// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VertexProgram.hpp" #include "VertexShader.hpp" #include "SamplerCore.hpp" #include "Renderer/Renderer.hpp" #include "Renderer/Vertex.hpp" #include "Common/Half.hpp" #include "Common/Debug.hpp" namespace sw { VertexProgram::VertexProgram(const VertexProcessor::State &state, const VertexShader *shader) : VertexRoutine(state, shader), shader(shader), r(shader->indirectAddressableTemporaries), aL(shader->getLimits().loops), increment(shader->getLimits().loops), iteration(shader->getLimits().loops), callStack(shader->getLimits().stack) { auto limits = shader->getLimits(); ifFalseBlock.resize(limits.ifs); loopRepTestBlock.resize(limits.loops); loopRepEndBlock.resize(limits.loops); labelBlock.resize(limits.maxLabel + 1); isConditionalIf.resize(limits.ifs); loopDepth = -1; enableStack[0] = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); if(shader->containsBreakInstruction()) { enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } if(shader->containsContinueInstruction()) { enableContinue = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } if(shader->isInstanceIdDeclared()) { instanceID = *Pointer(data + OFFSET(DrawData,instanceID)); } } VertexProgram::~VertexProgram() { } void VertexProgram::pipeline(UInt &index) { if(!state.preTransformed) { program(index); } else { passThrough(); } } void VertexProgram::program(UInt &index) { // shader->print("VertexShader-%0.8X.txt", state.shaderID); unsigned short shaderModel = shader->getShaderModel(); enableIndex = 0; stackIndex = 0; if(shader->containsLeaveInstruction()) { enableLeave = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } if(shader->isVertexIdDeclared()) { if(state.textureSampling) { vertexID = Int4(Int(index)); } else { vertexID = Insert(vertexID, As(index), 0); vertexID = Insert(vertexID, As(index + 1), 1); vertexID = Insert(vertexID, As(index + 2), 2); vertexID = Insert(vertexID, As(index + 3), 3); } } // Create all call site return blocks up front for(size_t i = 0; i < shader->getLength(); i++) { const Shader::Instruction *instruction = shader->getInstruction(i); Shader::Opcode opcode = instruction->opcode; if(opcode == Shader::OPCODE_CALL || opcode == Shader::OPCODE_CALLNZ) { const Dst &dst = instruction->dst; ASSERT(callRetBlock[dst.label].size() == dst.callSite); callRetBlock[dst.label].push_back(Nucleus::createBasicBlock()); } } for(size_t i = 0; i < shader->getLength(); i++) { const Shader::Instruction *instruction = shader->getInstruction(i); Shader::Opcode opcode = instruction->opcode; if(opcode == Shader::OPCODE_DCL || opcode == Shader::OPCODE_DEF || opcode == Shader::OPCODE_DEFI || opcode == Shader::OPCODE_DEFB) { continue; } Dst dst = instruction->dst; Src src0 = instruction->src[0]; Src src1 = instruction->src[1]; Src src2 = instruction->src[2]; Src src3 = instruction->src[3]; Src src4 = instruction->src[4]; bool predicate = instruction->predicate; Control control = instruction->control; bool integer = dst.type == Shader::PARAMETER_ADDR; bool pp = dst.partialPrecision; Vector4f d; Vector4f s0; Vector4f s1; Vector4f s2; Vector4f s3; Vector4f s4; if(src0.type != Shader::PARAMETER_VOID) s0 = fetchRegister(src0); if(src1.type != Shader::PARAMETER_VOID) s1 = fetchRegister(src1); if(src2.type != Shader::PARAMETER_VOID) s2 = fetchRegister(src2); if(src3.type != Shader::PARAMETER_VOID) s3 = fetchRegister(src3); if(src4.type != Shader::PARAMETER_VOID) s4 = fetchRegister(src4); switch(opcode) { case Shader::OPCODE_VS_1_0: break; case Shader::OPCODE_VS_1_1: break; case Shader::OPCODE_VS_2_0: break; case Shader::OPCODE_VS_2_x: break; case Shader::OPCODE_VS_2_sw: break; case Shader::OPCODE_VS_3_0: break; case Shader::OPCODE_VS_3_sw: break; case Shader::OPCODE_DCL: break; case Shader::OPCODE_DEF: break; case Shader::OPCODE_DEFI: break; case Shader::OPCODE_DEFB: break; case Shader::OPCODE_NOP: break; case Shader::OPCODE_ABS: abs(d, s0); break; case Shader::OPCODE_IABS: iabs(d, s0); break; case Shader::OPCODE_ADD: add(d, s0, s1); break; case Shader::OPCODE_IADD: iadd(d, s0, s1); break; case Shader::OPCODE_CRS: crs(d, s0, s1); break; case Shader::OPCODE_FORWARD1: forward1(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD2: forward2(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD3: forward3(d, s0, s1, s2); break; case Shader::OPCODE_FORWARD4: forward4(d, s0, s1, s2); break; case Shader::OPCODE_REFLECT1: reflect1(d, s0, s1); break; case Shader::OPCODE_REFLECT2: reflect2(d, s0, s1); break; case Shader::OPCODE_REFLECT3: reflect3(d, s0, s1); break; case Shader::OPCODE_REFLECT4: reflect4(d, s0, s1); break; case Shader::OPCODE_REFRACT1: refract1(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT2: refract2(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT3: refract3(d, s0, s1, s2.x); break; case Shader::OPCODE_REFRACT4: refract4(d, s0, s1, s2.x); break; case Shader::OPCODE_DP1: dp1(d, s0, s1); break; case Shader::OPCODE_DP2: dp2(d, s0, s1); break; case Shader::OPCODE_DP3: dp3(d, s0, s1); break; case Shader::OPCODE_DP4: dp4(d, s0, s1); break; case Shader::OPCODE_DET2: det2(d, s0, s1); break; case Shader::OPCODE_DET3: det3(d, s0, s1, s2); break; case Shader::OPCODE_DET4: det4(d, s0, s1, s2, s3); break; case