// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VkBuffer.hpp" #include "VkBufferView.hpp" #include "VkCommandBuffer.hpp" #include "VkCommandPool.hpp" #include "VkConfig.hpp" #include "VkDebugUtilsMessenger.hpp" #include "VkDescriptorPool.hpp" #include "VkDescriptorSetLayout.hpp" #include "VkDescriptorUpdateTemplate.hpp" #include "VkDestroy.hpp" #include "VkDevice.hpp" #include "VkDeviceMemory.hpp" #include "VkEvent.hpp" #include "VkFence.hpp" #include "VkFramebuffer.hpp" #include "VkGetProcAddress.hpp" #include "VkImage.hpp" #include "VkImageView.hpp" #include "VkInstance.hpp" #include "VkPhysicalDevice.hpp" #include "VkPipeline.hpp" #include "VkPipelineCache.hpp" #include "VkPipelineLayout.hpp" #include "VkQueryPool.hpp" #include "VkQueue.hpp" #include "VkRenderPass.hpp" #include "VkSampler.hpp" #include "VkSemaphore.hpp" #include "VkShaderModule.hpp" #include "VkStringify.hpp" #include "VkTimelineSemaphore.hpp" #include "System/Debug.hpp" #if defined(VK_USE_PLATFORM_METAL_EXT) || defined(VK_USE_PLATFORM_MACOS_MVK) # include "WSI/MetalSurface.hpp" #endif #ifdef VK_USE_PLATFORM_XCB_KHR # include "WSI/XcbSurfaceKHR.hpp" #endif #ifdef VK_USE_PLATFORM_XLIB_KHR # include "WSI/XlibSurfaceKHR.hpp" #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR # include "WSI/WaylandSurfaceKHR.hpp" #endif #ifdef VK_USE_PLATFORM_DIRECTFB_EXT # include "WSI/DirectFBSurfaceEXT.hpp" #endif #ifdef VK_USE_PLATFORM_DISPLAY_KHR # include "WSI/DisplaySurfaceKHR.hpp" #endif #ifdef VK_USE_PLATFORM_WIN32_KHR # include "WSI/Win32SurfaceKHR.hpp" #endif #include "WSI/HeadlessSurfaceKHR.hpp" #ifdef __ANDROID__ # include "commit.h" # include "System/GrallocAndroid.hpp" # include # include # include # ifdef SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER # include "VkDeviceMemoryExternalAndroid.hpp" # endif #endif #include "WSI/VkSwapchainKHR.hpp" #include "Reactor/Nucleus.hpp" #include "marl/mutex.h" #include "marl/scheduler.h" #include "marl/thread.h" #include "marl/tsa.h" #include "System/CPUID.hpp" #include #include #include #include #include namespace { // Enable commit_id.py and #include commit.h for other platforms. #if defined(__ANDROID__) && defined(ENABLE_BUILD_VERSION_OUTPUT) void logBuildVersionInformation() { // TODO(b/144093703): Don't call __android_log_print() directly __android_log_print(ANDROID_LOG_INFO, "SwiftShader", "SwiftShader Version: %s", SWIFTSHADER_VERSION_STRING); } #endif // __ANDROID__ && ENABLE_BUILD_VERSION_OUTPUT // setReactorDefaultConfig() sets the default configuration for Vulkan's use of // Reactor. void setReactorDefaultConfig() { auto cfg = rr::Config::Edit() .set(rr::Optimization::Level::Default) .clearOptimizationPasses() .add(rr::Optimization::Pass::ScalarReplAggregates) .add(rr::Optimization::Pass::SCCP) .add(rr::Optimization::Pass::CFGSimplification) .add(rr::Optimization::Pass::EarlyCSEPass) .add(rr::Optimization::Pass::CFGSimplification) .add(rr::Optimization::Pass::InstructionCombining); rr::Nucleus::adjustDefaultConfig(cfg); } void setCPUDefaults() { sw::CPUID::setEnableSSE4_1(true); sw::CPUID::setEnableSSSE3(true); sw::CPUID::setEnableSSE3(true); sw::CPUID::setEnableSSE2(true); sw::CPUID::setEnableSSE(true); } std::shared_ptr getOrCreateScheduler() { struct Scheduler { marl::mutex mutex; std::weak_ptr weakptr GUARDED_BY(mutex); }; static Scheduler scheduler; marl::lock lock(scheduler.mutex); auto sptr = scheduler.weakptr.lock(); if(!sptr) { marl::Scheduler::Config cfg; cfg.setWorkerThreadCount(std::min(marl::Thread::numLogicalCPUs(), 16)); cfg.setWorkerThreadInitializer([](int) { sw::CPUID::setFlushToZero(true); sw::CPUID::setDenormalsAreZero(true); }); sptr = std::make_shared(cfg); scheduler.weakptr = sptr; } return sptr; } // initializeLibrary() is called by vkCreateInstance() to perform one-off global // initialization of the swiftshader driver. void initializeLibrary() { static bool doOnce = [] { #if defined(__ANDROID__) && defined(ENABLE_BUILD_VERSION_OUTPUT) logBuildVersionInformation(); #endif // __ANDROID__ && ENABLE_BUILD_VERSION_OUTPUT setReactorDefaultConfig(); setCPUDefaults(); return true; }(); (void)doOnce; } template void ValidateRenderPassPNextChain(VkDevice device, const T *pCreateInfo) { const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); while(extensionCreateInfo) { switch(extensionCreateInfo->sType) { case VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO: { const VkRenderPassInputAttachmentAspectCreateInfo *inputAttachmentAspectCreateInfo = reinterpret_cast(extensionCreateInfo); for(uint32_t i = 0; i < inputAttachmentAspectCreateInfo->aspectReferenceCount; i++) { const auto &aspectReference = inputAttachmentAspectCreateInfo->pAspectReferences[i]; ASSERT(aspectReference.subpass < pCreateInfo->subpassCount); const auto &subpassDescription = pCreateInfo->pSubpasses[aspectReference.subpass]; ASSERT(aspectReference.inputAttachmentIndex < subpassDescription.inputAttachmentCount); const auto &attachmentReference = subpassDescription.pInputAttachments[aspectReference.inputAttachmentIndex]; if(attachmentReference.attachment != VK_ATTACHMENT_UNUSED) { // If the pNext chain includes an instance of VkRenderPassInputAttachmentAspectCreateInfo, for any // element of the pInputAttachments member of any element of pSubpasses where the attachment member // is not VK_ATTACHMENT_UNUSED, the aspectMask member of the corresponding element of // VkRenderPassInputAttachmentAspectCreateInfo::pAspectReferences must only include aspects that are // present in images of the format specified by the element of pAttachments at attachment vk::Format format(pCreateInfo->pAttachments[attachmentReference.attachment].format); bool isDepth = format.isDepth(); bool isStencil = format.isStencil(); ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) || (!isDepth && !isStencil)); ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) || isDepth); ASSERT(!(aspectReference.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) || isStencil); } } } break; case VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO: { const VkRenderPassMultiviewCreateInfo *multiviewCreateInfo = reinterpret_cast(extensionCreateInfo); ASSERT((multiviewCreateInfo->subpassCount == 0) || (multiviewCreateInfo->subpassCount == pCreateInfo->subpassCount)); ASSERT((multiviewCreateInfo->dependencyCount == 0) || (multiviewCreateInfo->dependencyCount == pCreateInfo->dependencyCount)); bool zeroMask = (multiviewCreateInfo->pViewMasks[0] == 0); for(uint32_t i = 1; i < multiviewCreateInfo->subpassCount; i++) { ASSERT((multiviewCreateInfo->pViewMasks[i] == 0) == zeroMask); } if(zeroMask) { ASSERT(multiviewCreateInfo->correlationMaskCount == 0); } for(uint32_t i = 0; i < multiviewCreateInfo->dependencyCount; i++) { const auto &dependency = pCreateInfo->pDependencies[i]; if(multiviewCreateInfo->pViewOffsets[i] != 0) { ASSERT(dependency.srcSubpass != dependency.dstSubpass); ASSERT(dependency.dependencyFlags & VK_DEPENDENCY_VIEW_LOCAL_BIT); } if(zeroMask) { ASSERT(!(dependency.dependencyFlags & VK_DEPENDENCY_VIEW_LOCAL_BIT)); } } // If the pNext chain includes an instance of VkRenderPassMultiviewCreateInfo, // each element of its pViewMask member must not include a bit at a position // greater than the value of VkPhysicalDeviceLimits::maxFramebufferLayers // pViewMask is a 32 bit value. If maxFramebufferLayers > 32, it's impossible // for pViewMask to contain a bit at an illegal position // Note: Verify pViewMask values instead if we hit this assert ASSERT(vk::Cast(device)->getPhysicalDevice()->getProperties().limits.maxFramebufferLayers >= 32); } break; default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } } } // namespace extern "C" { VK_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName) { TRACE("(VkInstance instance = %p, const char* pName = %p)", instance, pName); return vk::GetInstanceProcAddr(vk::Cast(instance), pName); } VK_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion) { *pSupportedVersion = 3; return VK_SUCCESS; } #if VK_USE_PLATFORM_FUCHSIA // This symbol must be exported by a Fuchsia Vulkan ICD. The Vulkan loader will // call it, passing the address of a global function pointer that can later be // used at runtime to connect to Fuchsia FIDL services, as required by certain // extensions. See https://fxbug.dev/13095 for more details. // // NOTE: This entry point has not been upstreamed to Khronos yet, which reserves // all symbols starting with vk_icd. See https://fxbug.dev/13074 which // tracks upstreaming progress. VK_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdInitializeConnectToServiceCallback( PFN_vkConnectToService callback) { TRACE("(callback = %p)", callback); vk::icdFuchsiaServiceConnectCallback = callback; return VK_SUCCESS; } #endif // VK_USE_PLATFORM_FUCHSIA struct ExtensionProperties : public VkExtensionProperties { bool isSupported = true; }; static const ExtensionProperties instanceExtensionProperties[] = { { { VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_CREATION_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_CAPABILITIES_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_SPEC_VERSION } }, { { VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION } }, { { VK_EXT_DEBUG_UTILS_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_SPEC_VERSION } }, { { VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_SPEC_VERSION } }, #ifndef __ANDROID__ { { VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_SURFACE_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_XCB_KHR { { VK_KHR_XCB_SURFACE_EXTENSION_NAME, VK_KHR_XCB_SURFACE_SPEC_VERSION }, vk::XcbSurfaceKHR::hasLibXCB() }, #endif #ifdef VK_USE_PLATFORM_XLIB_KHR { { VK_KHR_XLIB_SURFACE_EXTENSION_NAME, VK_KHR_XLIB_SURFACE_SPEC_VERSION }, static_cast(libX11) }, #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR { { VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, VK_KHR_WAYLAND_SURFACE_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_DIRECTFB_EXT { { VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME, VK_EXT_DIRECTFB_SURFACE_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_DISPLAY_KHR { { VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_DISPLAY_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_MACOS_MVK { { VK_MVK_MACOS_SURFACE_EXTENSION_NAME, VK_MVK_MACOS_SURFACE_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_METAL_EXT { { VK_EXT_METAL_SURFACE_EXTENSION_NAME, VK_EXT_METAL_SURFACE_SPEC_VERSION } }, #endif #ifdef VK_USE_PLATFORM_WIN32_KHR { { VK_KHR_WIN32_SURFACE_EXTENSION_NAME, VK_KHR_WIN32_SURFACE_SPEC_VERSION } }, #endif }; static const ExtensionProperties deviceExtensionProperties[] = { { { VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, VK_KHR_DRIVER_PROPERTIES_SPEC_VERSION } }, // Vulkan 1.1 promoted extensions { { VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, VK_KHR_BIND_MEMORY_2_SPEC_VERSION } }, { { VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, VK_KHR_CREATE_RENDERPASS_2_SPEC_VERSION } }, { { VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION } }, { { VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_SPEC_VERSION } }, { { VK_KHR_DEVICE_GROUP_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_FENCE_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_SPEC_VERSION } }, { { VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_SPEC_VERSION } }, { { VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION } }, { { VK_KHR_MAINTENANCE1_EXTENSION_NAME, VK_KHR_MAINTENANCE1_SPEC_VERSION } }, { { VK_KHR_MAINTENANCE2_EXTENSION_NAME, VK_KHR_MAINTENANCE2_SPEC_VERSION } }, { { VK_KHR_MAINTENANCE3_EXTENSION_NAME, VK_KHR_MAINTENANCE3_SPEC_VERSION } }, { { VK_KHR_MULTIVIEW_EXTENSION_NAME, VK_KHR_MULTIVIEW_SPEC_VERSION } }, { { VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME, VK_KHR_RELAXED_BLOCK_LAYOUT_SPEC_VERSION } }, { { VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, VK_KHR_SAMPLER_YCBCR_CONVERSION_SPEC_VERSION } }, { { VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_SPEC_VERSION } }, // Only 1.1 core version of this is supported. The extension has additional requirements //{{ VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, VK_KHR_SHADER_DRAW_PARAMETERS_SPEC_VERSION }}, { { VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_SPEC_VERSION } }, // Only 1.1 core version of this is supported. The extension