; } } } bool Context::cullSkipsDraw(GLenum drawMode) { return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode); } bool Context::isTriangleMode(GLenum drawMode) { switch(drawMode) { case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: return true; case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: return false; default: UNREACHABLE(drawMode); } return false; } void Context::setVertexAttrib(GLuint index, const GLfloat *values) { ASSERT(index < MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].setCurrentValue(values); mVertexDataManager->dirtyCurrentValue(index); } void Context::setVertexAttrib(GLuint index, const GLint *values) { ASSERT(index < MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].setCurrentValue(values); mVertexDataManager->dirtyCurrentValue(index); } void Context::setVertexAttrib(GLuint index, const GLuint *values) { ASSERT(index < MAX_VERTEX_ATTRIBS); mState.vertexAttribute[index].setCurrentValue(values); mVertexDataManager->dirtyCurrentValue(index); } void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, bool filter, bool allowPartialDepthStencilBlit) { Framebuffer *readFramebuffer = getReadFramebuffer(); Framebuffer *drawFramebuffer = getDrawFramebuffer(); int readBufferWidth, readBufferHeight, readBufferSamples; int drawBufferWidth, drawBufferHeight, drawBufferSamples; if(!readFramebuffer || (readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE) || !drawFramebuffer || (drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } if(drawBufferSamples > 1) { return error(GL_INVALID_OPERATION); } sw::SliceRect sourceRect; sw::SliceRect destRect; bool flipX = (srcX0 < srcX1) ^ (dstX0 < dstX1); bool flipY = (srcY0 < srcY1) ^ (dstY0 < dstY1); if(srcX0 < srcX1) { sourceRect.x0 = srcX0; sourceRect.x1 = srcX1; } else { sourceRect.x0 = srcX1; sourceRect.x1 = srcX0; } if(dstX0 < dstX1) { destRect.x0 = dstX0; destRect.x1 = dstX1; } else { destRect.x0 = dstX1; destRect.x1 = dstX0; } if(srcY0 < srcY1) { sourceRect.y0 = srcY0; sourceRect.y1 = srcY1; } else { sourceRect.y0 = srcY1; sourceRect.y1 = srcY0; } if(dstY0 < dstY1) { destRect.y0 = dstY0; destRect.y1 = dstY1; } else { destRect.y0 = dstY1; destRect.y1 = dstY0; } sw::RectF sourceScissoredRect(static_cast(sourceRect.x0), static_cast(sourceRect.y0), static_cast(sourceRect.x1), static_cast(sourceRect.y1)); sw::Rect destScissoredRect = destRect; if(mState.scissorTestEnabled) // Only write to parts of the destination framebuffer which pass the scissor test { sw::Rect scissorRect(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight); if (!Device::ClipDstRect(sourceScissoredRect, destScissoredRect, scissorRect, flipX, flipY)) { // Failed to clip, blitting can't happen. return error(GL_INVALID_OPERATION); } } sw::SliceRectF sourceTrimmedRect = sourceScissoredRect; sw::SliceRect destTrimmedRect = destScissoredRect; // The source & destination rectangles also may need to be trimmed if // they fall out of the bounds of the actual draw and read surfaces. sw::Rect sourceTrimRect(0, 0, readBufferWidth, readBufferHeight); if (!Device::ClipSrcRect(sourceTrimmedRect, destTrimmedRect, sourceTrimRect, flipX, flipY)) { // Failed to clip, blitting can't happen. return error(GL_INVALID_OPERATION); } sw::Rect destTrimRect(0, 0, drawBufferWidth, drawBufferHeight); if (!Device::ClipDstRect(sourceTrimmedRect, destTrimmedRect, destTrimRect, flipX, flipY)) { // Failed to clip, blitting can't happen. return error(GL_INVALID_OPERATION); } bool partialBufferCopy = false; if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight || sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth || destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight || destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth || sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0) { partialBufferCopy = true; } bool sameBounds = (srcX0 == dstX0 && srcY0 == dstY0 && srcX1 == dstX1 && srcY1 == dstY1); bool blitRenderTarget = false; bool blitDepth = false; bool blitStencil = false; if(mask & GL_COLOR_BUFFER_BIT) { GLenum readColorbufferType = readFramebuffer->getReadBufferType(); GLenum drawColorbufferType = drawFramebuffer->getColorbufferType(0); const bool validReadType = readColorbufferType == GL_TEXTURE_2D || readColorbufferType == GL_TEXTURE_RECTANGLE_ARB || readColorbufferType == GL_TEXTURE_2D_ARRAY || readColorbufferType == GL_TEXTURE_3D || Framebuffer::IsRenderbuffer(readColorbufferType); const bool validDrawType = drawColorbufferType == GL_TEXTURE_2D || drawColorbufferType == GL_TEXTURE_RECTANGLE_ARB || readColorbufferType == GL_TEXTURE_2D_ARRAY || readColorbufferType == GL_TEXTURE_3D || Framebuffer::IsRenderbuffer(drawColorbufferType); if(!validReadType || !validDrawType) { return error(GL_INVALID_OPERATION); } if(partialBufferCopy && readBufferSamples > 1 && !sameBounds) { return error(GL_INVALID_OPERATION); } // The GL ES 3.0.2 spec (pg 193) states that: // 1) If the read buffer is fixed point format, the draw buffer must be as well // 2) If the read buffer is an unsigned integer format, the draw buffer must be // as well // 3) If the read buffer is a signed integer format, the draw buffer must be as // well es2::Renderbuffer *readRenderbuffer = readFramebuffer->getReadColorbuffer(); es2::Renderbuffer *drawRenderbuffer = drawFramebuffer->getColorbuffer(0); GLint readFormat = readRenderbuffer->getFormat(); GLint drawFormat = drawRenderbuffer->getFormat(); GLenum readComponentType = GetComponentType(readFormat, GL_COLOR_ATTACHMENT0); GLenum drawComponentType = GetComponentType(drawFormat, GL_COLOR_ATTACHMENT0); bool readFixedPoint = ((readComponentType == GL_UNSIGNED_NORMALIZED) || (readComponentType == GL_SIGNED_NORMALIZED)); bool drawFixedPoint = ((drawComponentType == GL_UNSIGNED_NORMALIZED) || (drawComponentType == GL_SIGNED_NORMALIZED)); bool readFixedOrFloat = (readFixedPoint || (readComponentType == GL_FLOAT)); bool drawFixedOrFloat = (drawFixedPoint || (drawComponentType == GL_FLOAT)); if(readFixedOrFloat != drawFixedOrFloat) { return error(GL_INVALID_OPERATION); } if((readComponentType == GL_UNSIGNED_INT) && (drawComponentType != GL_UNSIGNED_INT)) { return error(GL_INVALID_OPERATION); } if((readComponentType == GL_INT) && (drawComponentType != GL_INT)) { return error(GL_INVALID_OPERATION); } // Cannot filter integer data if(((readComponentType == GL_UNSIGNED_INT) || (readComponentType == GL_INT)) && filter) { return error(GL_INVALID_OPERATION); } if((readRenderbuffer->getSamples() > 0) && (readFormat != drawFormat)) { // RGBA8 and BGRA8 should be interchangeable here if(!(((readFormat == GL_RGBA8) && (drawFormat == GL_BGRA8_EXT)) || ((readFormat == GL_BGRA8_EXT) && (drawFormat == GL_RGBA8)))) { return error(GL_INVALID_OPERATION); } } blitRenderTarget = true; } if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) { Renderbuffer *readDSBuffer = nullptr; Renderbuffer *drawDSBuffer = nullptr; if(mask & GL_DEPTH_BUFFER_BIT) { if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) { GLenum readDepthBufferType = readFramebuffer->getDepthbufferType(); GLenum drawDepthBufferType = drawFramebuffer->getDepthbufferType(); if((readDepthBufferType != drawDepthBufferType) && !(Framebuffer::IsRenderbuffer(readDepthBufferType) && Framebuffer::IsRenderbuffer(drawDepthBufferType))) { return error(GL_INVALID_OPERATION); } blitDepth = true; readDSBuffer = readFramebuffer->getDepthbuffer(); drawDSBuffer = drawFramebuffer->getDepthbuffer(); if(readDSBuffer->getFormat() != drawDSBuffer->getFormat()) { return error(GL_INVALID_OPERATION); } } } if(mask & GL_STENCIL_BUFFER_BIT) { if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) { GLenum readStencilBufferType = readFramebuffer->getStencilbufferType(); GLenum drawStencilBufferType = drawFramebuffer->getStencilbufferType(); if((readStencilBufferType != drawStencilBufferType) && !