Shader::OPCODE_ATT: att(d, s0, s1); break; case Shader::OPCODE_EXP2X: exp2x(d, s0, pp); break; case Shader::OPCODE_EXP2: exp2(d, s0, pp); break; case Shader::OPCODE_EXPP: expp(d, s0, shaderModel); break; case Shader::OPCODE_EXP: exp(d, s0, pp); break; case Shader::OPCODE_FRC: frc(d, s0); break; case Shader::OPCODE_TRUNC: trunc(d, s0); break; case Shader::OPCODE_FLOOR: floor(d, s0); break; case Shader::OPCODE_ROUND: round(d, s0); break; case Shader::OPCODE_ROUNDEVEN: roundEven(d, s0); break; case Shader::OPCODE_CEIL: ceil(d, s0); break; case Shader::OPCODE_LIT: lit(d, s0); break; case Shader::OPCODE_LOG2X: log2x(d, s0, pp); break; case Shader::OPCODE_LOG2: log2(d, s0, pp); break; case Shader::OPCODE_LOGP: logp(d, s0, shaderModel); break; case Shader::OPCODE_LOG: log(d, s0, pp); break; case Shader::OPCODE_LRP: lrp(d, s0, s1, s2); break; case Shader::OPCODE_STEP: step(d, s0, s1); break; case Shader::OPCODE_SMOOTH: smooth(d, s0, s1, s2); break; case Shader::OPCODE_ISINF: isinf(d, s0); break; case Shader::OPCODE_ISNAN: isnan(d, s0); break; case Shader::OPCODE_FLOATBITSTOINT: case Shader::OPCODE_FLOATBITSTOUINT: case Shader::OPCODE_INTBITSTOFLOAT: case Shader::OPCODE_UINTBITSTOFLOAT: d = s0; break; case Shader::OPCODE_PACKSNORM2x16: packSnorm2x16(d, s0); break; case Shader::OPCODE_PACKUNORM2x16: packUnorm2x16(d, s0); break; case Shader::OPCODE_PACKHALF2x16: packHalf2x16(d, s0); break; case Shader::OPCODE_UNPACKSNORM2x16: unpackSnorm2x16(d, s0); break; case Shader::OPCODE_UNPACKUNORM2x16: unpackUnorm2x16(d, s0); break; case Shader::OPCODE_UNPACKHALF2x16: unpackHalf2x16(d, s0); break; case Shader::OPCODE_M3X2: M3X2(d, s0, src1); break; case Shader::OPCODE_M3X3: M3X3(d, s0, src1); break; case Shader::OPCODE_M3X4: M3X4(d, s0, src1); break; case Shader::OPCODE_M4X3: M4X3(d, s0, src1); break; case Shader::OPCODE_M4X4: M4X4(d, s0, src1); break; case Shader::OPCODE_MAD: mad(d, s0, s1, s2); break; case Shader::OPCODE_IMAD: imad(d, s0, s1, s2); break; case Shader::OPCODE_MAX: max(d, s0, s1); break; case Shader::OPCODE_IMAX: imax(d, s0, s1); break; case Shader::OPCODE_UMAX: umax(d, s0, s1); break; case Shader::OPCODE_MIN: min(d, s0, s1); break; case Shader::OPCODE_IMIN: imin(d, s0, s1); break; case Shader::OPCODE_UMIN: umin(d, s0, s1); break; case Shader::OPCODE_MOV: mov(d, s0, integer); break; case Shader::OPCODE_MOVA: mov(d, s0, true); break; case Shader::OPCODE_NEG: neg(d, s0); break; case Shader::OPCODE_INEG: ineg(d, s0); break; case Shader::OPCODE_F2B: f2b(d, s0); break; case Shader::OPCODE_B2F: b2f(d, s0); break; case Shader::OPCODE_F2I: f2i(d, s0); break; case Shader::OPCODE_I2F: i2f(d, s0); break; case Shader::OPCODE_F2U: f2u(d, s0); break; case Shader::OPCODE_U2F: u2f(d, s0); break; case Shader::OPCODE_I2B: i2b(d, s0); break; case Shader::OPCODE_B2I: b2i(d, s0); break; case Shader::OPCODE_MUL: mul(d, s0, s1); break; case Shader::OPCODE_IMUL: imul(d, s0, s1); break; case Shader::OPCODE_NRM2: nrm2(d, s0, pp); break; case Shader::OPCODE_NRM3: nrm3(d, s0, pp); break; case Shader::OPCODE_NRM4: nrm4(d, s0, pp); break; case Shader::OPCODE_POWX: powx(d, s0, s1, pp); break; case Shader::OPCODE_POW: pow(d, s0, s1, pp); break; case Shader::OPCODE_RCPX: rcpx(d, s0, pp); break; case Shader::OPCODE_DIV: div(d, s0, s1); break; case Shader::OPCODE_IDIV: idiv(d, s0, s1); break; case Shader::OPCODE_UDIV: udiv(d, s0, s1); break; case Shader::OPCODE_MOD: mod(d, s0, s1); break; case Shader::OPCODE_IMOD: imod(d, s0, s1); break; case Shader::OPCODE_UMOD: umod(d, s0, s1); break; case Shader::OPCODE_SHL: shl(d, s0, s1); break; case Shader::OPCODE_ISHR: ishr(d, s0, s1); break; case Shader::OPCODE_USHR: ushr(d, s0, s1); break; case Shader::OPCODE_RSQX: rsqx(d, s0, pp); break; case Shader::OPCODE_SQRT: sqrt(d, s0, pp); break; case Shader::OPCODE_RSQ: rsq(d, s0, pp); break; case Shader::OPCODE_LEN2: len2(d.x, s0, pp); break; case Shader::OPCODE_LEN3: len3(d.x, s0, pp); break; case Shader::OPCODE_LEN4: len4(d.x, s0, pp); break; case Shader::OPCODE_DIST1: dist1(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST2: dist2(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST3: dist3(d.x, s0, s1, pp); break; case Shader::OPCODE_DIST4: dist4(d.x, s0, s1, pp); break; case Shader::OPCODE_SGE: step(d, s1, s0); break; case Shader::OPCODE_SGN: sgn(d, s0); break; case Shader::OPCODE_ISGN: isgn(d, s0); break; case Shader::OPCODE_SINCOS: sincos(d, s0, pp); break; case Shader::OPCODE_COS: cos(d, s0, pp); break; case Shader::OPCODE_SIN: sin(d, s0, pp); break; case Shader::OPCODE_TAN: tan(d, s0); break; case Shader::OPCODE_ACOS: acos(d, s0); break; case Shader::OPCODE_ASIN: asin(d, s0); break; case Shader::OPCODE_ATAN: atan(d, s0); break; case Shader::OPCODE_ATAN2: atan2(d, s0, s1); break; case Shader::OPCODE_COSH: cosh(d, s0, pp); break; case Shader::OPCODE_SINH: sinh(d, s0, pp); break; case Shader::OPCODE_TANH: tanh(d, s0, pp); break; case Shader::OPCODE_ACOSH: acosh(d, s0, pp); break; case Shader::OPCODE_ASINH: asinh(d, s0, pp); break; case Shader::OPCODE_ATANH: atanh(d, s0, pp); break; case Shader::OPCODE_SLT: slt(d, s0, s1); break; case Shader::OPCODE_SUB: sub(d, s0, s1); break; case Shader::OPCODE_ISUB: isub(d, s0, s1); break; case Shader::OPCODE_BREAK: