// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ShaderCore.hpp" #include "Device/Renderer.hpp" #include "System/Debug.hpp" #include namespace sw { Vector4s::Vector4s() { } Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) { this->x = Short4(x); this->y = Short4(y); this->z = Short4(z); this->w = Short4(w); } Vector4s::Vector4s(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4s &Vector4s::operator=(const Vector4s &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Short4 &Vector4s::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Vector4f::Vector4f() { } Vector4f::Vector4f(float x, float y, float z, float w) { this->x = Float4(x); this->y = Float4(y); this->z = Float4(z); this->w = Float4(w); } Vector4f::Vector4f(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4f &Vector4f::operator=(const Vector4f &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Float4 &Vector4f::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Vector4i::Vector4i() { } Vector4i::Vector4i(int x, int y, int z, int w) { this->x = Int4(x); this->y = Int4(y); this->z = Int4(z); this->w = Int4(w); } Vector4i::Vector4i(const Vector4i &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; } Vector4i &Vector4i::operator=(const Vector4i &rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = rhs.w; return *this; } Int4 &Vector4i::operator[](int i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } return x; } Float4 exponential2(RValue x, bool pp) { // This implementation is based on 2^(i + f) = 2^i * 2^f, // where i is the integer part of x and f is the fraction. // For 2^i we can put the integer part directly in the exponent of // the IEEE-754 floating-point number. Clamp to prevent overflow // past the representation of infinity. Float4 x0 = x; x0 = Min(x0, As(Int4(0x43010000))); // 129.00000e+0f x0 = Max(x0, As(Int4(0xC2FDFFFF))); // -126.99999e+0f Int4 i = RoundInt(x0 - Float4(0.5f)); Float4 ii = As((i + Int4(127)) << 23); // Add single-precision bias, and shift into exponent. // For the fractional part use a polynomial // which approximates 2^f in the 0 to 1 range. Float4 f = x0 - Float4(i); Float4 ff = As(Int4(0x3AF61905)); // 1.8775767e-3f ff = ff * f + As(Int4(0x3C134806)); // 8.9893397e-3f ff = ff * f + As(Int4(0x3D64AA23)); // 5.5826318e-2f ff = ff * f + As(Int4(0x3E75EAD4)); // 2.4015361e-1f ff = ff * f + As(Int4(0x3F31727B)); // 6.9315308e-1f ff = ff * f + Float4(1.0f); return ii * ff; } Float4 logarithm2(RValue x, bool pp) { Float4 x0; Float4 x1; Float4 x2; Float4 x3; x0 = x; x1 = As(As(x0) & Int4(0x7F800000)); x1 = As(As(x1) >> 8); x1 = As(As(x1) | As(Float4(1.0f))); x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f); // FIXME: (x1 - 1.4960938f) * 256.0f; x0 = As((As(x0) & Int4(0x007FFFFF)) | As(Float4(1.0f))); x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); x2 /= x3; x1 += (x0 - Float4(1.0f)) * x2; Int4 pos_inf_x = CmpEQ(As(x), Int4(0x7F800000)); return As((pos_inf_x & As(x)) | (~pos_inf_x & As(x1))); } Float4 exponential(RValue x, bool pp) { // TODO: Propagate the constant return exponential2(Float4(1.44269504f) * x, pp); // 1/ln(2) } Float4 logarithm(RValue x, bool pp) { // TODO: Propagate the constant return Float4(6.93147181e-1f) * logarithm2(x, pp); // ln(2) } Float4 power(RValue x, RValue y, bool pp) { Float4 log = logarithm2(x, pp); log *= y; return exponential2(log, pp); } Float4 reciprocal(RValue x, bool pp, bool finite, bool exactAtPow2) { return Rcp(x, pp ? Precision::Relaxed : Precision::Full, finite, exactAtPow2); } Float4 reciprocalSquareRoot(RValue x, bool absolute, bool pp) { Float4 abs = x; if(absolute) { abs = Abs(abs); } return