(Framebuffer::IsRenderbuffer(readStencilBufferType) && Framebuffer::IsRenderbuffer(drawStencilBufferType))) { return error(GL_INVALID_OPERATION); } blitStencil = true; readDSBuffer = readFramebuffer->getStencilbuffer(); drawDSBuffer = drawFramebuffer->getStencilbuffer(); if(readDSBuffer->getFormat() != drawDSBuffer->getFormat()) { return error(GL_INVALID_OPERATION); } } } if(partialBufferCopy && !allowPartialDepthStencilBlit) { ERR("Only whole-buffer depth and stencil blits are supported by ANGLE_framebuffer_blit."); return error(GL_INVALID_OPERATION); // Only whole-buffer copies are permitted } // OpenGL ES 3.0.4 spec, p.199: // ...an INVALID_OPERATION error is generated if the formats of the read // and draw framebuffers are not identical or if the source and destination // rectangles are not defined with the same(X0, Y 0) and (X1, Y 1) bounds. // If SAMPLE_BUFFERS for the draw framebuffer is greater than zero, an // INVALID_OPERATION error is generated. if((drawDSBuffer && drawDSBuffer->getSamples() > 1) || ((readDSBuffer && readDSBuffer->getSamples() > 1) && (!sameBounds || (drawDSBuffer->getFormat() != readDSBuffer->getFormat())))) { return error(GL_INVALID_OPERATION); } } if(blitRenderTarget || blitDepth || blitStencil) { if(flipX) { swap(destTrimmedRect.x0, destTrimmedRect.x1); } if(flipY) { swap(destTrimmedRect.y0, destTrimmedRect.y1); } if(blitRenderTarget) { egl::Image *readRenderTarget = readFramebuffer->getReadRenderTarget(); egl::Image *drawRenderTarget = drawFramebuffer->getRenderTarget(0); bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::COLOR_BUFFER); readRenderTarget->release(); drawRenderTarget->release(); if(!success) { ERR("BlitFramebuffer failed."); return; } } if(blitDepth) { egl::Image *readRenderTarget = readFramebuffer->getDepthBuffer(); egl::Image *drawRenderTarget = drawFramebuffer->getDepthBuffer(); bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::DEPTH_BUFFER); readRenderTarget->release(); drawRenderTarget->release(); if(!success) { ERR("BlitFramebuffer failed."); return; } } if(blitStencil) { egl::Image *readRenderTarget = readFramebuffer->getStencilBuffer(); egl::Image *drawRenderTarget = drawFramebuffer->getStencilBuffer(); bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::STENCIL_BUFFER); readRenderTarget->release(); drawRenderTarget->release(); if(!success) { ERR("BlitFramebuffer failed."); return; } } } } void Context::bindTexImage(gl::Surface *surface) { bool isRect = (surface->getTextureTarget() == EGL_TEXTURE_RECTANGLE_ANGLE); es2::Texture2D *textureObject = isRect ? getTexture2DRect() : getTexture2D(); if(textureObject) { textureObject->bindTexImage(surface); } } EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel) { GLenum textureTarget = GL_NONE; switch(target) { case EGL_GL_TEXTURE_2D_KHR: textureTarget = GL_TEXTURE_2D; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_X; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Y; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Y; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Z; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Z; break; case EGL_GL_RENDERBUFFER_KHR: break; default: return EGL_BAD_PARAMETER; } if(textureLevel >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS) { return EGL_BAD_MATCH; } if(textureTarget != GL_NONE) { es2::Texture *texture = getTexture(name); if(!texture) { return EGL_BAD_PARAMETER; } if (texture->getTarget() != GL_TEXTURE_CUBE_MAP && texture->getTarget() != textureTarget) { return EGL_BAD_PARAMETER; } if (texture->getTarget() == GL_TEXTURE_CUBE_MAP && !IsCubemapTextureTarget(textureTarget)) { return EGL_BAD_PARAMETER; } if(texture->isShared(textureTarget, textureLevel)) // Bound to an EGLSurface or already an EGLImage sibling { return EGL_BAD_ACCESS; } if(textureLevel != 0 && !texture->isSamplerComplete(nullptr)) { return