has additional requirements //{{ VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME, VK_KHR_VARIABLE_POINTERS_SPEC_VERSION }}, { { VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, VK_EXT_QUEUE_FAMILY_FOREIGN_SPEC_VERSION } }, // The following extension is only used to add support for Bresenham lines { { VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, VK_EXT_LINE_RASTERIZATION_SPEC_VERSION } }, // The following extension is used by ANGLE to emulate blitting the stencil buffer { { VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME, VK_EXT_SHADER_STENCIL_EXPORT_SPEC_VERSION } }, { { VK_EXT_IMAGE_ROBUSTNESS_EXTENSION_NAME, VK_EXT_IMAGE_ROBUSTNESS_SPEC_VERSION } }, #ifndef __ANDROID__ // We fully support the KHR_swapchain v70 additions, so just track the spec version. { { VK_KHR_SWAPCHAIN_EXTENSION_NAME, VK_KHR_SWAPCHAIN_SPEC_VERSION } }, #else // We only support V7 of this extension. Missing functionality: in V8, // it becomes possible to pass a VkNativeBufferANDROID structure to // vkBindImageMemory2. Android's swapchain implementation does this in // order to support passing VkBindImageMemorySwapchainInfoKHR // (from KHR_swapchain v70) to vkBindImageMemory2. { { VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME, 7 } }, #endif #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER { { VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_SPEC_VERSION } }, #endif #if SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD { { VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_FD_SPEC_VERSION } }, #endif #if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD { { VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_FD_SPEC_VERSION } }, #endif { { VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, VK_EXT_EXTERNAL_MEMORY_HOST_SPEC_VERSION } }, #if VK_USE_PLATFORM_FUCHSIA { { VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_FUCHSIA_EXTERNAL_SEMAPHORE_SPEC_VERSION } }, { { VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME, VK_FUCHSIA_EXTERNAL_MEMORY_SPEC_VERSION } }, #endif { { VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, VK_EXT_PROVOKING_VERTEX_SPEC_VERSION } }, #if !defined(__ANDROID__) { { VK_GOOGLE_SAMPLER_FILTERING_PRECISION_EXTENSION_NAME, VK_GOOGLE_SAMPLER_FILTERING_PRECISION_SPEC_VERSION } }, #endif { { VK_EXT_DEPTH_RANGE_UNRESTRICTED_EXTENSION_NAME, VK_EXT_DEPTH_RANGE_UNRESTRICTED_SPEC_VERSION } }, #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT { { VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME, VK_EXT_DEVICE_MEMORY_REPORT_SPEC_VERSION } }, #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT // Vulkan 1.2 promoted extensions { { VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME, VK_EXT_HOST_QUERY_RESET_SPEC_VERSION } }, { { VK_EXT_SCALAR_BLOCK_LAYOUT_EXTENSION_NAME, VK_EXT_SCALAR_BLOCK_LAYOUT_SPEC_VERSION } }, { { VK_EXT_SEPARATE_STENCIL_USAGE_EXTENSION_NAME, VK_EXT_SEPARATE_STENCIL_USAGE_SPEC_VERSION } }, { { VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME, VK_KHR_DEPTH_STENCIL_RESOLVE_SPEC_VERSION } }, { { VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, VK_KHR_IMAGE_FORMAT_LIST_SPEC_VERSION } }, { { VK_KHR_IMAGELESS_FRAMEBUFFER_EXTENSION_NAME, VK_KHR_IMAGELESS_FRAMEBUFFER_SPEC_VERSION } }, { { VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME, VK_KHR_SHADER_FLOAT_CONTROLS_SPEC_VERSION } }, { { VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_EXTENSION_NAME, VK_KHR_SHADER_SUBGROUP_EXTENDED_TYPES_SPEC_VERSION } }, { { VK_KHR_SPIRV_1_4_EXTENSION_NAME, VK_KHR_SPIRV_1_4_SPEC_VERSION } }, { { VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_EXTENSION_NAME, VK_KHR_UNIFORM_BUFFER_STANDARD_LAYOUT_SPEC_VERSION } }, { { VK_KHR_TIMELINE_SEMAPHORE_EXTENSION_NAME, VK_KHR_TIMELINE_SEMAPHORE_SPEC_VERSION } }, }; static uint32_t numSupportedExtensions(const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount) { uint32_t count = 0; for(uint32_t i = 0; i < extensionPropertiesCount; i++) { if(extensionProperties[i].isSupported) { count++; } } return count; } static uint32_t numInstanceSupportedExtensions() { return numSupportedExtensions(instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0])); } static uint32_t numDeviceSupportedExtensions() { return numSupportedExtensions(deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0])); } static bool hasExtension(const char *extensionName, const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount) { for(uint32_t i = 0; i < extensionPropertiesCount; i++) { if(strcmp(extensionName, extensionProperties[i].extensionName) == 0) { return extensionProperties[i].isSupported; } } return false; } static bool hasInstanceExtension(const char *extensionName) { return hasExtension(extensionName, instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0])); } static bool hasDeviceExtension(const char *extensionName) { return hasExtension(extensionName, deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0])); } static void copyExtensions(VkExtensionProperties *pProperties, uint32_t toCopy, const ExtensionProperties *extensionProperties, uint32_t extensionPropertiesCount) { for(uint32_t i = 0, j = 0; i < toCopy; i++, j++) { while((j < extensionPropertiesCount) && !extensionProperties[j].isSupported) { j++; } if(j < extensionPropertiesCount) { pProperties[i] = extensionProperties[j]; } } } static void copyInstanceExtensions(VkExtensionProperties *pProperties, uint32_t toCopy) { copyExtensions(pProperties, toCopy, instanceExtensionProperties, sizeof(instanceExtensionProperties) / sizeof(instanceExtensionProperties[0])); } static void copyDeviceExtensions(VkExtensionProperties *pProperties, uint32_t toCopy) { copyExtensions(pProperties, toCopy, deviceExtensionProperties, sizeof(deviceExtensionProperties) / sizeof(deviceExtensionProperties[0])); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) { TRACE("(const VkInstanceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkInstance* pInstance = %p)", pCreateInfo, pAllocator, pInstance); initializeLibrary(); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } if(pCreateInfo->enabledLayerCount != 0) { UNIMPLEMENTED("b/148240133: pCreateInfo->enabledLayerCount != 0"); // FIXME(b/148240133) } for(uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; ++i) { if(!hasInstanceExtension(pCreateInfo->ppEnabledExtensionNames[i])) { return VK_ERROR_EXTENSION_NOT_PRESENT; } } VkDebugUtilsMessengerEXT messenger = { VK_NULL_HANDLE }; if(pCreateInfo->pNext) { const VkBaseInStructure *createInfo = reinterpret_cast(pCreateInfo->pNext); switch(createInfo->sType) { case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT: { const VkDebugUtilsMessengerCreateInfoEXT *debugUtilsMessengerCreateInfoEXT = reinterpret_cast(createInfo); VkResult result = vk::DebugUtilsMessenger::Create(pAllocator, debugUtilsMessengerCreateInfoEXT, &messenger); if(result != VK_SUCCESS) { return result; } } break; case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO: // According to the Vulkan spec, section 2.7.2. Implicit Valid Usage: // "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and // VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for // internal use by the loader, and do not have corresponding // Vulkan structures in this Specification." break; default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(createInfo->sType).c_str()); break; } } *pInstance = VK_NULL_HANDLE; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkResult result = vk::DispatchablePhysicalDevice::Create(pAllocator, pCreateInfo, &physicalDevice); if(result != VK_SUCCESS) { vk::destroy(messenger, pAllocator); return result; } result = vk::DispatchableInstance::Create(pAllocator, pCreateInfo, pInstance, physicalDevice, vk::Cast(messenger)); if(result != VK_SUCCESS) { vk::destroy(messenger, pAllocator); vk::destroy(physicalDevice, pAllocator); return result; } return result; } VKAPI_ATTR void VKAPI_CALL vkDestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) { TRACE("(VkInstance instance = %p, const VkAllocationCallbacks* pAllocator = %p)", instance, pAllocator); vk::destroy(instance, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices) { TRACE("(VkInstance instance = %p, uint32_t* pPhysicalDeviceCount = %p, VkPhysicalDevice* pPhysicalDevices = %p)", instance, pPhysicalDeviceCount, pPhysicalDevices); return vk::Cast(instance)->getPhysicalDevices(pPhysicalDeviceCount, pPhysicalDevices); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceFeatures* pFeatures = %p)", physicalDevice, pFeatures); *pFeatures = vk::Cast(physicalDevice)->getFeatures(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties *pFormatProperties) { TRACE("GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkFormatProperties* pFormatProperties = %p)", physicalDevice, (int)format, pFormatProperties); vk::PhysicalDevice::GetFormatProperties(format, pFormatProperties); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties *pImageFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkImageType type = %d, VkImageTiling tiling = %d, VkImageUsageFlags usage = %d, VkImageCreateFlags flags = %d, VkImageFormatProperties* pImageFormatProperties = %p)", physicalDevice, (int)format, (int)type, (int)tiling, usage, flags, pImageFormatProperties); VkPhysicalDeviceImageFormatInfo2 info2 = {}; info2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2; info2.pNext = nullptr; info2.format = format; info2.type = type; info2.tiling = tiling; info2.usage = usage; info2.flags = flags; VkImageFormatProperties2 properties2 = {}; properties2.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2; properties2.pNext = nullptr; VkResult result = vkGetPhysicalDeviceImageFormatProperties2(physicalDevice, &info2, &properties2); *pImageFormatProperties = properties2.imageFormatProperties; return result; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceProperties* pProperties = %p)", physicalDevice, pProperties); *pProperties = vk::Cast(physicalDevice)->getProperties(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties *pQueueFamilyProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pQueueFamilyPropertyCount = %p, VkQueueFamilyProperties* pQueueFamilyProperties = %p))", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties); if(!pQueueFamilyProperties) { *pQueueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount(); } else { vk::Cast(physicalDevice)->getQueueFamilyProperties(*pQueueFamilyPropertyCount, pQueueFamilyProperties); } } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pMemoryProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceMemoryProperties* pMemoryProperties = %p)", physicalDevice, pMemoryProperties); *pMemoryProperties = vk::PhysicalDevice::GetMemoryProperties(); } VK_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *pName) { TRACE("(VkInstance instance = %p, const char* pName = %p)", instance, pName); return vk::GetInstanceProcAddr(vk::Cast(instance), pName); } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice device, const char *pName) { TRACE("(VkDevice device = %p, const char* pName = %p)", device, pName); return vk::GetDeviceProcAddr(vk::Cast(device), pName); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkDeviceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDevice* pDevice = %p)", physicalDevice, pCreateInfo, pAllocator, pDevice); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } if(pCreateInfo->enabledLayerCount != 0) { // "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations." UNSUPPORTED("pCreateInfo->enabledLayerCount != 0"); } for(uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; ++i) { if(!hasDeviceExtension(pCreateInfo->ppEnabledExtensionNames[i])) { return VK_ERROR_EXTENSION_NOT_PRESENT; } } const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); const VkPhysicalDeviceFeatures *enabledFeatures = pCreateInfo->pEnabledFeatures; while(extensionCreateInfo) { // Casting to a long since some structures, such as // VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT // are not enumerated in the official Vulkan header switch((long)(extensionCreateInfo->sType)) { case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO: // According to the Vulkan spec, section 2.7.2. Implicit Valid Usage: // "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and // VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for // internal