BREAK(); break; case Shader::OPCODE_BREAKC: BREAKC(s0, s1, control); break; case Shader::OPCODE_BREAKP: BREAKP(src0); break; case Shader::OPCODE_CONTINUE: CONTINUE(); break; case Shader::OPCODE_TEST: TEST(); break; case Shader::OPCODE_SCALAR: SCALAR(); break; case Shader::OPCODE_CALL: CALL(dst.label, dst.callSite); break; case Shader::OPCODE_CALLNZ: CALLNZ(dst.label, dst.callSite, src0); break; case Shader::OPCODE_ELSE: ELSE(); break; case Shader::OPCODE_ENDIF: ENDIF(); break; case Shader::OPCODE_ENDLOOP: ENDLOOP(); break; case Shader::OPCODE_ENDREP: ENDREP(); break; case Shader::OPCODE_ENDWHILE: ENDWHILE(); break; case Shader::OPCODE_ENDSWITCH: ENDSWITCH(); break; case Shader::OPCODE_IF: IF(src0); break; case Shader::OPCODE_IFC: IFC(s0, s1, control); break; case Shader::OPCODE_LABEL: LABEL(dst.index); break; case Shader::OPCODE_LOOP: LOOP(src1); break; case Shader::OPCODE_REP: REP(src0); break; case Shader::OPCODE_WHILE: WHILE(src0); break; case Shader::OPCODE_SWITCH: SWITCH(); break; case Shader::OPCODE_RET: RET(); break; case Shader::OPCODE_LEAVE: LEAVE(); break; case Shader::OPCODE_CMP: cmp(d, s0, s1, control); break; case Shader::OPCODE_ICMP: icmp(d, s0, s1, control); break; case Shader::OPCODE_UCMP: ucmp(d, s0, s1, control); break; case Shader::OPCODE_SELECT: select(d, s0, s1, s2); break; case Shader::OPCODE_EXTRACT: extract(d.x, s0, s1.x); break; case Shader::OPCODE_INSERT: insert(d, s0, s1.x, s2.x); break; case Shader::OPCODE_ALL: all(d.x, s0); break; case Shader::OPCODE_ANY: any(d.x, s0); break; case Shader::OPCODE_NOT: bitwise_not(d, s0); break; case Shader::OPCODE_OR: bitwise_or(d, s0, s1); break; case Shader::OPCODE_XOR: bitwise_xor(d, s0, s1); break; case Shader::OPCODE_AND: bitwise_and(d, s0, s1); break; case Shader::OPCODE_EQ: equal(d, s0, s1); break; case Shader::OPCODE_NE: notEqual(d, s0, s1); break; case Shader::OPCODE_TEXLDL: TEXLOD(d, s0, src1, s0.w); break; case Shader::OPCODE_TEXLOD: TEXLOD(d, s0, src1, s2.x); break; case Shader::OPCODE_TEX: TEX(d, s0, src1); break; case Shader::OPCODE_TEXOFFSET: TEXOFFSET(d, s0, src1, s2); break; case Shader::OPCODE_TEXLODOFFSET: TEXLODOFFSET(d, s0, src1, s2, s3.x); break; case Shader::OPCODE_TEXELFETCH: TEXELFETCH(d, s0, src1, s2.x); break; case Shader::OPCODE_TEXELFETCHOFFSET: TEXELFETCHOFFSET(d, s0, src1, s2, s3.x); break; case Shader::OPCODE_TEXGRAD: TEXGRAD(d, s0, src1, s2, s3); break; case Shader::OPCODE_TEXGRADOFFSET: TEXGRADOFFSET(d, s0, src1, s2, s3, s4); break; case Shader::OPCODE_TEXSIZE: TEXSIZE(d, s0.x, src1); break; case Shader::OPCODE_END: break; default: ASSERT(false); } if(dst.type != Shader::PARAMETER_VOID && dst.type != Shader::PARAMETER_LABEL && opcode != Shader::OPCODE_NOP) { if(dst.saturate) { if(dst.x) d.x = Max(d.x, Float4(0.0f)); if(dst.y) d.y = Max(d.y, Float4(0.0f)); if(dst.z) d.z = Max(d.z, Float4(0.0f)); if(dst.w) d.w = Max(d.w, Float4(0.0f)); if(dst.x) d.x = Min(d.x, Float4(1.0f)); if(dst.y) d.y = Min(d.y, Float4(1.0f)); if(dst.z) d.z = Min(d.z, Float4(1.0f)); if(dst.w) d.w = Min(d.w, Float4(1.0f)); } if(instruction->isPredicated()) { Vector4f pDst; // FIXME: Rename switch(dst.type) { case Shader::PARAMETER_VOID: break; case Shader::PARAMETER_TEMP: if(dst.rel.type == Shader::PARAMETER_VOID) { if(dst.x) pDst.x = r[dst.index].x; if(dst.y) pDst.y = r[dst.index].y; if(dst.z) pDst.z = r[dst.index].z; if(dst.w) pDst.w = r[dst.index].w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) pDst.x = r[a].x; if(dst.y) pDst.y = r[a].y; if(dst.z) pDst.z = r[a].z; if(dst.w) pDst.w = r[a].w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) pDst.x = r[a].x; if(dst.y) pDst.y = r[a].y; if(dst.z) pDst.z = r[a].z; if(dst.w) pDst.w = r[a].w; } break; case Shader::PARAMETER_ADDR: pDst = a0; break; case Shader::PARAMETER_RASTOUT: switch(dst.index) { case 0: if(dst.x) pDst.x = o[Pos].x; if(dst.y) pDst.y = o[Pos].y; if(dst.z) pDst.z = o[Pos].z; if(dst.w) pDst.w = o[Pos].w; break; case 1: pDst.x = o[Fog].x; break; case 2: pDst.x = o[Pts].y; break; default: ASSERT(false); } break; case Shader::PARAMETER_ATTROUT: if(dst.x) pDst.x = o[C0 + dst.index].x; if(dst.y) pDst.y = o[C0 + dst.index].y; if(dst.z) pDst.z = o[C0 + dst.index].z; if(dst.w) pDst.w = o[C0 + dst.index].w; break; case Shader::PARAMETER_TEXCRDOUT: // case Shader::PARAMETER_OUTPUT: if(shaderModel < 0x0300) { if(dst.x) pDst.x = o[T0 + dst.index].x; if(dst.y) pDst.y = o[T0 + dst.index].y; if(dst.z) pDst.z = o[T0 + dst.index].z; if(dst.w) pDst.w = o[T0 + dst.index].w; } else if(dst.rel.type == Shader::PARAMETER_VOID) // Not relative { if(dst.x) pDst.x = o[dst.index].x; if(dst.y) pDst.y = o[dst.index].y; if(dst.z) pDst.z = o[dst.index].z; if(dst.w) pDst.w = o[dst.index].w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) pDst.x = o[a].x; if(dst.y) pDst.y = o[a].y; if(dst.z) pDst.z = o[a].z; if(dst.w) pDst.w = o[a].w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) pDst.x = o[a].x; if(dst.y) pDst.y = o[a].y; if(dst.z) pDst.z = o[a].z; if(dst.w) pDst.w = o[a].w; } break; case Shader::PARAMETER_LABEL: break; case Shader::PARAMETER_PREDICATE: pDst = p0; break; case Shader::PARAMETER_INPUT: break; default: ASSERT(false); } Int4 enable = enableMask(instruction); Int4 xEnable = enable; Int4 yEnable = enable; Int4 zEnable = enable; Int4 wEnable = enable; if(predicate) { unsigned char pSwizzle = instruction->predicateSwizzle; Float4 xPredicate = p0[(pSwizzle >> 0) & 0x03]; Float4 yPredicate = p0[(pSwizzle >> 2) & 0x03]; Float4 zPredicate = p0[(pSwizzle >> 4) & 0x03]; Float4 wPredicate = p0[(pSwizzle >> 6) & 0x03]; if(!instruction->predicateNot) { if(dst.x) xEnable = xEnable & As(xPredicate); if(dst.y) yEnable = yEnable & As(yPredicate); if(dst.z) zEnable = zEnable & As(zPredicate); if(dst.w) wEnable = wEnable & As(wPredicate); } else { if(dst.x) xEnable = xEnable & ~As(xPredicate); if(dst.y) yEnable = yEnable & ~As(yPredicate); if(dst.z) zEnable = zEnable & ~As(zPredicate); if(dst.w) wEnable = wEnable & ~As(wPredicate); } } if(dst.x) d.x = As(As(d.x) & xEnable); if(dst.y) d.y = As(As(d.y) & yEnable); if(dst.z) d.z = As(As(d.z) & zEnable); if(dst.w) d.w = As(As(d.w) & wEnable); if(dst.x) d.x = As(As(d.x) | (As(pDst.x) & ~xEnable)); if(dst.y) d.y = As(As(d.y) | (As(pDst.y) & ~yEnable)); if(dst.z) d.z = As(As(d.z) | (As(pDst.z) & ~zEnable)); if(dst.w) d.w = As(As(d.w) | (As(pDst.w) & ~wEnable)); } switch(dst.type) { case Shader::PARAMETER_VOID: break; case Shader::PARAMETER_TEMP: if(dst.rel.type == Shader::PARAMETER_VOID) { if(dst.x) r[dst.index].x = d.x; if(dst.y) r[dst.index].y = d.y; if(dst.z) r[dst.index].z = d.z; if(dst.w) r[dst.index].w = d.w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) r[a].x = d.x; if(dst.y) r[a].y = d.y; if(dst.z) r[a].z = d.z; if(dst.w) r[a].w = d.w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) r.scatter_x(a, d.x); if(dst.y) r.scatter_y(a, d.y); if(dst.z) r.scatter_z(a, d.z); if(dst.w) r.scatter_w(a, d.w); } break; case Shader::PARAMETER_ADDR: if(dst.x) a0.x = d.x; if(dst.y) a0.y = d.y; if(dst.z) a0.z = d.z; if(dst.w) a0.w = d.w; break; case Shader::PARAMETER_RASTOUT: switch(dst.index) { case 0: if(dst.x) o[Pos].x = d.x; if(dst.y) o[Pos].y = d.y; if(dst.z) o[Pos].z = d.z; if(dst.w) o[Pos].w = d.w; break; case 1: o[Fog].x = d.x; break; case 2: o[Pts].y = d.x; break; default: ASSERT(false); } break; case Shader::PARAMETER_ATTROUT: if(dst.x) o[C0 + dst.index].x = d.x; if(dst.y) o[C0 + dst.index].y = d.y; if(dst.z) o[C0 + dst.index].z = d.z; if(dst.w) o[C0 + dst.index].w = d.w; break; case Shader::PARAMETER_TEXCRDOUT: // case Shader::PARAMETER_OUTPUT: if(shaderModel < 0x0300) { if(dst.x) o[T0 + dst.index].x = d.x; if(dst.y) o[T0 + dst.index].y = d.y; if(dst.z) o[T0 + dst.index].z = d.z; if(dst.w) o[T0 + dst.index].w = d.w; } else if(dst.rel.type == Shader::PARAMETER_VOID) // Not relative { if(dst.x) o[dst.index].x = d.x; if(dst.y) o[dst.index].y = d.y; if(dst.z) o[dst.index].z = d.z; if(dst.w) o[dst.index].w = d.w; } else if(!dst.rel.dynamic) { Int a = dst.index + relativeAddress(dst.rel); if(dst.x) o[a].x = d.x; if(dst.y) o[a].y = d.y; if(dst.z) o[a].z = d.z; if(dst.w) o[a].w = d.w; } else { Int4 a = dst.index + dynamicAddress(dst.rel); if(dst.x) o.scatter_x(a, d.x); if(dst.y) o.scatter_y(a, d.y); if(dst.z) o.scatter_z(a, d.z); if(dst.w) o.scatter_w(a, d.w); } break; case Shader::PARAMETER_LABEL: break; case Shader::PARAMETER_PREDICATE: p0 = d; break; case Shader::PARAMETER_INPUT: break; default: ASSERT(false); } } } if(currentLabel != -1) { Nucleus::setInsertBlock(returnBlock); } } void VertexProgram::passThrough() { if(shader) { for(int i = 0; i < MAX_VERTEX_OUTPUTS; i++) { unsigned char usage = shader->getOutput(i, 0).usage; switch(usage) { case 0xFF: continue; case Shader::USAGE_PSIZE: o[i].y = v[i].x; break; case Shader::USAGE_TEXCOORD: o[i].x = v[i].x; o[i].y = v[i].y; o[i].z = v[i].z; o[i].w = v[i].w; break; case Shader::USAGE_POSITION: o[i].x = v[i].x; o[i].y = v[i].y; o[i].z = v[i].z; o[i].w = v[i].w; break; case Shader::USAGE_COLOR: o[i].x = v[i].x; o[i].y = v[i].y; o[i].z = v[i].z; o[i].w = v[i].w; break; case Shader::USAGE_FOG: o[i].x = v[i].x; break; default: ASSERT(false); } } } else { o[Pos].x = v[PositionT].x; o[Pos].y = v[PositionT].y; o[Pos].z = v[PositionT].z; o[Pos].w = v[PositionT].w; for(int i = 0; i < 2; i++) { o[C0 + i].x = v[Color0 + i].x; o[C0 + i].y = v[Color0 + i].y; o[C0 + i].z = v[Color0 + i].z; o[C0 + i].w = v[Color0 + i].w; } for(int i = 0; i < 8; i++) { o[T0 + i].x = v[TexCoord0 + i].x; o[T0 + i].y = v[TexCoord0 + i].y; o[T0 + i].z = v[TexCoord0 + i].z; o[T0 + i].w = v[TexCoord0 + i].w; } o[Pts].y = v[PointSize].x; } } Vector4f VertexProgram::fetchRegister(const Src &src, unsigned int offset) { Vector4f reg; unsigned int i = src.index + offset; switch(src.type) { case Shader::PARAMETER_TEMP: if(src.rel.type == Shader::PARAMETER_VOID) { reg = r[i]; } else if(!src.rel.dynamic) { reg = r[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = r[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_CONST: reg = readConstant(src, offset); break; case Shader::PARAMETER_INPUT: if(src.rel.type == Shader::PARAMETER_VOID) { reg = v[i]; } else if(!src.rel.dynamic) { reg = v[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = v[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_VOID: return r[0]; // Dummy case Shader::PARAMETER_FLOAT4LITERAL: // This is used for all literal types, and since Reactor doesn't guarantee // preserving the bit pattern of float