Rcp(abs, pp ? Precision::Relaxed : Precision::Full); } Float4 modulo(RValue x, RValue y) { return x - y * Floor(x / y); } Float4 sine_pi(RValue x, bool pp) { const Float4 A = Float4(-4.05284734e-1f); // -4/pi^2 const Float4 B = Float4(1.27323954e+0f); // 4/pi const Float4 C = Float4(7.75160950e-1f); const Float4 D = Float4(2.24839049e-1f); // Parabola approximating sine Float4 sin = x * (Abs(x) * A + B); // Improve precision from 0.06 to 0.001 if(true) { sin = sin * (Abs(sin) * D + C); } return sin; } Float4 cosine_pi(RValue x, bool pp) { // cos(x) = sin(x + pi/2) Float4 y = x + Float4(1.57079632e+0f); // Wrap around y -= As(CmpNLT(y, Float4(3.14159265e+0f)) & As(Float4(6.28318530e+0f))); return sine_pi(y, pp); } Float4 sine(RValue x, bool pp) { // Reduce to [-0.5, 0.5] range Float4 y = x * Float4(1.59154943e-1f); // 1/2pi y = y - Round(y); if(!pp) { // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal // pp : 4 mul, 2 add, 2 abs Float4 y2 = y * y; Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); Float4 c2 = (c1 * c1) - (s1 * s1); Float4 s2 = Float4(2.0f) * s1 * c1; return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); } const Float4 A = Float4(-16.0f); const Float4 B = Float4(8.0f); const Float4 C = Float4(7.75160950e-1f); const Float4 D = Float4(2.24839049e-1f); // Parabola approximating sine Float4 sin = y * (Abs(y) * A + B); // Improve precision from 0.06 to 0.001 if(true) { sin = sin * (Abs(sin) * D + C); } return sin; } Float4 cosine(RValue x, bool pp) { // cos(x) = sin(x + pi/2) Float4 y = x + Float4(1.57079632e+0f); return sine(y, pp); } Float4 tangent(RValue x, bool pp) { return sine(x, pp) / cosine(x, pp); } Float4 arccos(RValue x, bool pp) { // pi/2 - arcsin(x) return Float4(1.57079632e+0f) - arcsin(x); } Float4 arcsin(RValue x, bool pp) { if(false) // Simpler implementation fails even lowp precision tests { // x*(pi/2-sqrt(1-x*x)*pi/5) return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x * x) * Float4(6.28318531e-1f)); } else { // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun const Float4 half_pi(1.57079632f); const Float4 a0(1.5707288f); const Float4 a1(-0.2121144f); const Float4 a2(0.0742610f); const Float4 a3(-0.0187293f); Float4 absx = Abs(x); return As(As(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ (As(x) & Int4(0x80000000))); } } // Approximation of atan in [0..1] Float4 arctan_01(Float4 x, bool pp) { if(pp) { return x * (Float4(-0.27f) * x + Float4(1.05539816f)); } else { // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun const Float4 a2(-0.3333314528f); const Float4 a4(0.1999355085f); const Float4 a6(-0.1420889944f); const Float4 a8(0.1065626393f); const Float4 a10(-0.0752896400f); const Float4 a12(0.0429096138f); const Float4 a14(-0.0161657367f); const Float4 a16(0.0028662257f); Float4 x2 = x * x; return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); } } Float4 arctan(RValue x, bool pp) { Float4 absx = Abs(x); Int4 O = CmpNLT(absx, Float4(1.0f)); Float4 y = As((O & As(Float4(1.0f) / absx)) | (~O & As(absx))); // FIXME: Vector select const Float4 half_pi(1.57079632f); Float4 theta = arctan_01(y, pp); return As(((O & As(half_pi - theta)) | (~O & As(theta))) ^ // FIXME: Vector select (As(x) & Int4(0x80000000))); } Float4 arctan(RValue y, RValue x, bool pp) { const Float4 pi(3.14159265f); // pi const Float4 minus_pi(-3.14159265f); // -pi const Float4 half_pi(1.57079632f); // pi/2 const Float4 quarter_pi(7.85398163e-1f); // pi/4 // Rotate to upper semicircle when in lower semicircle Int4 S = CmpLT(y, Float4(0.0f)); Float4 theta = As(S & As(minus_pi)); Float4 x0 = As((As(y) & Int4(0x80000000)) ^ As(x)); Float4 y0 = Abs(y); // Rotate to right quadrant when in left quadrant Int4 Q = CmpLT(x0, Float4(0.0f)); theta += As(Q & As(half_pi)); Float4 x1 = As((Q & As(y0)) | (~Q & As(x0))); // FIXME: Vector select Float4 y1 = As((Q & As(-x0)) | (~Q & As(y0))); // FIXME: Vector select // Mirror to first octant when in second octant Int4 O = CmpNLT(y1, x1); Float4 x2 = As((O & As(y1)) | (~O & As(x1))); // FIXME: Vector select Float4 y2 = As((O & As(x1)) | (~O & As(y1))); // FIXME: Vector select // Approximation of atan in [0..1] Int4 zero_x = CmpEQ(x2, Float4(0.0f)); Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 Float4 atan2_theta = arctan_01(y2 / x2, pp); theta += As((~zero_x & ~inf_y & ((O & As(half_pi - atan2_theta)) | (~O & (As(atan2_theta))))) | // FIXME: Vector select (inf_y & As(quarter_pi))); // Recover loss of precision for tiny theta angles Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta return As((precision_loss & As(-atan2_theta)) | (~precision_loss & As(theta))); // FIXME: Vector select } Float4 sineh(RValue x, bool pp) { return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); } Float4 cosineh(RValue x, bool pp) { return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); } Float4 tangenth(RValue x, bool pp) { Float4 e_x = exponential(x, pp); Float4 e_minus_x = exponential(-x, pp); return (e_x - e_minus_x) / (e_x + e_minus_x); } Float4 arccosh(RValue x, bool pp) { return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); } Float4 arcsinh(RValue x, bool pp) { return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); } Float4 arctanh(RValue x, bool pp) { return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); } Float4 dot2(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y; } Float4 dot3(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; } Float4 dot4(const Vector4f &v0, const Vector4f &v1) { return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; } void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); row3 = UnpackHigh(tmp0, tmp1); } void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) { Int2 tmp0 = UnpackHigh(row0, row1); Int2 tmp1 = UnpackHigh(row2, row3); Int2 tmp2 = UnpackLow(row0, row1); Int2 tmp3 = UnpackLow(row2, row3); row0 = UnpackLow(tmp2, tmp3); row1 = UnpackHigh(tmp2, tmp3); row2 = UnpackLow(tmp0, tmp1); } void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); row3 = Float4(tmp2.zw, tmp3.zw); } void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); Float4 tmp2 = UnpackHigh(row0, row1); Float4 tmp3 = UnpackHigh(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); row2 = Float4(tmp2.xy, tmp3.xy); } void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); row1 = Float4(tmp0.zw, tmp1.zw); } void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp0 = UnpackLow(row0, row1); Float4 tmp1 = UnpackLow(row2, row3); row0 = Float4(tmp0.xy, tmp1.xy); } void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) { Float4 tmp01 = UnpackLow(row0, row1); Float4 tmp23 = UnpackHigh(row0, row1); row0 = tmp01; row1 = Float4(tmp01.zw, row1.zw); row2 = tmp23; row3 = Float4(tmp23.zw, row3.zw); } void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) { switch(N) { case 1: transpose4x1(row0, row1, row2, row3); break; case 2: transpose4x2(row0, row1, row2, row3); break; case 3: transpose4x3(row0, row1, row2, row3); break; case 4: transpose4x4(row0, row1, row2, row3); break; } } SIMD::UInt halfToFloatBits(SIMD::UInt halfBits) { auto magic = SIMD::UInt(126 << 23); auto sign16 = halfBits & SIMD::UInt(0x8000); auto man16 = halfBits & SIMD::UInt(0x03FF); auto exp16 = halfBits & SIMD::UInt(0x7C00); auto