use by the loader, and do not have corresponding // Vulkan structures in this Specification." break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: { ASSERT(!pCreateInfo->pEnabledFeatures); // "If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures must be NULL" const VkPhysicalDeviceFeatures2 *physicalDeviceFeatures2 = reinterpret_cast(extensionCreateInfo); enabledFeatures = &physicalDeviceFeatures2->features; } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { const VkPhysicalDeviceSamplerYcbcrConversionFeatures *samplerYcbcrConversionFeatures = reinterpret_cast(extensionCreateInfo); // YCbCr conversion is supported. // samplerYcbcrConversionFeatures->samplerYcbcrConversion can be VK_TRUE or VK_FALSE. // No action needs to be taken on our end in either case; it's the apps responsibility that // "To create a sampler Y'CbCr conversion, the samplerYcbcrConversion feature must be enabled." (void)samplerYcbcrConversionFeatures->samplerYcbcrConversion; } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { const VkPhysicalDevice16BitStorageFeatures *storage16BitFeatures = reinterpret_cast(extensionCreateInfo); if(storage16BitFeatures->storageBuffer16BitAccess != VK_FALSE || storage16BitFeatures->uniformAndStorageBuffer16BitAccess != VK_FALSE || storage16BitFeatures->storagePushConstant16 != VK_FALSE || storage16BitFeatures->storageInputOutput16 != VK_FALSE) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: { const VkPhysicalDeviceVariablePointerFeatures *variablePointerFeatures = reinterpret_cast(extensionCreateInfo); if(variablePointerFeatures->variablePointersStorageBuffer != VK_FALSE || variablePointerFeatures->variablePointers != VK_FALSE) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: { const VkDeviceGroupDeviceCreateInfo *groupDeviceCreateInfo = reinterpret_cast(extensionCreateInfo); if((groupDeviceCreateInfo->physicalDeviceCount != 1) || (groupDeviceCreateInfo->pPhysicalDevices[0] != physicalDevice)) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { const VkPhysicalDeviceMultiviewFeatures *multiviewFeatures = reinterpret_cast(extensionCreateInfo); if(multiviewFeatures->multiviewGeometryShader || multiviewFeatures->multiviewTessellationShader) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: { const VkPhysicalDeviceShaderDrawParametersFeatures *shaderDrawParametersFeatures = reinterpret_cast(extensionCreateInfo); if(shaderDrawParametersFeatures->shaderDrawParameters) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: { const VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *shaderDrawParametersFeatures = reinterpret_cast(extensionCreateInfo); // Separate depth and stencil layouts is already supported (void)(shaderDrawParametersFeatures->separateDepthStencilLayouts); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: { const VkPhysicalDeviceLineRasterizationFeaturesEXT *lineRasterizationFeatures = reinterpret_cast(extensionCreateInfo); if((lineRasterizationFeatures->smoothLines != VK_FALSE) || (lineRasterizationFeatures->stippledBresenhamLines != VK_FALSE) || (lineRasterizationFeatures->stippledRectangularLines != VK_FALSE) || (lineRasterizationFeatures->stippledSmoothLines != VK_FALSE)) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: { const VkPhysicalDeviceProvokingVertexFeaturesEXT *provokingVertexFeatures = reinterpret_cast(extensionCreateInfo); // Provoking vertex is supported. // provokingVertexFeatures->provokingVertexLast can be VK_TRUE or VK_FALSE. // No action needs to be taken on our end in either case; it's the apps responsibility to check // that the provokingVertexLast feature is enabled before using the provoking vertex convention. (void)provokingVertexFeatures->provokingVertexLast; } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: { const VkPhysicalDeviceImageRobustnessFeaturesEXT *imageRobustnessFeatures = reinterpret_cast(extensionCreateInfo); // We currently always provide robust image accesses. When the feature is disabled, results are // undefined (for images with Dim != Buffer), so providing robustness is also acceptable. // TODO(b/159329067): Only provide robustness when requested. (void)imageRobustnessFeatures->robustImageAccess; } break; // For unsupported structures, check that we don't expose the corresponding extension string: case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: ASSERT(!hasDeviceExtension(VK_EXT_ROBUSTNESS_2_EXTENSION_NAME)); break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: { const VkPhysicalDeviceImagelessFramebufferFeaturesKHR *imagelessFramebufferFeatures = reinterpret_cast(extensionCreateInfo); // Always provide Imageless Framebuffers (void)imagelessFramebufferFeatures->imagelessFramebuffer; } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: { const VkPhysicalDeviceScalarBlockLayoutFeatures *scalarBlockLayoutFeatures = reinterpret_cast(extensionCreateInfo); // VK_EXT_scalar_block_layout is supported, allowing C-like structure layout for SPIR-V blocks. (void)scalarBlockLayoutFeatures->scalarBlockLayout; } break; #ifdef SWIFTSHADER_DEVICE_MEMORY_REPORT case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT: { const VkPhysicalDeviceDeviceMemoryReportFeaturesEXT *deviceMemoryReportFeatures = reinterpret_cast(extensionCreateInfo); (void)deviceMemoryReportFeatures->deviceMemoryReport; } break; #endif // SWIFTSHADER_DEVICE_MEMORY_REPORT case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES: { const VkPhysicalDeviceHostQueryResetFeatures *hostQueryResetFeatures = reinterpret_cast(extensionCreateInfo); // VK_EXT_host_query_reset is always enabled. (void)hostQueryResetFeatures->hostQueryReset; break; } case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES: { const auto *tsFeatures = reinterpret_cast(extensionCreateInfo); // VK_KHR_timeline_semaphores is always enabled (void)tsFeatures->timelineSemaphore; break; } default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } ASSERT(pCreateInfo->queueCreateInfoCount > 0); if(enabledFeatures) { if(!vk::Cast(physicalDevice)->hasFeatures(*enabledFeatures)) { return VK_ERROR_FEATURE_NOT_PRESENT; } } uint32_t queueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount(); for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo &queueCreateInfo = pCreateInfo->pQueueCreateInfos[i]; if(queueCreateInfo.flags != 0) { UNSUPPORTED("pCreateInfo->pQueueCreateInfos[%d]->flags %d", i, queueCreateInfo.flags); } auto extInfo = reinterpret_cast(queueCreateInfo.pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pQueueCreateInfos[%d].pNext sType = %s", i, vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } ASSERT(queueCreateInfo.queueFamilyIndex < queueFamilyPropertyCount); (void)queueFamilyPropertyCount; // Silence unused variable warning } auto scheduler = getOrCreateScheduler(); return vk::DispatchableDevice::Create(pAllocator, pCreateInfo, pDevice, vk::Cast(physicalDevice), enabledFeatures, scheduler); } VKAPI_ATTR void VKAPI_CALL vkDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, const VkAllocationCallbacks* pAllocator = %p)", device, pAllocator); vk::destroy(device, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { TRACE("(const char* pLayerName = %p, uint32_t* pPropertyCount = %p, VkExtensionProperties* pProperties = %p)", pLayerName, pPropertyCount, pProperties); uint32_t extensionPropertiesCount = numInstanceSupportedExtensions(); if(!pProperties) { *pPropertyCount = extensionPropertiesCount; return VK_SUCCESS; } auto toCopy = std::min(*pPropertyCount, extensionPropertiesCount); copyInstanceExtensions(pProperties, toCopy); *pPropertyCount = toCopy; return (toCopy < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const char* pLayerName, uint32_t* pPropertyCount = %p, VkExtensionProperties* pProperties = %p)", physicalDevice, pPropertyCount, pProperties); uint32_t extensionPropertiesCount = numDeviceSupportedExtensions(); if(!pProperties) { *pPropertyCount = extensionPropertiesCount; return VK_SUCCESS; } auto toCopy = std::min(*pPropertyCount, extensionPropertiesCount); copyDeviceExtensions(pProperties, toCopy); *pPropertyCount = toCopy; return (toCopy < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties) { TRACE("(uint32_t* pPropertyCount = %p, VkLayerProperties* pProperties = %p)", pPropertyCount, pProperties); if(!pProperties) { *pPropertyCount = 0; return VK_SUCCESS; } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkLayerProperties *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pPropertyCount = %p, VkLayerProperties* pProperties = %p)", physicalDevice, pPropertyCount, pProperties); if(!pProperties) { *pPropertyCount = 0; return VK_SUCCESS; } return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue *pQueue) { TRACE("(VkDevice device = %p, uint32_t queueFamilyIndex = %d, uint32_t queueIndex = %d, VkQueue* pQueue = %p)", device, queueFamilyIndex, queueIndex, pQueue); *pQueue = vk::Cast(device)->getQueue(queueFamilyIndex, queueIndex); } VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) { TRACE("(VkQueue queue = %p, uint32_t submitCount = %d, const VkSubmitInfo* pSubmits = %p, VkFence fence = %p)", queue, submitCount, pSubmits, static_cast(fence)); return vk::Cast(queue)->submit(submitCount, pSubmits, vk::Cast(fence)); } VKAPI_ATTR VkResult VKAPI_CALL vkQueueWaitIdle(VkQueue queue) { TRACE("(VkQueue queue = %p)", queue); return vk::Cast(queue)->waitIdle(); } VKAPI_ATTR VkResult VKAPI_CALL vkDeviceWaitIdle(VkDevice device) { TRACE("(VkDevice device = %p)", device); return vk::Cast(device)->waitIdle(); } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo, const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) { TRACE("(VkDevice device = %p, const VkMemoryAllocateInfo* pAllocateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDeviceMemory* pMemory = %p)", device, pAllocateInfo, pAllocator, pMemory); const VkBaseInStructure *allocationInfo = reinterpret_cast(pAllocateInfo->pNext); while(allocationInfo) { switch(allocationInfo->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO: // This can safely be ignored, as the Vulkan spec mentions: // "If the pNext chain includes a VkMemoryDedicatedAllocateInfo structure, then that structure // includes a handle of the sole buffer or image resource that the memory *can* be bound to." break; case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: // This extension controls on which physical devices the memory gets allocated. // SwiftShader only has a single physical device, so this extension does nothing in this case. break; #if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR: { auto *importInfo = reinterpret_cast(allocationInfo); if(importInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT) { UNSUPPORTED("importInfo->handleType %u", importInfo->handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } break; } #endif // SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO: { auto *exportInfo = reinterpret_cast(allocationInfo); switch(exportInfo->handleTypes) { #if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: break; #endif #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID: break; #endif #if VK_USE_PLATFORM_FUCHSIA case VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA: break; #endif default: UNSUPPORTED("exportInfo->handleTypes %u", exportInfo->handleTypes); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } break; } #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID: // Ignore break; #endif // SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT: { auto *importInfo = reinterpret_cast(allocationInfo); if(importInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT && importInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) { UNSUPPORTED("importInfo->handleType %u", importInfo->handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } break; } #if VK_USE_PLATFORM_FUCHSIA case VK_STRUCTURE_TYPE_TEMP_IMPORT_MEMORY_ZIRCON_HANDLE_INFO_FUCHSIA: { auto *importInfo = reinterpret_cast(allocationInfo); if(importInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA) { UNSUPPORTED("importInfo->handleType %u", importInfo->handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } break; } #endif // VK_USE_PLATFORM_FUCHSIA default: LOG_TRAP("pAllocateInfo->pNext sType = %s", vk::Stringify(allocationInfo->sType).c_str()); break; } allocationInfo = allocationInfo->pNext; } VkResult result = vk::DeviceMemory::Create(pAllocator, pAllocateInfo, pMemory, vk::Cast(device)); if(result != VK_SUCCESS) { return result; } // Make sure the memory allocation is done now so that OOM errors can be checked now result = vk::Cast(*pMemory)->allocate(); if(result != VK_SUCCESS) { vk::destroy(*pMemory, pAllocator); *pMemory = VK_NULL_HANDLE; } return result; } VKAPI_ATTR void VKAPI_CALL vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(memory), pAllocator); vk::destroy(memory, pAllocator); } #if SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryFdKHR(VkDevice device, const VkMemoryGetFdInfoKHR *getFdInfo, int *pFd) { TRACE("(VkDevice device = %p, const VkMemoryGetFdInfoKHR* getFdInfo = %p, int* pFd = %p", device, getFdInfo, pFd); if(getFdInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT) { UNSUPPORTED("pGetFdInfo->handleType %u", getFdInfo->handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } return vk::Cast(getFdInfo->memory)->exportFd(pFd); } VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryFdPropertiesKHR(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties) { TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, int fd = %d, VkMemoryFdPropertiesKHR* pMemoryFdProperties = %p)", device, handleType, fd, pMemoryFdProperties); if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT) { UNSUPPORTED("handleType %u", handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } if(fd < 0) { return VK_ERROR_INVALID_EXTERNAL_HANDLE; } const VkPhysicalDeviceMemoryProperties &memoryProperties = vk::PhysicalDevice::GetMemoryProperties(); // All SwiftShader memory types support this! pMemoryFdProperties->memoryTypeBits = (1U << memoryProperties.memoryTypeCount) - 1U; return VK_SUCCESS; } #endif // SWIFTSHADER_EXTERNAL_MEMORY_OPAQUE_FD #if VK_USE_PLATFORM_FUCHSIA VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryZirconHandleFUCHSIA(VkDevice device, const VkMemoryGetZirconHandleInfoFUCHSIA *pGetHandleInfo, zx_handle_t *pHandle) { TRACE("(VkDevice device = %p, const VkMemoryGetZirconHandleInfoFUCHSIA* pGetHandleInfo = %p, zx_handle_t* pHandle = %p", device, pGetHandleInfo, pHandle); if(pGetHandleInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA) { UNSUPPORTED("pGetHandleInfo->handleType %u", pGetHandleInfo->handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } return vk::Cast(pGetHandleInfo->memory)->exportHandle(pHandle); } VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryZirconHandlePropertiesFUCHSIA(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, zx_handle_t handle, VkMemoryZirconHandlePropertiesFUCHSIA *pMemoryZirconHandleProperties) { TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, zx_handle_t handle = %d, VkMemoryZirconHandlePropertiesFUCHSIA* pMemoryZirconHandleProperties = %p)", device, handleType, handle, pMemoryZirconHandleProperties); if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA) { UNSUPPORTED("handleType %u", handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } if(handle == ZX_HANDLE_INVALID) { return VK_ERROR_INVALID_EXTERNAL_HANDLE; } const VkPhysicalDeviceMemoryProperties &memoryProperties = vk::PhysicalDevice::GetMemoryProperties(); // All SwiftShader memory types support this! pMemoryZirconHandleProperties->memoryTypeBits = (1U << memoryProperties.memoryTypeCount) - 1U; return VK_SUCCESS; } #endif // VK_USE_PLATFORM_FUCHSIA VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryHostPointerPropertiesEXT(VkDevice device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties) { TRACE("(VkDevice device = %p, VkExternalMemoryHandleTypeFlagBits handleType = %x, const void *pHostPointer = %p, VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties = %p)", device, handleType, pHostPointer, pMemoryHostPointerProperties); if(handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT && handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) { UNSUPPORTED("handleType %u", handleType); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } pMemoryHostPointerProperties->memoryTypeBits = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; return VK_SUCCESS; } #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER VKAPI_ATTR VkResult VKAPI_CALL vkGetMemoryAndroidHardwareBufferANDROID(VkDevice device, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo, struct AHardwareBuffer **pBuffer) { TRACE("(VkDevice device = %p, const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo = %p, struct AHardwareBuffer **pBuffer = %p)", device, pInfo, pBuffer); return vk::Cast(pInfo->memory)->exportAndroidHardwareBuffer(pBuffer); } VKAPI_ATTR VkResult VKAPI_CALL vkGetAndroidHardwareBufferPropertiesANDROID(VkDevice device, const struct AHardwareBuffer *buffer, VkAndroidHardwareBufferPropertiesANDROID *pProperties) { TRACE("(VkDevice device = %p, const struct AHardwareBuffer *buffer = %p, VkAndroidHardwareBufferPropertiesANDROID *pProperties = %p)", device, buffer, pProperties); return vk::DeviceMemory::GetAndroidHardwareBufferProperties(device, buffer, pProperties); } #endif // SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER VKAPI_ATTR VkResult VKAPI_CALL vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void **ppData) { TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, VkDeviceSize offset = %d, VkDeviceSize size = %d, VkMemoryMapFlags flags = %d, void** ppData = %p)", device, static_cast(memory), int(offset), int(size), flags, ppData); if(flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("flags %d", int(flags)); } return vk::Cast(memory)->map(offset, size, ppData); } VKAPI_ATTR void VKAPI_CALL vkUnmapMemory(VkDevice device, VkDeviceMemory memory) { TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p)", device, static_cast(memory)); // Noop, memory will be released when the DeviceMemory object is released } VKAPI_ATTR VkResult VKAPI_CALL vkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { TRACE("(VkDevice device = %p, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = %p)", device, memoryRangeCount, pMemoryRanges); // Noop, host and device memory are the same to SwiftShader return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange *pMemoryRanges) { TRACE("(VkDevice device = %p, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = %p)", device, memoryRangeCount, pMemoryRanges); // Noop, host and device memory are the same to SwiftShader return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceMemoryCommitment(VkDevice pDevice, VkDeviceMemory pMemory, VkDeviceSize *pCommittedMemoryInBytes) { TRACE("(VkDevice device = %p, VkDeviceMemory memory = %p, VkDeviceSize* pCommittedMemoryInBytes = %p)", pDevice, static_cast(pMemory), pCommittedMemoryInBytes); auto memory = vk::Cast(pMemory); #if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON) const auto &memoryProperties = vk::PhysicalDevice::GetMemoryProperties(); uint32_t typeIndex = memory->getMemoryTypeIndex(); ASSERT(typeIndex < memoryProperties.memoryTypeCount); ASSERT(memoryProperties.memoryTypes[typeIndex].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT); #endif *pCommittedMemoryInBytes = memory->getCommittedMemoryInBytes(); } VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { TRACE("(VkDevice device = %p, VkBuffer buffer = %p, VkDeviceMemory memory = %p, VkDeviceSize memoryOffset = %d)", device, static_cast(buffer), static_cast(memory), int(memoryOffset)); if(!vk::Cast(buffer)->canBindToMemory(vk::Cast(memory))) { UNSUPPORTED("vkBindBufferMemory with invalid external memory"); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } vk::Cast(buffer)->bind(vk::Cast(memory), memoryOffset); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset) { TRACE("(VkDevice device = %p, VkImage image = %p, VkDeviceMemory memory = %p, VkDeviceSize memoryOffset = %d)", device, static_cast(image), static_cast(memory), int(memoryOffset)); if(!vk::Cast(image)->canBindToMemory(vk::Cast(memory))) { UNSUPPORTED("vkBindImageMemory with invalid external memory"); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } vk::Cast(image)->bind(vk::Cast(memory), memoryOffset); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements *pMemoryRequirements) { TRACE("(VkDevice device = %p, VkBuffer buffer = %p, VkMemoryRequirements* pMemoryRequirements = %p)", device, static_cast(buffer), pMemoryRequirements); *pMemoryRequirements = vk::Cast(buffer)->getMemoryRequirements(); } VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements *pMemoryRequirements) { TRACE("(VkDevice device = %p, VkImage image = %p, VkMemoryRequirements* pMemoryRequirements = %p)", device, static_cast(image), pMemoryRequirements); *pMemoryRequirements = vk::Cast(image)->getMemoryRequirements(); } VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t *pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements *pSparseMemoryRequirements) { TRACE("(VkDevice device = %p, VkImage image = %p, uint32_t* pSparseMemoryRequirementCount = %p, VkSparseImageMemoryRequirements* pSparseMemoryRequirements = %p)", device, static_cast(image), pSparseMemoryRequirementCount, pSparseMemoryRequirements); // The 'sparseBinding' feature is not supported, so images can not be created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag. // "If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to." *pSparseMemoryRequirementCount = 0; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t *pPropertyCount, VkSparseImageFormatProperties *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkImageType type = %d, VkSampleCountFlagBits samples = %d, VkImageUsageFlags usage = %d, VkImageTiling tiling = %d, uint32_t* pPropertyCount = %p, VkSparseImageFormatProperties* pProperties = %p)", physicalDevice, format, type, samples, usage, tiling, pPropertyCount, pProperties); // We do not support sparse images. *pPropertyCount = 0; } VKAPI_ATTR VkResult VKAPI_CALL vkQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo, VkFence fence) { TRACE("()"); UNSUPPORTED("vkQueueBindSparse"); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateFence(VkDevice device, const VkFenceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkFence *pFence) { TRACE("(VkDevice device = %p, const VkFenceCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkFence* pFence = %p)", device, pCreateInfo, pAllocator, pFence); auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::Fence::Create(pAllocator, pCreateInfo, pFence); } VKAPI_ATTR void VKAPI_CALL vkDestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkFence fence = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(fence), pAllocator); vk::destroy(fence, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences) { TRACE("(VkDevice device = %p, uint32_t fenceCount = %d, const VkFence* pFences = %p)", device, fenceCount, pFences); for(uint32_t i = 0; i < fenceCount; i++) { vk::Cast(pFences[i])->reset(); } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetFenceStatus(VkDevice device, VkFence fence) { TRACE("(VkDevice device = %p, VkFence fence = %p)", device, static_cast(fence)); return vk::Cast(fence)->getStatus(); } VKAPI_ATTR VkResult VKAPI_CALL vkWaitForFences(VkDevice device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll, uint64_t timeout) { TRACE("(VkDevice device = %p, uint32_t fenceCount = %d, const VkFence* pFences = %p, VkBool32 waitAll = %d, uint64_t timeout = %" PRIu64 ")", device, int(fenceCount), pFences, int(waitAll), timeout); return vk::Cast(device)->waitForFences(fenceCount, pFences, waitAll, timeout); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSemaphore *pSemaphore) { TRACE("(VkDevice device = %p, const VkSemaphoreCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSemaphore* pSemaphore = %p)", device, pCreateInfo, pAllocator, pSemaphore); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } VkSemaphoreType type = VK_SEMAPHORE_TYPE_BINARY; for(const auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); nextInfo != nullptr; nextInfo = nextInfo->pNext) { switch(nextInfo->sType) { case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO: // Let the semaphore constructor handle this break; case VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO: { const VkSemaphoreTypeCreateInfo *info = reinterpret_cast(nextInfo); type = info->semaphoreType; } break; default: WARN("nextInfo->sType = %s", vk::Stringify(nextInfo->sType).c_str()); break; } } if(type == VK_SEMAPHORE_TYPE_BINARY) { return