constants, we must construct them // as integer constants and bitcast. reg.x = As(Int4(src.integer[0])); reg.y = As(Int4(src.integer[1])); reg.z = As(Int4(src.integer[2])); reg.w = As(Int4(src.integer[3])); break; case Shader::PARAMETER_ADDR: reg = a0; break; case Shader::PARAMETER_CONSTBOOL: return r[0]; // Dummy case Shader::PARAMETER_CONSTINT: return r[0]; // Dummy case Shader::PARAMETER_LOOP: return r[0]; // Dummy case Shader::PARAMETER_PREDICATE: return r[0]; // Dummy case Shader::PARAMETER_SAMPLER: if(src.rel.type == Shader::PARAMETER_VOID) { reg.x = As(Int4(i)); } else if(src.rel.type == Shader::PARAMETER_TEMP) { reg.x = As(Int4(i) + As(r[src.rel.index].x)); } return reg; case Shader::PARAMETER_OUTPUT: if(src.rel.type == Shader::PARAMETER_VOID) { reg = o[i]; } else if(!src.rel.dynamic) { reg = o[i + relativeAddress(src.rel, src.bufferIndex)]; } else { reg = o[i + dynamicAddress(src.rel)]; } break; case Shader::PARAMETER_MISCTYPE: if(src.index == Shader::InstanceIDIndex) { reg.x = As(instanceID); } else if(src.index == Shader::VertexIDIndex) { reg.x = As(vertexID); } else ASSERT(false); return reg; default: ASSERT(false); } const Float4 &x = reg[(src.swizzle >> 0) & 0x3]; const Float4 &y = reg[(src.swizzle >> 2) & 0x3]; const Float4 &z = reg[(src.swizzle >> 4) & 0x3]; const Float4 &w = reg[(src.swizzle >> 6) & 0x3]; Vector4f mod; switch(src.modifier) { case Shader::MODIFIER_NONE: mod.x = x; mod.y = y; mod.z = z; mod.w = w; break; case Shader::MODIFIER_NEGATE: mod.x = -x; mod.y = -y; mod.z = -z; mod.w = -w; break; case Shader::MODIFIER_ABS: mod.x = Abs(x); mod.y = Abs(y); mod.z = Abs(z); mod.w = Abs(w); break; case Shader::MODIFIER_ABS_NEGATE: mod.x = -Abs(x); mod.y = -Abs(y); mod.z = -Abs(z); mod.w = -Abs(w); break; case Shader::MODIFIER_NOT: mod.x = As(As(x) ^ Int4(0xFFFFFFFF)); mod.y = As(As(y) ^ Int4(0xFFFFFFFF)); mod.z = As(As(z) ^ Int4(0xFFFFFFFF)); mod.w = As(As(w) ^ Int4(0xFFFFFFFF)); break; default: ASSERT(false); } return mod; } RValue> VertexProgram::uniformAddress(int bufferIndex, unsigned int index) { if(bufferIndex == -1) { return data + OFFSET(DrawData, vs.c[index]); } else { return *Pointer>(data + OFFSET(DrawData, vs.u[bufferIndex])) + index; } } RValue> VertexProgram::uniformAddress(int bufferIndex, unsigned int index, Int &offset) { return uniformAddress(bufferIndex, index) + offset * sizeof(float4); } Vector4f VertexProgram::readConstant(const Src &src, unsigned int offset) { Vector4f c; unsigned int i = src.index + offset; if(src.rel.type == Shader::PARAMETER_VOID) // Not relative { c.x = c.y = c.z = c.w = *Pointer(uniformAddress(src.bufferIndex, i)); c.x = c.x.xxxx; c.y = c.y.yyyy; c.z = c.z.zzzz; c.w = c.w.wwww; if(shader->containsDefineInstruction()) // Constant may be known at compile time { for(size_t j = 0; j < shader->getLength(); j++) { const Shader::Instruction &instruction = *shader->getInstruction(j); if(instruction.opcode == Shader::OPCODE_DEF) { if(instruction.dst.index == i) { c.x = Float4(instruction.src[0].value[0]); c.y = Float4(instruction.src[0].value[1]); c.z = Float4(instruction.src[0].value[2]); c.w = Float4(instruction.src[0].value[3]); break; } } } } } else if(!src.rel.dynamic || src.rel.type == Shader::PARAMETER_LOOP) { Int a = relativeAddress(src.rel, src.bufferIndex); c.x = c.y = c.z = c.w = *Pointer(uniformAddress(src.bufferIndex, i, a)); c.x = c.x.xxxx; c.y = c.y.yyyy; c.z = c.z.zzzz; c.w = c.w.wwww; } else { int component = src.rel.swizzle & 0x03; Float4 a; switch(src.rel.type) { case Shader::PARAMETER_ADDR: a = a0[component]; break; case Shader::PARAMETER_TEMP: a = r[src.rel.index][component]; break; case Shader::PARAMETER_INPUT: a = v[src.rel.index][component]; break; case Shader::PARAMETER_OUTPUT: a = o[src.rel.index][component]; break; case Shader::PARAMETER_CONST: a = *Pointer(uniformAddress(src.bufferIndex, src.rel.index) + component * sizeof(float)); break; case Shader::PARAMETER_MISCTYPE: switch(src.rel.index) { case Shader::InstanceIDIndex: a = As(Int4(instanceID)); break; case Shader::VertexIDIndex: a = As(vertexID); break; default: ASSERT(false); } break; default: ASSERT(false); } Int4 index = Int4(i) + As(a) * Int4(src.rel.scale); if (src.bufferIndex == -1) { index = Min(As(index), UInt4(VERTEX_UNIFORM_VECTORS)); // Clamp to constant register range, c[VERTEX_UNIFORM_VECTORS] = {0, 0, 0, 0} } Int index0 = Extract(index, 0); Int index1 = Extract(index, 1); Int index2 = Extract(index, 2); Int index3 = Extract(index, 3); c.x = *Pointer(uniformAddress(src.bufferIndex, 0, index0), 16); c.y = *Pointer(uniformAddress(src.bufferIndex, 0, index1), 16); c.z = *Pointer(uniformAddress(src.bufferIndex, 0, index2), 16); c.w = *Pointer(uniformAddress(src.bufferIndex, 0, index3), 16); transpose4x4(c.x, c.y, c.z, c.w); } return c; } Int VertexProgram::relativeAddress(const Shader::Relative &rel, int bufferIndex) { ASSERT(!rel.dynamic); if(rel.type == Shader::PARAMETER_TEMP) { return As(Extract(r[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_INPUT) { return As(Extract(v[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_OUTPUT) { return As(Extract(o[rel.index].x, 0)) * rel.scale; } else if(rel.type == Shader::PARAMETER_CONST) { return *Pointer(uniformAddress(bufferIndex, rel.index)) * rel.scale; } else