isDnormOrZero = CmpEQ(exp16, SIMD::UInt(0)); auto isInfOrNaN = CmpEQ(exp16, SIMD::UInt(0x7C00)); auto sign32 = sign16 << 16; auto man32 = man16 << 13; auto exp32 = (exp16 + SIMD::UInt(0x1C000)) << 13; auto norm32 = (man32 | exp32) | (isInfOrNaN & SIMD::UInt(0x7F800000)); auto denorm32 = As(As(magic + man16) - As(magic)); return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); } SIMD::UInt floatToHalfBits(SIMD::UInt floatBits, bool storeInUpperBits) { SIMD::UInt sign = floatBits & SIMD::UInt(0x80000000); SIMD::UInt abs = floatBits & SIMD::UInt(0x7FFFFFFF); SIMD::UInt normal = CmpNLE(abs, SIMD::UInt(0x38800000)); SIMD::UInt mantissa = (abs & SIMD::UInt(0x007FFFFF)) | SIMD::UInt(0x00800000); SIMD::UInt e = SIMD::UInt(113) - (abs >> 23); SIMD::UInt denormal = CmpLT(e, SIMD::UInt(24)) & (mantissa >> e); SIMD::UInt base = (normal & abs) | (~normal & denormal); // TODO: IfThenElse() // float exponent bias is 127, half bias is 15, so adjust by -112 SIMD::UInt bias = normal & SIMD::UInt(0xC8000000); SIMD::UInt rounded = base + bias + SIMD::UInt(0x00000FFF) + ((base >> 13) & SIMD::UInt(1)); SIMD::UInt fp16u = rounded >> 13; // Infinity fp16u |= CmpNLE(abs, SIMD::UInt(0x47FFEFFF)) & SIMD::UInt(0x7FFF); return storeInUpperBits ? (sign | (fp16u << 16)) : ((sign >> 16) | fp16u); } Float4 r11g11b10Unpack(UInt r11g11b10bits) { // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. // In this case, we have: // MSB | B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R | LSB UInt4 halfBits; halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x000007FFu)) << 4, 0); halfBits = Insert(halfBits, (r11g11b10bits & UInt(0x003FF800u)) >> 7, 1); halfBits = Insert(halfBits, (r11g11b10bits & UInt(0xFFC00000u)) >> 17, 2); halfBits = Insert(halfBits, UInt(0x00003C00u), 3); return As(halfToFloatBits(halfBits)); } UInt r11g11b10Pack(const Float4 &value) { // 10 and 11 bit floats are unsigned, so their minimal value is 0 auto halfBits = floatToHalfBits(As(Max(value, Float4(0.0f))), true); // Truncates instead of rounding. See b/147900455 UInt4 truncBits = halfBits & UInt4(0x7FF00000, 0x7FF00000, 0x7FE00000, 0); return (UInt(truncBits.x) >> 20) | (UInt(truncBits.y) >> 9) | (UInt(truncBits.z) << 1); } Vector4s a2b10g10r10Unpack(const Int4 &value) { Vector4s result; result.x = Short4(value << 6) & Short4(0xFFC0u); result.y = Short4(value >> 4) & Short4(0xFFC0u); result.z = Short4(value >> 14) & Short4(0xFFC0u); result.w = Short4(value >> 16) & Short4(0xC000u); // Expand to 16 bit range result.x |= As(As(result.x) >> 10); result.y |= As(As(result.y) >> 10); result.z |= As(As(result.z) >> 10); result.w |= As(As(result.w) >> 2); result.w |= As(As(result.w) >> 4); result.w |= As(As(result.w) >> 8); return result; } Vector4s a2r10g10b10Unpack(const Int4 &value) { Vector4s result; result.x = Short4(value >> 14) & Short4(0xFFC0u); result.y = Short4(value >> 4) & Short4(0xFFC0u); result.z = Short4(value << 6) & Short4(0xFFC0u); result.w = Short4(value >> 16) & Short4(0xC000u); // Expand to 16 bit range result.x |= As(As(result.x) >> 10); result.y |= As(As(result.y) >> 10); result.z |= As(As(result.z) >> 10); result.w |= As(As(result.w) >> 2); result.w |= As(As(result.w) >> 4); result.w |= As(As(result.w) >> 8); return result; } rr::RValue AnyTrue(rr::RValue const &ints) { return rr::SignMask(ints) != 0; } rr::RValue AnyFalse(rr::RValue const &ints) { return rr::SignMask(~ints) != 0; } rr::RValue Sign(rr::RValue const &val) { return rr::As((rr::As(val) & sw::SIMD::UInt(0x80000000)) | sw::SIMD::UInt(0x3f800000)); } // Returns the of val. // Both whole and frac will have the same sign as