vk::BinarySemaphore::Create(pAllocator, pCreateInfo, pSemaphore, pAllocator); } else { return vk::TimelineSemaphore::Create(pAllocator, pCreateInfo, pSemaphore, pAllocator); } } VKAPI_ATTR void VKAPI_CALL vkDestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkSemaphore semaphore = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(semaphore), pAllocator); vk::destroy(semaphore, pAllocator); } #if SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreFdKHR(VkDevice device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd) { TRACE("(VkDevice device = %p, const VkSemaphoreGetFdInfoKHR* pGetFdInfo = %p, int* pFd = %p)", device, static_cast(pGetFdInfo), static_cast(pFd)); if(pGetFdInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) { UNSUPPORTED("pGetFdInfo->handleType %d", int(pGetFdInfo->handleType)); } auto *sem = vk::DynamicCast(pGetFdInfo->semaphore); ASSERT(sem != nullptr); return sem->exportFd(pFd); } VKAPI_ATTR VkResult VKAPI_CALL vkImportSemaphoreFdKHR(VkDevice device, const VkImportSemaphoreFdInfoKHR *pImportSemaphoreInfo) { TRACE("(VkDevice device = %p, const VkImportSemaphoreFdInfoKHR* pImportSemaphoreInfo = %p", device, static_cast(pImportSemaphoreInfo)); if(pImportSemaphoreInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) { UNSUPPORTED("pImportSemaphoreInfo->handleType %d", int(pImportSemaphoreInfo->handleType)); } bool temporaryImport = (pImportSemaphoreInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) != 0; auto *sem = vk::DynamicCast(pImportSemaphoreInfo->semaphore); ASSERT(sem != nullptr); return sem->importFd(pImportSemaphoreInfo->fd, temporaryImport); } #endif // SWIFTSHADER_EXTERNAL_SEMAPHORE_OPAQUE_FD #if VK_USE_PLATFORM_FUCHSIA VKAPI_ATTR VkResult VKAPI_CALL vkImportSemaphoreZirconHandleFUCHSIA( VkDevice device, const VkImportSemaphoreZirconHandleInfoFUCHSIA *pImportSemaphoreZirconHandleInfo) { TRACE("(VkDevice device = %p, const VkImportSemaphoreZirconHandleInfoFUCHSIA* pImportSemaphoreZirconHandleInfo = %p)", device, pImportSemaphoreZirconHandleInfo); if(pImportSemaphoreZirconHandleInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TEMP_ZIRCON_EVENT_BIT_FUCHSIA) { UNSUPPORTED("pImportSemaphoreZirconHandleInfo->handleType %d", int(pImportSemaphoreZirconHandleInfo->handleType)); } bool temporaryImport = (pImportSemaphoreZirconHandleInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) != 0; auto *sem = vk::DynamicCast(pImportSemaphoreZirconHandleInfo->semaphore); ASSERT(sem != nullptr); return sem->importHandle(pImportSemaphoreZirconHandleInfo->handle, temporaryImport); } VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreZirconHandleFUCHSIA( VkDevice device, const VkSemaphoreGetZirconHandleInfoFUCHSIA *pGetZirconHandleInfo, zx_handle_t *pZirconHandle) { TRACE("(VkDevice device = %p, const VkSemaphoreGetZirconHandleInfoFUCHSIA* pGetZirconHandleInfo = %p, zx_handle_t* pZirconHandle = %p)", device, static_cast(pGetZirconHandleInfo), static_cast(pZirconHandle)); if(pGetZirconHandleInfo->handleType != VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TEMP_ZIRCON_EVENT_BIT_FUCHSIA) { UNSUPPORTED("pGetZirconHandleInfo->handleType %d", int(pGetZirconHandleInfo->handleType)); } auto *sem = vk::DynamicCast(pGetZirconHandleInfo->semaphore); ASSERT(sem != nullptr); return sem->exportHandle(pZirconHandle); } #endif // VK_USE_PLATFORM_FUCHSIA VKAPI_ATTR VkResult VKAPI_CALL vkGetSemaphoreCounterValue(VkDevice device, VkSemaphore semaphore, uint64_t *pValue) { TRACE("(VkDevice device = %p, VkSemaphore semaphore = %p, uint64_t* pValue = %p)", device, static_cast(semaphore), pValue); *pValue = vk::DynamicCast(semaphore)->getCounterValue(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkSignalSemaphore(VkDevice device, const VkSemaphoreSignalInfo *pSignalInfo) { TRACE("(VkDevice device = %p, const VkSemaphoreSignalInfo *pSignalInfo = %p)", device, pSignalInfo); vk::DynamicCast(pSignalInfo->semaphore)->signal(pSignalInfo->value); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkWaitSemaphores(VkDevice device, const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout) { TRACE("(VkDevice device = %p, const VkSemaphoreWaitInfo *pWaitInfo = %p, uint64_t timeout = %" PRIu64 ")", device, pWaitInfo, timeout); return vk::Cast(device)->waitForSemaphores(pWaitInfo, timeout); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateEvent(VkDevice device, const VkEventCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkEvent *pEvent) { TRACE("(VkDevice device = %p, const VkEventCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkEvent* pEvent = %p)", device, pCreateInfo, pAllocator, pEvent); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { // Vulkan 1.2: "pNext must be NULL" LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::Event::Create(pAllocator, pCreateInfo, pEvent); } VKAPI_ATTR void VKAPI_CALL vkDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkEvent event = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(event), pAllocator); vk::destroy(event, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetEventStatus(VkDevice device, VkEvent event) { TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast(event)); return vk::Cast(event)->getStatus(); } VKAPI_ATTR VkResult VKAPI_CALL vkSetEvent(VkDevice device, VkEvent event) { TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast(event)); vk::Cast(event)->signal(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkResetEvent(VkDevice device, VkEvent event) { TRACE("(VkDevice device = %p, VkEvent event = %p)", device, static_cast(event)); vk::Cast(event)->reset(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkQueryPool *pQueryPool) { TRACE("(VkDevice device = %p, const VkQueryPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkQueryPool* pQueryPool = %p)", device, pCreateInfo, pAllocator, pQueryPool); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::QueryPool::Create(pAllocator, pCreateInfo, pQueryPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkQueryPool queryPool = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(queryPool), pAllocator); vk::destroy(queryPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void *pData, VkDeviceSize stride, VkQueryResultFlags flags) { TRACE("(VkDevice device = %p, VkQueryPool queryPool = %p, uint32_t firstQuery = %d, uint32_t queryCount = %d, size_t dataSize = %d, void* pData = %p, VkDeviceSize stride = %d, VkQueryResultFlags flags = %d)", device, static_cast(queryPool), int(firstQuery), int(queryCount), int(dataSize), pData, int(stride), flags); return vk::Cast(queryPool)->getResults(firstQuery, queryCount, dataSize, pData, stride, flags); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) { TRACE("(VkDevice device = %p, const VkBufferCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkBuffer* pBuffer = %p)", device, pCreateInfo, pAllocator, pBuffer); auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { switch(nextInfo->sType) { case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO: // Do nothing. Should be handled by vk::Buffer::Create(). break; default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); break; } nextInfo = nextInfo->pNext; } return vk::Buffer::Create(pAllocator, pCreateInfo, pBuffer); } VKAPI_ATTR void VKAPI_CALL vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkBuffer buffer = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(buffer), pAllocator); vk::destroy(buffer, pAllocator); } VKAPI_ATTR uint64_t VKAPI_CALL vkGetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) { TRACE("(VkDevice device = %p, const VkBufferDeviceAddressInfo* pInfo = %p)", device, pInfo); UNSUPPORTED("VK_KHR_buffer_device_address"); return 0; } VKAPI_ATTR uint64_t VKAPI_CALL vkGetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo) { TRACE("(VkDevice device = %p, const VkBufferDeviceAddressInfo* pInfo = %p)", device, pInfo); UNSUPPORTED("VK_KHR_buffer_device_address"); return 0; } VKAPI_ATTR uint64_t VKAPI_CALL vkGetDeviceMemoryOpaqueCaptureAddress(VkDevice device, const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo) { TRACE("(VkDevice device = %p, const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo = %p)", device, pInfo); UNSUPPORTED("VK_KHR_buffer_device_address"); return 0; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateBufferView(VkDevice device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { TRACE("(VkDevice device = %p, const VkBufferViewCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkBufferView* pView = %p)", device, pCreateInfo, pAllocator, pView); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::BufferView::Create(pAllocator, pCreateInfo, pView); } VKAPI_ATTR void VKAPI_CALL vkDestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkBufferView bufferView = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(bufferView), pAllocator); vk::destroy(bufferView, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { TRACE("(VkDevice device = %p, const VkImageCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkImage* pImage = %p)", device, pCreateInfo, pAllocator, pImage); const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); #ifdef __ANDROID__ vk::BackingMemory backmem; bool swapchainImage = false; #endif while(extensionCreateInfo) { switch((long)(extensionCreateInfo->sType)) { #ifdef __ANDROID__ case VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID: { const VkSwapchainImageCreateInfoANDROID *swapImageCreateInfo = reinterpret_cast(extensionCreateInfo); backmem.androidUsage = swapImageCreateInfo->usage; } break; case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: { const VkNativeBufferANDROID *nativeBufferInfo = reinterpret_cast(extensionCreateInfo); backmem.nativeHandle = nativeBufferInfo->handle; backmem.stride = nativeBufferInfo->stride; swapchainImage = true; } break; case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID: break; #endif case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO: // Do nothing. Should be handled by vk::Image::Create() break; case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR: /* Do nothing. We don't actually need the swapchain handle yet; we'll do all the work in vkBindImageMemory2. */ break; case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO: // Do nothing. This extension tells the driver which image formats will be used // by the application. Swiftshader is not impacted from lacking this information, // so we don't need to track the format list. break; case VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO: { // SwiftShader does not use an image's usage info for non-debug purposes outside of // vkGetPhysicalDeviceImageFormatProperties2. This also applies to separate stencil usage. const VkImageStencilUsageCreateInfo *stencilUsageInfo = reinterpret_cast(extensionCreateInfo); (void)stencilUsageInfo->stencilUsage; } break; default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } VkResult result = vk::Image::Create(pAllocator, pCreateInfo, pImage, vk::Cast(device)); #ifdef __ANDROID__ if(swapchainImage) { if(result != VK_SUCCESS) { return result; } vk::Image *image = vk::Cast(*pImage); VkMemoryRequirements memRequirements = image->getMemoryRequirements(); VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = 0; VkDeviceMemory devmem = { VK_NULL_HANDLE }; result = vkAllocateMemory(device, &allocInfo, pAllocator, &devmem); if(result != VK_SUCCESS) { return result; } vkBindImageMemory(device, *pImage, devmem, 0); backmem.externalMemory = true; image->setBackingMemory(backmem); } #endif return result; } VKAPI_ATTR void VKAPI_CALL vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkImage image = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(image), pAllocator); #ifdef __ANDROID__ vk::Image *img = vk::Cast(image); if(img && img->hasExternalMemory()) { vk::destroy(img->getExternalMemory(), pAllocator); } #endif vk::destroy(image, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkGetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) { TRACE("(VkDevice device = %p, VkImage image = %p, const VkImageSubresource* pSubresource = %p, VkSubresourceLayout* pLayout = %p)", device, static_cast(image), pSubresource, pLayout); vk::Cast(image)->getSubresourceLayout(pSubresource, pLayout); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateImageView(VkDevice device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { TRACE("(VkDevice device = %p, const VkImageViewCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkImageView* pView = %p)", device, pCreateInfo, pAllocator, pView); if(pCreateInfo->flags != 0) { UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); const vk::SamplerYcbcrConversion *ycbcrConversion = nullptr; while(extensionCreateInfo) { switch(extensionCreateInfo->sType) { case VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO_KHR: { const VkImageViewUsageCreateInfo *multiviewCreateInfo = reinterpret_cast(extensionCreateInfo); ASSERT(!