EGL_BAD_PARAMETER; } if(textureLevel == 0 && !texture->isSamplerComplete(nullptr) && texture->hasNonBaseLevels()) { return EGL_BAD_PARAMETER; } } else if(target == EGL_GL_RENDERBUFFER_KHR) { es2::Renderbuffer *renderbuffer = getRenderbuffer(name); if(!renderbuffer) { return EGL_BAD_PARAMETER; } if(renderbuffer->isShared()) // Already an EGLImage sibling { return EGL_BAD_ACCESS; } } else UNREACHABLE(target); return EGL_SUCCESS; } egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel) { GLenum textureTarget = GL_NONE; switch(target) { case EGL_GL_TEXTURE_2D_KHR: textureTarget = GL_TEXTURE_2D; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_X; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Y; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Y; break; case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Z; break; case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Z; break; } if(textureTarget != GL_NONE) { es2::Texture *texture = getTexture(name); return texture->createSharedImage(textureTarget, textureLevel); } else if(target == EGL_GL_RENDERBUFFER_KHR) { es2::Renderbuffer *renderbuffer = getRenderbuffer(name); return renderbuffer->createSharedImage(); } else UNREACHABLE(target); return nullptr; } egl::Image *Context::getSharedImage(GLeglImageOES image) { return display->getSharedImage(image); } Device *Context::getDevice() { return device; } const GLubyte *Context::getExtensions(GLuint index, GLuint *numExt) const { // Keep list sorted in following order: // OES extensions // EXT extensions // Vendor extensions static const char *extensions[] = { "GL_OES_compressed_ETC1_RGB8_texture", "GL_OES_depth24", "GL_OES_depth32", "GL_OES_depth_texture", "GL_OES_depth_texture_cube_map", "GL_OES_EGL_image", "GL_OES_EGL_image_external", "GL_OES_EGL_image_external_essl3", // client version is always 3, so this is fine "GL_OES_EGL_sync", "GL_OES_element_index_uint", "GL_OES_fbo_render_mipmap", "GL_OES_framebuffer_object", "GL_OES_packed_depth_stencil", "GL_OES_rgb8_rgba8", "GL_OES_standard_derivatives", "GL_OES_surfaceless_context", "GL_OES_texture_float", "GL_OES_texture_float_linear", "GL_OES_texture_half_float", "GL_OES_texture_half_float_linear", "GL_OES_texture_npot", "GL_OES_texture_3D", "GL_OES_vertex_array_object", "GL_OES_vertex_half_float", "GL_EXT_blend_minmax", "GL_EXT_color_buffer_float", // OpenGL ES 3.0 specific. "GL_EXT_color_buffer_half_float", "GL_EXT_draw_buffers", "GL_EXT_float_blend", "GL_EXT_instanced_arrays", "GL_EXT_occlusion_query_boolean", "GL_EXT_read_format_bgra", "GL_EXT_texture_compression_dxt1", "GL_EXT_texture_filter_anisotropic", "GL_EXT_texture_format_BGRA8888", "GL_EXT_texture_rg", "GL_ARB_texture_rectangle", "GL_ANGLE_framebuffer_blit", "GL_ANGLE_framebuffer_multisample", "GL_ANGLE_instanced_arrays", "GL_ANGLE_texture_compression_dxt3", "GL_ANGLE_texture_compression_dxt5", // "GL_APPLE_texture_format_BGRA8888", // b/147536183 "GL_CHROMIUM_color_buffer_float_rgba", // A subset of EXT_color_buffer_float on top of OpenGL ES 2.0 "GL_CHROMIUM_texture_filtering_hint", "GL_NV_depth_buffer_float2", "GL_NV_fence", // "GL_NV_framebuffer_blit", // b/147536183 "GL_NV_read_depth", "GL_NV_read_stencil", }; GLuint numExtensions = sizeof(extensions) / sizeof(extensions[0]); if(numExt) { *numExt = numExtensions; return nullptr; } if(index == GL_INVALID_INDEX) { static std::string extensionsCat; if(extensionsCat.empty() && (numExtensions > 0)) { for(const char *extension : extensions) { extensionsCat += std::string(extension) + " "; } } return (const GLubyte*)extensionsCat.c_str(); } if(index >= numExtensions) { return nullptr; } return (const GLubyte*)extensions[index]; } } NO_SANITIZE_FUNCTION egl::Context *es2CreateContext(egl::Display *display, const egl::Context *shareContext, const egl::Config *config) { return new es2::Context(display, static_cast(shareContext), config); }