val. std::pair, rr::RValue> Modf(rr::RValue const &val) { auto abs = Abs(val); auto sign = Sign(val); auto whole = Floor(abs) * sign; auto frac = Frac(abs) * sign; return std::make_pair(whole, frac); } // Returns the number of 1s in bits, per lane. sw::SIMD::UInt CountBits(rr::RValue const &bits) { // TODO: Add an intrinsic to reactor. Even if there isn't a // single vector instruction, there may be target-dependent // ways to make this faster. // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel sw::SIMD::UInt c = bits - ((bits >> 1) & sw::SIMD::UInt(0x55555555)); c = ((c >> 2) & sw::SIMD::UInt(0x33333333)) + (c & sw::SIMD::UInt(0x33333333)); c = ((c >> 4) + c) & sw::SIMD::UInt(0x0F0F0F0F); c = ((c >> 8) + c) & sw::SIMD::UInt(0x00FF00FF); c = ((c >> 16) + c) & sw::SIMD::UInt(0x0000FFFF); return c; } // Returns 1 << bits. // If the resulting bit overflows a 32 bit integer, 0 is returned. rr::RValue NthBit32(rr::RValue const &bits) { return ((sw::SIMD::UInt(1) << bits) & rr::CmpLT(bits, sw::SIMD::UInt(32))); } // Returns bitCount number of of 1's starting from the LSB. rr::RValue Bitmask32(rr::RValue const &bitCount) { return NthBit32(bitCount) - sw::SIMD::UInt(1); } // Performs a fused-multiply add, returning a * b + c. rr::RValue FMA( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c) { return a * b + c; } // Returns the exponent of the floating point number f. // Assumes IEEE 754 rr::RValue Exponent(rr::RValue f) { auto v = rr::As(f); return (sw::SIMD::Int((v >> sw::SIMD::UInt(23)) & sw::SIMD::UInt(0xFF)) - sw::SIMD::Int(126)); } // Returns y if y < x; otherwise result is x. // If one operand is a NaN, the other operand is the result. // If both operands are NaN, the result is a NaN. rr::RValue NMin(rr::RValue const &x, rr::RValue const &y) { using namespace rr; auto xIsNan = IsNan(x); auto yIsNan = IsNan(y); return As( // If neither are NaN, return min ((~xIsNan & ~yIsNan) & As(Min(x, y))) | // If one operand is a NaN, the other operand is the result // If both operands are NaN, the result is a NaN. ((~xIsNan & yIsNan) & As(x)) | (xIsNan & As(y))); } // Returns y if y > x; otherwise result is x. // If one operand is a NaN, the other operand is the result. // If both operands are NaN, the result is a NaN. rr::RValue NMax(rr::RValue const &x, rr::RValue const &y) { using namespace rr; auto xIsNan = IsNan(x); auto yIsNan = IsNan(y); return As( // If neither are NaN, return max ((~xIsNan & ~yIsNan) & As(Max(x, y))) | // If one operand is a NaN, the other operand is the result // If both operands are NaN, the result is a NaN. ((~xIsNan & yIsNan) & As(x)) | (xIsNan & As(y))); } // Returns the determinant of a 2x2 matrix. rr::RValue Determinant( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d) { return a * d - b * c; } // Returns the determinant of a 3x3 matrix. rr::RValue Determinant( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d, rr::RValue const &e, rr::RValue const &f, rr::RValue const &g, rr::RValue const &h, rr::RValue const &i) { return a * e * i + b * f * g + c * d * h - c * e * g - b * d * i - a * f * h; } // Returns the determinant of a 4x4 matrix. rr::RValue Determinant( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d, rr::RValue const &e, rr::RValue const &f, rr::RValue const &g, rr::RValue const &h, rr::RValue const &i, rr::RValue const &j, rr::RValue const &k, rr::RValue const &l, rr::RValue const &m, rr::RValue const &n, rr::RValue const &o, rr::RValue const &p) { return a * Determinant(f, g, h, j, k, l, n, o, p) - b * Determinant(e, g, h, i, k, l, m, o, p) + c * Determinant(e, f, h, i, j, l, m, n, p) - d * Determinant(e, f, g, i, j, k, m, n, o); } // Returns