if(rel.type == Shader::PARAMETER_LOOP) { return aL[loopDepth]; } else ASSERT(false); return 0; } Int4 VertexProgram::dynamicAddress(const Shader::Relative &rel) { int component = rel.swizzle & 0x03; Float4 a; switch(rel.type) { case Shader::PARAMETER_ADDR: a = a0[component]; break; case Shader::PARAMETER_TEMP: a = r[rel.index][component]; break; case Shader::PARAMETER_INPUT: a = v[rel.index][component]; break; case Shader::PARAMETER_OUTPUT: a = o[rel.index][component]; break; case Shader::PARAMETER_MISCTYPE: switch(rel.index) { case Shader::InstanceIDIndex: a = As(instanceID); break; case Shader::VertexIDIndex: a = As(vertexID); break; default: ASSERT(false); } break; default: ASSERT(false); } return As(a) * Int4(rel.scale); } Int4 VertexProgram::enableMask(const Shader::Instruction *instruction) { if(scalar) { return Int4(0xFFFFFFFF); } Int4 enable = instruction->analysisBranch ? Int4(enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]) : Int4(0xFFFFFFFF); if(shader->containsBreakInstruction() && instruction->analysisBreak) { enable &= enableBreak; } if(shader->containsContinueInstruction() && instruction->analysisContinue) { enable &= enableContinue; } if(shader->containsLeaveInstruction() && instruction->analysisLeave) { enable &= enableLeave; } return enable; } void VertexProgram::M3X2(Vector4f &dst, Vector4f &src0, Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); } void VertexProgram::M3X3(Vector4f &dst, Vector4f &src0, Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); dst.z = dot3(src0, row2); } void VertexProgram::M3X4(Vector4f &dst, Vector4f &src0, Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); Vector4f row3 = fetchRegister(src1, 3); dst.x = dot3(src0, row0); dst.y = dot3(src0, row1); dst.z = dot3(src0, row2); dst.w = dot3(src0, row3); } void VertexProgram::M4X3(Vector4f &dst, Vector4f &src0, Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); dst.x = dot4(src0, row0); dst.y = dot4(src0, row1); dst.z = dot4(src0, row2); } void VertexProgram::M4X4(Vector4f &dst, Vector4f &src0, Src &src1) { Vector4f row0 = fetchRegister(src1, 0); Vector4f row1 = fetchRegister(src1, 1); Vector4f row2 = fetchRegister(src1, 2); Vector4f row3 = fetchRegister(src1, 3); dst.x = dot4(src0, row0); dst.y = dot4(src0, row1); dst.z = dot4(src0, row2); dst.w = dot4(src0, row3); } void VertexProgram::BREAK() { enableBreak = enableBreak & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } void VertexProgram::BREAKC(Vector4f &src0, Vector4f &src1, Control control) { Int4 condition; switch(control) { case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break; case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break; case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break; case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break; case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break; case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break; default: ASSERT(false); } BREAK(condition); } void VertexProgram::BREAKP(const Src &predicateRegister) // FIXME: Factor out parts common with BREAKC { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } BREAK(condition); } void VertexProgram::BREAK(Int4 &condition) { condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; enableBreak = enableBreak & ~condition; } void VertexProgram::CONTINUE() { enableContinue = enableContinue & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } void VertexProgram::TEST() { enableContinue = restoreContinue.back(); restoreContinue.pop_back(); } void VertexProgram::SCALAR() { scalar = true; } void VertexProgram::CALL(int labelIndex, int callSiteIndex) { if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } Int4 restoreLeave = enableLeave; Nucleus::createBr(labelBlock[labelIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableLeave = restoreLeave; } void VertexProgram::CALLNZ(int labelIndex, int callSiteIndex, const Src &src) { if(src.type == Shader::PARAMETER_CONSTBOOL) { CALLNZb(labelIndex, callSiteIndex, src); } else if(src.type == Shader::PARAMETER_PREDICATE) { CALLNZp(labelIndex, callSiteIndex, src); } else ASSERT(false); } void VertexProgram::CALLNZb(int labelIndex, int callSiteIndex, const Src &boolRegister) { Bool condition = (*Pointer(data + OFFSET(DrawData,vs.b[boolRegister.index])) != Byte(0)); // FIXME if(boolRegister.modifier == Shader::MODIFIER_NOT) { condition = !condition; } if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } Int4 restoreLeave = enableLeave; branch(condition, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableLeave = restoreLeave; } void VertexProgram::CALLNZp(int labelIndex, int callSiteIndex, const Src &predicateRegister) { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } if(callRetBlock[labelIndex].size() > 1) { callStack[stackIndex++] = UInt(callSiteIndex); } enableIndex++; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; Int4 restoreLeave = enableLeave; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, labelBlock[labelIndex], callRetBlock[labelIndex][callSiteIndex]); Nucleus::setInsertBlock(callRetBlock[labelIndex][callSiteIndex]); enableIndex--; enableLeave = restoreLeave; } void VertexProgram::ELSE() { ifDepth--; BasicBlock *falseBlock = ifFalseBlock[ifDepth]; BasicBlock *endBlock = Nucleus::createBasicBlock(); if(isConditionalIf[ifDepth]) { Int4 condition = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, falseBlock, endBlock); enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] & enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; } else { Nucleus::createBr(endBlock); Nucleus::setInsertBlock(falseBlock); } ifFalseBlock[ifDepth] = endBlock; ifDepth++; } void VertexProgram::ENDIF() { ifDepth--; BasicBlock *endBlock = ifFalseBlock[ifDepth]; Nucleus::createBr(endBlock); Nucleus::setInsertBlock(endBlock); if(isConditionalIf[ifDepth]) { enableIndex--; } } void VertexProgram::ENDLOOP() { loopRepDepth--; aL[loopDepth] = aL[loopDepth] + increment[loopDepth]; // FIXME: += BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); loopDepth--; enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } void VertexProgram::ENDREP() { loopRepDepth--; BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); loopDepth--; enableBreak = Int4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); } void VertexProgram::ENDWHILE() { loopRepDepth--; BasicBlock *testBlock = loopRepTestBlock[loopRepDepth]; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(testBlock); Nucleus::setInsertBlock(endBlock); enableIndex--; scalar = false; } void VertexProgram::ENDSWITCH() { loopRepDepth--; BasicBlock *endBlock = loopRepEndBlock[loopRepDepth]; Nucleus::createBr(endBlock); Nucleus::setInsertBlock(endBlock); } void VertexProgram::IF(const Src &src) { if(src.type == Shader::PARAMETER_CONSTBOOL) { IFb(src); } else if(src.type == Shader::PARAMETER_PREDICATE) { IFp(src); } else { Int4 condition = As(fetchRegister(src).x); IF(condition); } } void VertexProgram::IFb(const Src &boolRegister) { ASSERT(ifDepth < 24 + 4); Bool condition = (*Pointer(data + OFFSET(DrawData,vs.b[boolRegister.index])) != Byte(0)); // FIXME if(boolRegister.modifier == Shader::MODIFIER_NOT) { condition = !condition; } BasicBlock *trueBlock = Nucleus::createBasicBlock(); BasicBlock *falseBlock = Nucleus::createBasicBlock(); branch(condition, trueBlock, falseBlock); isConditionalIf[ifDepth] = false; ifFalseBlock[ifDepth] = falseBlock; ifDepth++; } void VertexProgram::IFp(const Src &predicateRegister) { Int4 condition = As(p0[predicateRegister.swizzle & 0x3]); if(predicateRegister.modifier == Shader::MODIFIER_NOT) { condition = ~condition; } IF(condition); } void VertexProgram::IFC(Vector4f &src0, Vector4f &src1, Control control) { Int4 condition; switch(control) { case Shader::CONTROL_GT: condition = CmpNLE(src0.x, src1.x); break; case Shader::CONTROL_EQ: condition = CmpEQ(src0.x, src1.x); break; case Shader::CONTROL_GE: condition = CmpNLT(src0.x, src1.x); break; case Shader::CONTROL_LT: condition = CmpLT(src0.x, src1.x); break; case Shader::CONTROL_NE: condition = CmpNEQ(src0.x, src1.x); break; case Shader::CONTROL_LE: condition = CmpLE(src0.x, src1.x); break; default: ASSERT(false); } IF(condition); } void VertexProgram::IF(Int4 &condition) { condition &= enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; enableIndex++; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; BasicBlock *trueBlock = Nucleus::createBasicBlock(); BasicBlock *falseBlock = Nucleus::createBasicBlock(); Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, trueBlock, falseBlock); isConditionalIf[ifDepth] = true; ifFalseBlock[ifDepth] = falseBlock; ifDepth++; } void VertexProgram::LABEL(int labelIndex) { if(!labelBlock[labelIndex]) { labelBlock[labelIndex] = Nucleus::createBasicBlock(); } Nucleus::setInsertBlock(labelBlock[labelIndex]); currentLabel = labelIndex; } void VertexProgram::LOOP(const Src &integerRegister) { loopDepth++; iteration[loopDepth] = *Pointer(data + OFFSET(DrawData,vs.i[integerRegister.index][0])); aL[loopDepth] = *Pointer(data + OFFSET(DrawData,vs.i[integerRegister.index][1])); increment[loopDepth] = *Pointer(data + OFFSET(DrawData,vs.i[integerRegister.index][2])); // FIXME: Compiles to two instructions? If(increment[loopDepth] == 0) { increment[loopDepth] = 1; } BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; // FIXME: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); branch(iteration[loopDepth] > 0, loopBlock, endBlock); Nucleus::setInsertBlock(loopBlock); iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: -- loopRepDepth++; } void VertexProgram::REP(const Src &integerRegister) { loopDepth++; iteration[loopDepth] = *Pointer(data + OFFSET(DrawData,vs.i[integerRegister.index][0])); aL[loopDepth] = aL[loopDepth - 1]; BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; // FIXME: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); branch(iteration[loopDepth] > 0, loopBlock, endBlock); Nucleus::setInsertBlock(loopBlock); iteration[loopDepth] = iteration[loopDepth] - 1; // FIXME: -- loopRepDepth++; } void VertexProgram::WHILE(const Src &temporaryRegister) { enableIndex++; BasicBlock *loopBlock = Nucleus::createBasicBlock(); BasicBlock *testBlock = Nucleus::createBasicBlock(); BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = testBlock; loopRepEndBlock[loopRepDepth] = endBlock; Int4 restoreBreak = enableBreak; restoreContinue.push_back(enableContinue); // TODO: jump(testBlock) Nucleus::createBr(testBlock); Nucleus::setInsertBlock(testBlock); const Vector4f &src = fetchRegister(temporaryRegister); Int4 condition = As(src.x); condition &= enableStack[Min(enableIndex - 1, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; if(shader->containsLeaveInstruction()) condition &= enableLeave; if(shader->containsBreakInstruction()) condition &= enableBreak; enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))] = condition; Bool notAllFalse = SignMask(condition) != 0; branch(notAllFalse, loopBlock, endBlock); Nucleus::setInsertBlock(endBlock); enableBreak = restoreBreak; Nucleus::setInsertBlock(loopBlock); loopRepDepth++; scalar = false; } void VertexProgram::SWITCH() { BasicBlock *endBlock = Nucleus::createBasicBlock(); loopRepTestBlock[loopRepDepth] = nullptr; loopRepEndBlock[loopRepDepth] = endBlock; Int4 restoreBreak = enableBreak; BasicBlock *currentBlock = Nucleus::getInsertBlock(); Nucleus::setInsertBlock(endBlock); enableBreak = restoreBreak; Nucleus::setInsertBlock(currentBlock); loopRepDepth++; } void VertexProgram::RET() { if(currentLabel == -1) { returnBlock = Nucleus::createBasicBlock(); Nucleus::createBr(returnBlock); } else { BasicBlock *unreachableBlock = Nucleus::createBasicBlock(); if(callRetBlock[currentLabel].size() > 1) // Pop the return destination from the call stack { // FIXME: Encapsulate UInt index = callStack[--stackIndex]; Value *value = index.loadValue(); SwitchCases *switchCases = Nucleus::createSwitch(value, unreachableBlock, (int)callRetBlock[currentLabel].size()); for(unsigned int i = 0; i < callRetBlock[currentLabel].size(); i++) { Nucleus::addSwitchCase(switchCases, i, callRetBlock[currentLabel][i]); } } else if(callRetBlock[currentLabel].size() == 1) // Jump directly to the unique return destination { Nucleus::createBr(callRetBlock[currentLabel][0]); } else // Function isn't called { Nucleus::createBr(unreachableBlock); } Nucleus::setInsertBlock(unreachableBlock); Nucleus::createUnreachable(); } } void VertexProgram::LEAVE() { enableLeave = enableLeave & ~enableStack[Min(enableIndex, Int(MAX_SHADER_ENABLE_STACK_SIZE))]; // FIXME: Return from function if all instances left // FIXME: Use enableLeave in other control-flow constructs } void VertexProgram::TEX(Vector4f &dst, Vector4f &src0, const Src &src1) { dst = sampleTexture(src1, src0, (src0.x), (src0), (src0), (src0), Base); } void VertexProgram::TEXOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &offset) { dst = sampleTexture(src1, src0, (src0.x), (src0), (src0), offset, {Base, Offset}); } void VertexProgram::TEXLOD(Vector4f &dst, Vector4f &src0, const Src& src1, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Lod); } void VertexProgram::TEXLODOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &offset, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Lod, Offset}); } void VertexProgram::TEXELFETCH(Vector4f &dst, Vector4f &src0, const Src& src1, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), (src0), Fetch); } void VertexProgram::TEXELFETCHOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &offset, Float4 &lod) { dst = sampleTexture(src1, src0, lod, (src0), (src0), offset, {Fetch, Offset}); } void VertexProgram::TEXGRAD(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy) { dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, src0, Grad); } void VertexProgram::TEXGRADOFFSET(Vector4f &dst, Vector4f &src0, const Src& src1, Vector4f &dsx, Vector4f &dsy, Vector4f &offset) { dst = sampleTexture(src1, src0, (src0.x), dsx, dsy, offset, {Grad, Offset}); } void VertexProgram::TEXSIZE(Vector4f &dst, Float4 &lod, const Src &src1) { bool uniformSampler = (src1.type == Shader::PARAMETER_SAMPLER && src1.rel.type == Shader::PARAMETER_VOID); Int offset = uniformSampler ? src1.index * sizeof(Texture) : As(Float(fetchRegister(src1).x.x)) * sizeof(Texture); Pointer texture = data + OFFSET(DrawData, mipmap[TEXTURE_IMAGE_UNITS]) + offset; dst = SamplerCore::textureSize(texture, lod); } Vector4f VertexProgram::sampleTexture(const Src &s, Vector4f &uvwq, Float4 &lod, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function) { Vector4f tmp; if(s.type == Shader::PARAMETER_SAMPLER && s.rel.type == Shader::PARAMETER_VOID) { tmp = sampleTexture(s.index, uvwq, lod, dsx, dsy, offset, function); } else { Int index = As(Float(fetchRegister(s).x.x)); for(int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++) { if(shader->usesSampler(i)) { If(index == i) { tmp = sampleTexture(i, uvwq, lod, dsx, dsy, offset, function); // FIXME: When the sampler states are the same, we could use one sampler and just index the texture } } } } Vector4f c; c.x = tmp[(s.swizzle >> 0) & 0x3]; c.y = tmp[(s.swizzle >> 2) & 0x3]; c.z = tmp[(s.swizzle >> 4) & 0x3]; c.w = tmp[(s.swizzle >> 6) & 0x3]; return c; } Vector4f VertexProgram::sampleTexture(int sampler, Vector4f &uvwq, Float4 &lod, Vector4f &dsx, Vector4f &dsy, Vector4f &offset, SamplerFunction function) { Pointer texture = data + OFFSET(DrawData, mipmap[TEXTURE_IMAGE_UNITS]) + sampler * sizeof(Texture); return SamplerCore(constants, state.sampler[sampler]).sampleTexture(texture, uvwq.x, uvwq.y, uvwq.z, uvwq.w, lod, dsx, dsy, offset, function); } }