the inverse of a 2x2 matrix. std::array, 4> MatrixInverse( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d) { auto s = sw::SIMD::Float(1.0f) / Determinant(a, b, c, d); return { { s * d, -s * b, -s * c, s * a } }; } // Returns the inverse of a 3x3 matrix. std::array, 9> MatrixInverse( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d, rr::RValue const &e, rr::RValue const &f, rr::RValue const &g, rr::RValue const &h, rr::RValue const &i) { auto s = sw::SIMD::Float(1.0f) / Determinant( a, b, c, d, e, f, g, h, i); // TODO: duplicate arithmetic calculating the det and below. return { { s * (e * i - f * h), s * (c * h - b * i), s * (b * f - c * e), s * (f * g - d * i), s * (a * i - c * g), s * (c * d - a * f), s * (d * h - e * g), s * (b * g - a * h), s * (a * e - b * d), } }; } // Returns the inverse of a 4x4 matrix. std::array, 16> MatrixInverse( rr::RValue const &a, rr::RValue const &b, rr::RValue const &c, rr::RValue const &d, rr::RValue const &e, rr::RValue const &f, rr::RValue const &g, rr::RValue const &h, rr::RValue const &i, rr::RValue const &j, rr::RValue const &k, rr::RValue const &l, rr::RValue const &m, rr::RValue const &n, rr::RValue const &o, rr::RValue const &p) { auto s = sw::SIMD::Float(1.0f) / Determinant( a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); // TODO: duplicate arithmetic calculating the det and below. auto kplo = k * p - l * o, jpln = j * p - l * n, jokn = j * o - k * n; auto gpho = g * p - h * o, fphn = f * p - h * n, fogn = f * o - g * n; auto glhk = g * l - h * k, flhj = f * l - h * j, fkgj = f * k - g * j; auto iplm = i * p - l * m, iokm = i * o - k * m, ephm = e * p - h * m; auto eogm = e * o - g * m, elhi = e * l - h * i, ekgi = e * k - g * i; auto injm = i * n - j * m, enfm = e * n - f * m, ejfi = e * j - f * i; return { { s * (f * kplo - g * jpln + h * jokn), s * (-b * kplo + c * jpln - d * jokn), s * (b * gpho - c * fphn + d * fogn), s * (-b * glhk + c * flhj - d * fkgj), s * (-e * kplo + g * iplm - h * iokm), s * (a * kplo - c * iplm + d * iokm), s * (-a * gpho + c * ephm - d * eogm), s * (a * glhk - c * elhi + d * ekgi), s * (e * jpln - f * iplm + h * injm), s * (-a * jpln + b * iplm - d * injm), s * (a * fphn - b * ephm + d * enfm), s * (-a * flhj + b * elhi - d * ejfi), s * (-e * jokn + f * iokm - g * injm), s * (a * jokn - b * iokm + c * injm), s * (-a * fogn + b * eogm - c * enfm), s * (a * fkgj - b * ekgi + c * ejfi), } }; } namespace SIMD { Pointer::Pointer(rr::Pointer base, rr::Int limit) : base(base) , dynamicLimit(limit) , staticLimit(0) , dynamicOffsets(0) , staticOffsets{} , hasDynamicLimit(true) , hasDynamicOffsets(false) {} Pointer::Pointer(rr::Pointer base, unsigned int limit) : base(base) , dynamicLimit(0) , staticLimit(limit) , dynamicOffsets(0) , staticOffsets{} , hasDynamicLimit(false) , hasDynamicOffsets(false) {} Pointer::Pointer(rr::Pointer base, rr::Int limit, SIMD::Int offset) : base(base) , dynamicLimit(limit) , staticLimit(0) , dynamicOffsets(offset) , staticOffsets{} , hasDynamicLimit(true) , hasDynamicOffsets(true) {} Pointer::Pointer(rr::Pointer base, unsigned int limit, SIMD::Int offset) : base(base) , dynamicLimit(0) , staticLimit(limit) , dynamicOffsets(offset) , staticOffsets{} , hasDynamicLimit(false) , hasDynamicOffsets(true) {} Pointer &Pointer::operator+=(Int i) { dynamicOffsets += i; hasDynamicOffsets = true; return *this; } Pointer &Pointer::operator*=(Int i) { dynamicOffsets = offsets() * i; staticOffsets = {}; hasDynamicOffsets = true; return *this; } Pointer Pointer::operator+(SIMD::Int i) { Pointer p = *this; p += i; return p; } Pointer Pointer::operator*(SIMD::Int i) { Pointer p = *this; p *= i; return p; } Pointer &Pointer::operator+=(int i) { for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] += i; } return *this; } Pointer &Pointer::operator*=(int i) { for(int el = 0; el < SIMD::Width; el++) { staticOffsets[el] *= i; } if(hasDynamicOffsets) { dynamicOffsets *= SIMD::Int(i); } return *this; } Pointer Pointer::operator+(int i) { Pointer p = *this; p += i; return p; } Pointer Pointer::operator*(int i) { Pointer p = *this; p *= i; return p; } SIMD::Int Pointer::offsets() const { static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); return dynamicOffsets + SIMD::Int(staticOffsets[0], staticOffsets[1], staticOffsets[2], staticOffsets[3]); } SIMD::Int Pointer::isInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const { ASSERT(accessSize > 0); if(isStaticallyInBounds(accessSize, robustness)) { return SIMD::Int(0xffffffff); } if(!hasDynamicOffsets && !hasDynamicLimit) { // Common fast paths. static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); return SIMD::Int( (staticOffsets[0] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, (staticOffsets[1] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, (staticOffsets[2] + accessSize - 1 < staticLimit) ? 0xffffffff : 0, (staticOffsets[3] + accessSize - 1 < staticLimit) ? 0xffffffff : 0); } return CmpLT(offsets() + SIMD::Int(accessSize - 1), SIMD::Int(limit())); } bool Pointer::isStaticallyInBounds(unsigned int accessSize, OutOfBoundsBehavior robustness) const { if(hasDynamicOffsets) { return false; } if(hasDynamicLimit) { if(hasStaticEqualOffsets() || hasStaticSequentialOffsets(accessSize)) { switch(robustness) { case OutOfBoundsBehavior::UndefinedBehavior: // With this robustness setting the application/compiler guarantees in-bounds accesses on active lanes, // but since it can't know in advance which branches are taken this must be true even for inactives lanes. return true; case OutOfBoundsBehavior::Nullify: case OutOfBoundsBehavior::RobustBufferAccess: case OutOfBoundsBehavior::UndefinedValue: return false; } } } for(int i = 0; i < SIMD::Width; i++) { if(staticOffsets[i] + accessSize - 1 >= staticLimit) { return false; } } return true; } rr::Int Pointer::limit() const { return dynamicLimit + staticLimit; } // Returns true if all offsets are sequential // (N+0*step, N+1*step, N+2*step, N+3*step) rr::Bool Pointer::hasSequentialOffsets(unsigned int step) const { if(hasDynamicOffsets) { auto o = offsets(); static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); return rr::SignMask(~CmpEQ(o.yzww, o + SIMD::Int(1 * step, 2 * step, 3 * step, 0))) == 0; } return hasStaticSequentialOffsets(step); } // Returns true if all offsets are are compile-time static and // sequential (N+0*step, N+1*step, N+2*step, N+3*step) bool Pointer::hasStaticSequentialOffsets(unsigned int step) const { if(hasDynamicOffsets) { return false; } for(int i = 1; i < SIMD::Width; i++) { if(staticOffsets[i - 1] + int32_t(step) != staticOffsets[i]) { return false; } } return true; } // Returns true if all offsets are equal (N, N, N, N) rr::Bool Pointer::hasEqualOffsets() const { if(hasDynamicOffsets) { auto o = offsets(); static_assert(SIMD::Width == 4, "Expects SIMD::Width to be 4"); return rr::SignMask(~CmpEQ(o, o.yzwx)) == 0; } return hasStaticEqualOffsets(); } // Returns true if all offsets are compile-time static and are equal // (N, N, N, N) bool Pointer::hasStaticEqualOffsets() const { if(hasDynamicOffsets) { return false; } for(int i = 1; i < SIMD::Width; i++) { if(staticOffsets[i - 1] != staticOffsets[i]) { return false; } } return true; } } // namespace SIMD } // namespace sw