(~vk::Cast(pCreateInfo->image)->getUsage() & multiviewCreateInfo->usage)); } break; case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: { const VkSamplerYcbcrConversionInfo *samplerYcbcrConversionInfo = reinterpret_cast(extensionCreateInfo); ycbcrConversion = vk::Cast(samplerYcbcrConversionInfo->conversion); if(ycbcrConversion) { ASSERT((pCreateInfo->components.r == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.r == VK_COMPONENT_SWIZZLE_R) && (pCreateInfo->components.g == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.g == VK_COMPONENT_SWIZZLE_G) && (pCreateInfo->components.b == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.b == VK_COMPONENT_SWIZZLE_B) && (pCreateInfo->components.a == VK_COMPONENT_SWIZZLE_IDENTITY || pCreateInfo->components.a == VK_COMPONENT_SWIZZLE_A)); } } break; default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } VkResult result = vk::ImageView::Create(pAllocator, pCreateInfo, pView, ycbcrConversion); if(result == VK_SUCCESS) { vk::Cast(device)->registerImageView(vk::Cast(*pView)); } return result; } VKAPI_ATTR void VKAPI_CALL vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkImageView imageView = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(imageView), pAllocator); vk::Cast(device)->unregisterImageView(vk::Cast(imageView)); vk::destroy(imageView, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) { TRACE("(VkDevice device = %p, const VkShaderModuleCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkShaderModule* pShaderModule = %p)", device, pCreateInfo, pAllocator, pShaderModule); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::ShaderModule::Create(pAllocator, pCreateInfo, pShaderModule); } VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkShaderModule shaderModule = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(shaderModule), pAllocator); vk::destroy(shaderModule, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineCache *pPipelineCache) { TRACE("(VkDevice device = %p, const VkPipelineCacheCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipelineCache* pPipelineCache = %p)", device, pCreateInfo, pAllocator, pPipelineCache); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::PipelineCache::Create(pAllocator, pCreateInfo, pPipelineCache); } VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(pipelineCache), pAllocator); vk::destroy(pipelineCache, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t *pDataSize, void *pData) { TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, size_t* pDataSize = %p, void* pData = %p)", device, static_cast(pipelineCache), pDataSize, pData); return vk::Cast(pipelineCache)->getData(pDataSize, pData); } VKAPI_ATTR VkResult VKAPI_CALL vkMergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache *pSrcCaches) { TRACE("(VkDevice device = %p, VkPipelineCache dstCache = %p, uint32_t srcCacheCount = %d, const VkPipelineCache* pSrcCaches = %p)", device, static_cast(dstCache), int(srcCacheCount), pSrcCaches); return vk::Cast(dstCache)->merge(srcCacheCount, pSrcCaches); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, uint32_t createInfoCount = %d, const VkGraphicsPipelineCreateInfo* pCreateInfos = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipeline* pPipelines = %p)", device, static_cast(pipelineCache), int(createInfoCount), pCreateInfos, pAllocator, pPipelines); VkResult errorResult = VK_SUCCESS; for(uint32_t i = 0; i < createInfoCount; i++) { VkResult result = vk::GraphicsPipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i], vk::Cast(device)); if(result == VK_SUCCESS) { static_cast(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i], vk::Cast(pipelineCache)); } else { // According to the Vulkan spec, section 9.4. Multiple Pipeline Creation // "When an application attempts to create many pipelines in a single command, // it is possible that some subset may fail creation. In that case, the // corresponding entries in the pPipelines output array will be filled with // VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to // out of memory errors), the vkCreate*Pipelines commands will return an // error code. The implementation will attempt to create all pipelines, and // only return VK_NULL_HANDLE values for those that actually failed." pPipelines[i] = VK_NULL_HANDLE; errorResult = result; } } return errorResult; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { TRACE("(VkDevice device = %p, VkPipelineCache pipelineCache = %p, uint32_t createInfoCount = %d, const VkComputePipelineCreateInfo* pCreateInfos = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipeline* pPipelines = %p)", device, static_cast(pipelineCache), int(createInfoCount), pCreateInfos, pAllocator, pPipelines); VkResult errorResult = VK_SUCCESS; for(uint32_t i = 0; i < createInfoCount; i++) { VkResult result = vk::ComputePipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i], vk::Cast(device)); if(result == VK_SUCCESS) { static_cast(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i], vk::Cast(pipelineCache)); } else { // According to the Vulkan spec, section 9.4. Multiple Pipeline Creation // "When an application attempts to create many pipelines in a single command, // it is possible that some subset may fail creation. In that case, the // corresponding entries in the pPipelines output array will be filled with // VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to // out of memory errors), the vkCreate*Pipelines commands will return an // error code. The implementation will attempt to create all pipelines, and // only return VK_NULL_HANDLE values for those that actually failed." pPipelines[i] = VK_NULL_HANDLE; errorResult = result; } } return errorResult; } VKAPI_ATTR void VKAPI_CALL vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkPipeline pipeline = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(pipeline), pAllocator); vk::destroy(pipeline, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) { TRACE("(VkDevice device = %p, const VkPipelineLayoutCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkPipelineLayout* pPipelineLayout = %p)", device, pCreateInfo, pAllocator, pPipelineLayout); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::PipelineLayout::Create(pAllocator, pCreateInfo, pPipelineLayout); } VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkPipelineLayout pipelineLayout = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(pipelineLayout), pAllocator); vk::release(pipelineLayout, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(VkDevice device, const VkSamplerCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSampler *pSampler) { TRACE("(VkDevice device = %p, const VkSamplerCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSampler* pSampler = %p)", device, pCreateInfo, pAllocator, pSampler); if(pCreateInfo->flags != 0) { UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); const vk::SamplerYcbcrConversion *ycbcrConversion = nullptr; VkSamplerFilteringPrecisionModeGOOGLE filteringPrecision = VK_SAMPLER_FILTERING_PRECISION_MODE_LOW_GOOGLE; while(extensionCreateInfo) { switch(static_cast(extensionCreateInfo->sType)) { case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: { const VkSamplerYcbcrConversionInfo *samplerYcbcrConversionInfo = reinterpret_cast(extensionCreateInfo); ycbcrConversion = vk::Cast(samplerYcbcrConversionInfo->conversion); } break; #if !defined(__ANDROID__) case VK_STRUCTURE_TYPE_SAMPLER_FILTERING_PRECISION_GOOGLE: { const VkSamplerFilteringPrecisionGOOGLE *filteringInfo = reinterpret_cast(extensionCreateInfo); filteringPrecision = filteringInfo->samplerFilteringPrecisionMode; } break; #endif default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } vk::SamplerState samplerState(pCreateInfo, ycbcrConversion, filteringPrecision); uint32_t samplerID = vk::Cast(device)->indexSampler(samplerState); VkResult result = vk::Sampler::Create(pAllocator, pCreateInfo, pSampler, samplerState, samplerID); if(*pSampler == VK_NULL_HANDLE) { ASSERT(result != VK_SUCCESS); vk::Cast(device)->removeSampler(samplerState); } return result; } VKAPI_ATTR void VKAPI_CALL vkDestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkSampler sampler = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(sampler), pAllocator); if(sampler != VK_NULL_HANDLE) { vk::Cast(device)->removeSampler(*vk::Cast(sampler)); vk::destroy(sampler, pAllocator); } } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout) { TRACE("(VkDevice device = %p, const VkDescriptorSetLayoutCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDescriptorSetLayout* pSetLayout = %p)", device, pCreateInfo, pAllocator, pSetLayout); const VkBaseInStructure *extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); while(extensionCreateInfo) { switch(extensionCreateInfo->sType) { case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT: ASSERT(!vk::Cast(device)->hasExtension(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME)); break; default: LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extensionCreateInfo->sType).c_str()); break; } extensionCreateInfo = extensionCreateInfo->pNext; } return vk::DescriptorSetLayout::Create(pAllocator, pCreateInfo, pSetLayout); } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkDescriptorSetLayout descriptorSetLayout = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(descriptorSetLayout), pAllocator); vk::destroy(descriptorSetLayout, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorPool *pDescriptorPool) { TRACE("(VkDevice device = %p, const VkDescriptorPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDescriptorPool* pDescriptorPool = %p)", device, pCreateInfo, pAllocator, pDescriptorPool); auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::DescriptorPool::Create(pAllocator, pCreateInfo, pDescriptorPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(descriptorPool), pAllocator); vk::destroy(descriptorPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, VkDescriptorPoolResetFlags flags = 0x%x)", device, static_cast(descriptorPool), int(flags)); if(flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("flags %d", int(flags)); } return vk::Cast(descriptorPool)->reset(); } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) { TRACE("(VkDevice device = %p, const VkDescriptorSetAllocateInfo* pAllocateInfo = %p, VkDescriptorSet* pDescriptorSets = %p)", device, pAllocateInfo, pDescriptorSets); auto extInfo = reinterpret_cast(pAllocateInfo->pNext); while(extInfo) { LOG_TRAP("pAllocateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::Cast(pAllocateInfo->descriptorPool)->allocateSets(pAllocateInfo->descriptorSetCount, pAllocateInfo->pSetLayouts, pDescriptorSets); } VKAPI_ATTR VkResult VKAPI_CALL vkFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets) { TRACE("(VkDevice device = %p, VkDescriptorPool descriptorPool = %p, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = %p)", device, static_cast(descriptorPool), descriptorSetCount, pDescriptorSets); vk::Cast(descriptorPool)->freeSets(descriptorSetCount, pDescriptorSets); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { TRACE("(VkDevice device = %p, uint32_t descriptorWriteCount = %d, const VkWriteDescriptorSet* pDescriptorWrites = %p, uint32_t descriptorCopyCount = %d, const VkCopyDescriptorSet* pDescriptorCopies = %p)", device, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies); vk::Cast(device)->updateDescriptorSets(descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkFramebuffer *pFramebuffer) { TRACE("(VkDevice device = %p, const VkFramebufferCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkFramebuffer* pFramebuffer = %p)", device, pCreateInfo, pAllocator, pFramebuffer); return vk::Framebuffer::Create(pAllocator, pCreateInfo, pFramebuffer); } VKAPI_ATTR void VKAPI_CALL vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkFramebuffer framebuffer = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(framebuffer), pAllocator); vk::destroy(framebuffer, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) { TRACE("(VkDevice device = %p, const VkRenderPassCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkRenderPass* pRenderPass = %p)", device, pCreateInfo, pAllocator, pRenderPass); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } ValidateRenderPassPNextChain(device, pCreateInfo); return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass2(VkDevice device, const VkRenderPassCreateInfo2KHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) { TRACE("(VkDevice device = %p, const VkRenderPassCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkRenderPass* pRenderPass = %p)", device, pCreateInfo, pAllocator, pRenderPass); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } ValidateRenderPassPNextChain(device, pCreateInfo); return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass); } VKAPI_ATTR void VKAPI_CALL vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkRenderPass renderPass = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(renderPass), pAllocator); vk::destroy(renderPass, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkGetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D *pGranularity) { TRACE("(VkDevice device = %p, VkRenderPass renderPass = %p, VkExtent2D* pGranularity = %p)", device, static_cast(renderPass), pGranularity); vk::Cast(renderPass)->getRenderAreaGranularity(pGranularity); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkCommandPool *pCommandPool) { TRACE("(VkDevice device = %p, const VkCommandPoolCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkCommandPool* pCommandPool = %p)", device, pCreateInfo, pAllocator, pCommandPool); auto *nextInfo = reinterpret_cast(pCreateInfo->pNext); while(nextInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::CommandPool::Create(pAllocator, pCreateInfo, pCommandPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyCommandPool(VkDevice device, VkCommandPool commandPool, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(commandPool), pAllocator); vk::destroy(commandPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags) { TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, VkCommandPoolResetFlags flags = %d)", device, static_cast(commandPool), int(flags)); return vk::Cast(commandPool)->reset(flags); } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo *pAllocateInfo, VkCommandBuffer *pCommandBuffers) { TRACE("(VkDevice device = %p, const VkCommandBufferAllocateInfo* pAllocateInfo = %p, VkCommandBuffer* pCommandBuffers = %p)", device, pAllocateInfo, pCommandBuffers); auto *nextInfo = reinterpret_cast(pAllocateInfo->pNext); while(nextInfo) { LOG_TRAP("pAllocateInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::Cast(pAllocateInfo->commandPool)->allocateCommandBuffers(vk::Cast(device), pAllocateInfo->level, pAllocateInfo->commandBufferCount, pCommandBuffers); } VKAPI_ATTR void VKAPI_CALL vkFreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers) { TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = %p)", device, static_cast(commandPool), int(commandBufferCount), pCommandBuffers); vk::Cast(commandPool)->freeCommandBuffers(commandBufferCount, pCommandBuffers); } VKAPI_ATTR VkResult VKAPI_CALL vkBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkCommandBufferBeginInfo* pBeginInfo = %p)", commandBuffer, pBeginInfo); auto *nextInfo = reinterpret_cast(pBeginInfo->pNext); while(nextInfo) { LOG_TRAP("pBeginInfo->pNext sType = %s", vk::Stringify(nextInfo->sType).c_str()); nextInfo = nextInfo->pNext; } return vk::Cast(commandBuffer)->begin(pBeginInfo->flags, pBeginInfo->pInheritanceInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkEndCommandBuffer(VkCommandBuffer commandBuffer) { TRACE("(VkCommandBuffer commandBuffer = %p)", commandBuffer); return vk::Cast(commandBuffer)->end(); } VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags) { TRACE("(VkCommandBuffer commandBuffer = %p, VkCommandBufferResetFlags flags = %d)", commandBuffer, int(flags)); return vk::Cast(commandBuffer)->reset(flags); } VKAPI_ATTR void VKAPI_CALL vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) { TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineBindPoint pipelineBindPoint = %d, VkPipeline pipeline = %p)", commandBuffer, int(pipelineBindPoint), static_cast(pipeline)); vk::Cast(commandBuffer)->bindPipeline(pipelineBindPoint, vk::Cast(pipeline)); } VKAPI_ATTR void VKAPI_CALL vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstViewport = %d, uint32_t viewportCount = %d, const VkViewport* pViewports = %p)", commandBuffer, int(firstViewport), int(viewportCount), pViewports); vk::Cast(commandBuffer)->setViewport(firstViewport, viewportCount, pViewports); } VKAPI_ATTR void VKAPI_CALL vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D *pScissors) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstScissor = %d, uint32_t scissorCount = %d, const VkRect2D* pScissors = %p)", commandBuffer, int(firstScissor), int(scissorCount), pScissors); vk::Cast(commandBuffer)->setScissor(firstScissor, scissorCount, pScissors); } VKAPI_ATTR void VKAPI_CALL vkCmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth) { TRACE("(VkCommandBuffer commandBuffer = %p, float lineWidth = %f)", commandBuffer, lineWidth); vk::Cast(commandBuffer)->setLineWidth(lineWidth); } VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) { TRACE("(VkCommandBuffer commandBuffer = %p, float depthBiasConstantFactor = %f, float depthBiasClamp = %f, float depthBiasSlopeFactor = %f)", commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor); vk::Cast(commandBuffer)->setDepthBias(depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor); } VKAPI_ATTR void VKAPI_CALL vkCmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4]) { TRACE("(VkCommandBuffer commandBuffer = %p, const float blendConstants[4] = {%f, %f, %f, %f})", commandBuffer, blendConstants[0], blendConstants[1], blendConstants[2], blendConstants[3]); vk::Cast(commandBuffer)->setBlendConstants(blendConstants); } VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) { TRACE("(VkCommandBuffer commandBuffer = %p, float minDepthBounds = %f, float maxDepthBounds = %f)", commandBuffer, minDepthBounds, maxDepthBounds); vk::Cast(commandBuffer)->setDepthBounds(minDepthBounds, maxDepthBounds); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) { TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t compareMask = %d)", commandBuffer, int(faceMask), int(compareMask)); vk::Cast(commandBuffer)->setStencilCompareMask(faceMask, compareMask); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) { TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t writeMask = %d)", commandBuffer, int(faceMask), int(writeMask)); vk::Cast(commandBuffer)->setStencilWriteMask(faceMask, writeMask); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) { TRACE("(VkCommandBuffer commandBuffer = %p, VkStencilFaceFlags faceMask = %d, uint32_t reference = %d)", commandBuffer, int(faceMask), int(reference)); vk::Cast(commandBuffer)->setStencilReference(faceMask, reference); } VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t *pDynamicOffsets) { TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineBindPoint pipelineBindPoint = %d, VkPipelineLayout layout = %p, uint32_t firstSet = %d, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = %p, uint32_t dynamicOffsetCount = %d, const uint32_t* pDynamicOffsets = %p)", commandBuffer, int(pipelineBindPoint), static_cast(layout), int(firstSet), int(descriptorSetCount), pDescriptorSets, int(dynamicOffsetCount), pDynamicOffsets); vk::Cast(commandBuffer)->bindDescriptorSets(pipelineBindPoint, vk::Cast(layout), firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets); } VKAPI_ATTR void VKAPI_CALL vkCmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, VkIndexType indexType = %d)", commandBuffer, static_cast(buffer), int(offset), int(indexType)); vk::Cast(commandBuffer)->bindIndexBuffer(vk::Cast(buffer), offset, indexType); } VKAPI_ATTR void VKAPI_CALL vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer *pBuffers, const VkDeviceSize *pOffsets) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t firstBinding = %d, uint32_t bindingCount = %d, const VkBuffer* pBuffers = %p, const VkDeviceSize* pOffsets = %p)", commandBuffer, int(firstBinding), int(bindingCount), pBuffers, pOffsets); vk::Cast(commandBuffer)->bindVertexBuffers(firstBinding, bindingCount, pBuffers, pOffsets); } VKAPI_ATTR void VKAPI_CALL vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t vertexCount = %d, uint32_t instanceCount = %d, uint32_t firstVertex = %d, uint32_t firstInstance = %d)", commandBuffer, int(vertexCount), int(instanceCount), int(firstVertex), int(firstInstance)); vk::Cast(commandBuffer)->draw(vertexCount, instanceCount, firstVertex, firstInstance); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t indexCount = %d, uint32_t instanceCount = %d, uint32_t firstIndex = %d, int32_t vertexOffset = %d, uint32_t firstInstance = %d)", commandBuffer, int(indexCount), int(instanceCount), int(firstIndex), int(vertexOffset), int(firstInstance)); vk::Cast(commandBuffer)->drawIndexed(indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)", commandBuffer, static_cast(buffer), int(offset), int(drawCount), int(stride)); vk::Cast(commandBuffer)->drawIndirect(vk::Cast(buffer), offset, drawCount, stride); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)", commandBuffer, static_cast(buffer), int(offset), int(drawCount), int(stride)); vk::Cast(commandBuffer)->drawIndexedIndirect(vk::Cast(buffer), offset, drawCount, stride); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, VkBuffer countBuffer = %p, VkDeviceSize countBufferOffset = %d, uint32_t maxDrawCount = %d, uint32_t stride = %d", commandBuffer, static_cast(buffer), int(offset), static_cast(countBuffer), int(countBufferOffset), int(maxDrawCount), int(stride)); UNSUPPORTED("VK_KHR_draw_indirect_count"); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d, VkBuffer countBuffer = %p, VkDeviceSize countBufferOffset = %d, uint32_t maxDrawCount = %d, uint32_t stride = %d", commandBuffer, static_cast(buffer), int(offset), static_cast(countBuffer), int(countBufferOffset), int(maxDrawCount), int(stride)); UNSUPPORTED("VK_KHR_draw_indirect_count"); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t groupCountX = %d, uint32_t groupCountY = %d, uint32_t groupCountZ = %d)", commandBuffer, int(groupCountX), int(groupCountY), int(groupCountZ)); vk::Cast(commandBuffer)->dispatch(groupCountX, groupCountY, groupCountZ); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer buffer = %p, VkDeviceSize offset = %d)", commandBuffer, static_cast(buffer), int(offset)); vk::Cast(commandBuffer)->dispatchIndirect(vk::Cast(buffer), offset); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferCopy *pRegions) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer srcBuffer = %p, VkBuffer dstBuffer = %p, uint32_t regionCount = %d, const VkBufferCopy* pRegions = %p)", commandBuffer, static_cast(srcBuffer), static_cast(dstBuffer), int(regionCount), pRegions); vk::Cast(commandBuffer)->copyBuffer(vk::Cast(srcBuffer), vk::Cast(dstBuffer), regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy *pRegions) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage srcImage = %p, VkImageLayout srcImageLayout = %d, VkImage dstImage = %p, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageCopy* pRegions = %p)", commandBuffer, static_cast(srcImage), srcImageLayout, static_cast(dstImage), dstImageLayout, int(regionCount), pRegions); vk::Cast(commandBuffer)->copyImage(vk::Cast(srcImage), srcImageLayout, vk::Cast(dstImage), dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageBlit *pRegions, VkFilter filter) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage srcImage = %p, VkImageLayout srcImageLayout = %d, VkImage dstImage = %p, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageBlit* pRegions = %p, VkFilter filter = %d)", commandBuffer, static_cast(srcImage), srcImageLayout, static_cast(dstImage), dstImageLayout, int(regionCount), pRegions, filter); vk::Cast(commandBuffer)->blitImage(vk::Cast(srcImage), srcImageLayout, vk::Cast(dstImage), dstImageLayout, regionCount, pRegions, filter); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkBufferImageCopy *pRegions) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer srcBuffer = %p, VkImage dstImage = %p, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = %p)", commandBuffer, static_cast(srcBuffer), static_cast(dstImage), dstImageLayout, int(regionCount), pRegions); vk::Cast(commandBuffer)->copyBufferToImage(vk::Cast(srcBuffer), vk::Cast(dstImage), dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy *pRegions) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage srcImage = %p, VkImageLayout srcImageLayout = %d, VkBuffer dstBuffer = %p, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = %p)", commandBuffer, static_cast(srcImage), int(srcImageLayout), static_cast(dstBuffer), int(regionCount), pRegions); vk::Cast(commandBuffer)->copyImageToBuffer(vk::Cast(srcImage), srcImageLayout, vk::Cast(dstBuffer), regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer dstBuffer = %p, VkDeviceSize dstOffset = %d, VkDeviceSize dataSize = %d, const void* pData = %p)", commandBuffer, static_cast(dstBuffer), int(dstOffset), int(dataSize), pData); vk::Cast(commandBuffer)->updateBuffer(vk::Cast(dstBuffer), dstOffset, dataSize, pData); } VKAPI_ATTR void VKAPI_CALL vkCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize size, uint32_t data) { TRACE("(VkCommandBuffer commandBuffer = %p, VkBuffer dstBuffer = %p, VkDeviceSize dstOffset = %d, VkDeviceSize size = %d, uint32_t data = %d)", commandBuffer, static_cast(dstBuffer), int(dstOffset), int(size), data); vk::Cast(commandBuffer)->fillBuffer(vk::Cast(dstBuffer), dstOffset, size, data); } VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue *pColor, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage image = %p, VkImageLayout imageLayout = %d, const VkClearColorValue* pColor = %p, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = %p)", commandBuffer, static_cast(image), int(imageLayout), pColor, int(rangeCount), pRanges); vk::Cast(commandBuffer)->clearColorImage(vk::Cast(image), imageLayout, pColor, rangeCount, pRanges); } VKAPI_ATTR void VKAPI_CALL vkCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage image = %p, VkImageLayout imageLayout = %d, const VkClearDepthStencilValue* pDepthStencil = %p, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = %p)", commandBuffer, static_cast(image), int(imageLayout), pDepthStencil, int(rangeCount), pRanges); vk::Cast(commandBuffer)->clearDepthStencilImage(vk::Cast(image), imageLayout, pDepthStencil, rangeCount, pRanges); } VKAPI_ATTR void VKAPI_CALL vkCmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment *pAttachments, uint32_t rectCount, const VkClearRect *pRects) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t attachmentCount = %d, const VkClearAttachment* pAttachments = %p, uint32_t rectCount = %d, const VkClearRect* pRects = %p)", commandBuffer, int(attachmentCount), pAttachments, int(rectCount), pRects); vk::Cast(commandBuffer)->clearAttachments(attachmentCount, pAttachments, rectCount, pRects); } VKAPI_ATTR void VKAPI_CALL vkCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) { TRACE("(VkCommandBuffer commandBuffer = %p, VkImage srcImage = %p, VkImageLayout srcImageLayout = %d, VkImage dstImage = %p, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageResolve* pRegions = %p)", commandBuffer, static_cast(srcImage), int(srcImageLayout), static_cast(dstImage), int(dstImageLayout), regionCount, pRegions); vk::Cast(commandBuffer)->resolveImage(vk::Cast(srcImage), srcImageLayout, vk::Cast(dstImage), dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { TRACE("(VkCommandBuffer commandBuffer = %p, VkEvent event = %p, VkPipelineStageFlags stageMask = %d)", commandBuffer, static_cast(event), int(stageMask)); vk::Cast(commandBuffer)->setEvent(vk::Cast(event), stageMask); } VKAPI_ATTR void VKAPI_CALL vkCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { TRACE("(VkCommandBuffer commandBuffer = %p, VkEvent event = %p, VkPipelineStageFlags stageMask = %d)", commandBuffer, static_cast(event), int(stageMask)); vk::Cast(commandBuffer)->resetEvent(vk::Cast(event), stageMask); } VKAPI_ATTR void VKAPI_CALL vkCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t eventCount = %d, const VkEvent* pEvents = %p, VkPipelineStageFlags srcStageMask = 0x%x, VkPipelineStageFlags dstStageMask = 0x%x, uint32_t memoryBarrierCount = %d, const VkMemoryBarrier* pMemoryBarriers = %p, uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = %p, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = %p)", commandBuffer, int(eventCount), pEvents, int(srcStageMask), int(dstStageMask), int(memoryBarrierCount), pMemoryBarriers, int(bufferMemoryBarrierCount), pBufferMemoryBarriers, int(imageMemoryBarrierCount), pImageMemoryBarriers); vk::Cast(commandBuffer)->waitEvents(eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } VKAPI_ATTR void VKAPI_CALL vkCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) { TRACE( "(VkCommandBuffer commandBuffer = %p, VkPipelineStageFlags srcStageMask = 0x%x, VkPipelineStageFlags dstStageMask = 0x%x, VkDependencyFlags dependencyFlags = %d, uint32_t memoryBarrierCount = %d, onst VkMemoryBarrier* pMemoryBarriers = %p," " uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = %p, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = %p)", commandBuffer, int(srcStageMask), int(dstStageMask), dependencyFlags, int(memoryBarrierCount), pMemoryBarriers, int(bufferMemoryBarrierCount), pBufferMemoryBarriers, int(imageMemoryBarrierCount), pImageMemoryBarriers); vk::Cast(commandBuffer)->pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags) { TRACE("(VkCommandBuffer commandBuffer = %p, VkQueryPool queryPool = %p, uint32_t query = %d, VkQueryControlFlags flags = %d)", commandBuffer, static_cast(queryPool), query, int(flags)); vk::Cast(commandBuffer)->beginQuery(vk::Cast(queryPool), query, flags); } VKAPI_ATTR void VKAPI_CALL vkCmdEndQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query) { TRACE("(VkCommandBuffer commandBuffer = %p, VkQueryPool queryPool = %p, uint32_t query = %d)", commandBuffer, static_cast(queryPool), int(query)); vk::Cast(commandBuffer)->endQuery(vk::Cast(queryPool), query); } VKAPI_ATTR void VKAPI_CALL vkCmdResetQueryPool(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { TRACE("(VkCommandBuffer commandBuffer = %p, VkQueryPool queryPool = %p, uint32_t firstQuery = %d, uint32_t queryCount = %d)", commandBuffer, static_cast(queryPool), int(firstQuery), int(queryCount)); vk::Cast(commandBuffer)->resetQueryPool(vk::Cast(queryPool), firstQuery, queryCount); } VKAPI_ATTR void VKAPI_CALL vkCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t query) { TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineStageFlagBits pipelineStage = %d, VkQueryPool queryPool = %p, uint32_t query = %d)", commandBuffer, int(pipelineStage), static_cast(queryPool), int(query)); vk::Cast(commandBuffer)->writeTimestamp(pipelineStage, vk::Cast(queryPool), query); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize stride, VkQueryResultFlags flags) { TRACE("(VkCommandBuffer commandBuffer = %p, VkQueryPool queryPool = %p, uint32_t firstQuery = %d, uint32_t queryCount = %d, VkBuffer dstBuffer = %p, VkDeviceSize dstOffset = %d, VkDeviceSize stride = %d, VkQueryResultFlags flags = %d)", commandBuffer, static_cast(queryPool), int(firstQuery), int(queryCount), static_cast(dstBuffer), int(dstOffset), int(stride), int(flags)); vk::Cast(commandBuffer)->copyQueryPoolResults(vk::Cast(queryPool), firstQuery, queryCount, vk::Cast(dstBuffer), dstOffset, stride, flags); } VKAPI_ATTR void VKAPI_CALL vkCmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void *pValues) { TRACE("(VkCommandBuffer commandBuffer = %p, VkPipelineLayout layout = %p, VkShaderStageFlags stageFlags = %d, uint32_t offset = %d, uint32_t size = %d, const void* pValues = %p)", commandBuffer, static_cast(layout), stageFlags, offset, size, pValues); vk::Cast(commandBuffer)->pushConstants(vk::Cast(layout), stageFlags, offset, size, pValues); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin, VkSubpassContents contents) { VkSubpassBeginInfo subpassBeginInfo = { VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO, nullptr, contents }; vkCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, &subpassBeginInfo); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin, const VkSubpassBeginInfoKHR *pSubpassBeginInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkRenderPassBeginInfo* pRenderPassBegin = %p, const VkSubpassBeginInfoKHR* pSubpassBeginInfo = %p)", commandBuffer, pRenderPassBegin, pSubpassBeginInfo); const VkBaseInStructure *renderPassBeginInfo = reinterpret_cast(pRenderPassBegin->pNext); const VkRenderPassAttachmentBeginInfo *attachmentBeginInfo = nullptr; while(renderPassBeginInfo) { switch(renderPassBeginInfo->sType) { case VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO: // This extension controls which render area is used on which physical device, // in order to distribute rendering between multiple physical devices. // SwiftShader only has a single physical device, so this extension does nothing in this case. break; case VK_STRUCTURE_TYPE_RENDER_PASS_ATTACHMENT_BEGIN_INFO: attachmentBeginInfo = reinterpret_cast(renderPassBeginInfo); break; default: LOG_TRAP("pRenderPassBegin->pNext sType = %s", vk::Stringify(renderPassBeginInfo->sType).c_str()); break; } renderPassBeginInfo = renderPassBeginInfo->pNext; } vk::Cast(commandBuffer)->beginRenderPass(vk::Cast(pRenderPassBegin->renderPass), vk::Cast(pRenderPassBegin->framebuffer), pRenderPassBegin->renderArea, pRenderPassBegin->clearValueCount, pRenderPassBegin->pClearValues, pSubpassBeginInfo->contents, attachmentBeginInfo); } VKAPI_ATTR void VKAPI_CALL vkCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) { TRACE("(VkCommandBuffer commandBuffer = %p, VkSubpassContents contents = %d)", commandBuffer, contents); vk::Cast(commandBuffer)->nextSubpass(contents); } VKAPI_ATTR void VKAPI_CALL vkCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfoKHR *pSubpassBeginInfo, const VkSubpassEndInfoKHR *pSubpassEndInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkSubpassBeginInfoKHR* pSubpassBeginInfo = %p, const VkSubpassEndInfoKHR* pSubpassEndInfo = %p)", commandBuffer, pSubpassBeginInfo, pSubpassEndInfo); vk::Cast(commandBuffer)->nextSubpass(pSubpassBeginInfo->contents); } VKAPI_ATTR void VKAPI_CALL vkCmdEndRenderPass(VkCommandBuffer commandBuffer) { TRACE("(VkCommandBuffer commandBuffer = %p)", commandBuffer); vk::Cast(commandBuffer)->endRenderPass(); } VKAPI_ATTR void VKAPI_CALL vkCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfoKHR *pSubpassEndInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkSubpassEndInfoKHR* pSubpassEndInfo = %p)", commandBuffer, pSubpassEndInfo); vk::Cast(commandBuffer)->endRenderPass(); } VKAPI_ATTR void VKAPI_CALL vkCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = %p)", commandBuffer, commandBufferCount, pCommandBuffers); vk::Cast(commandBuffer)->executeCommands(commandBufferCount, pCommandBuffers); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceVersion(uint32_t *pApiVersion) { TRACE("(uint32_t* pApiVersion = %p)", pApiVersion); *pApiVersion = vk::API_VERSION; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo *pBindInfos) { TRACE("(VkDevice device = %p, uint32_t bindInfoCount = %d, const VkBindBufferMemoryInfo* pBindInfos = %p)", device, bindInfoCount, pBindInfos); for(uint32_t i = 0; i < bindInfoCount; i++) { auto extInfo = reinterpret_cast(pBindInfos[i].pNext); while(extInfo) { LOG_TRAP("pBindInfos[%d].pNext sType = %s", i, vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } if(!vk::Cast(pBindInfos[i].buffer)->canBindToMemory(vk::Cast(pBindInfos[i].memory))) { UNSUPPORTED("vkBindBufferMemory2 with invalid external memory"); return VK_ERROR_INVALID_EXTERNAL_HANDLE; } } for(uint32_t i = 0; i < bindInfoCount; i++) { vk::Cast(pBindInfos[i].buffer)->bind(vk::Cast(pBindInfos[i].memory), pBindInfos[i].memoryOffset); } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo *pBindInfos) { TRACE("(VkDevice device = %p, uint32_t bindInfoCount = %d, const VkBindImageMemoryInfo* pBindInfos = %p)", device, bindInfoCount, pBindInfos); for(uint32_t i = 0; i < bindInfoCount; i++) { if(!vk::Cast(pBindInfos[i].image)->canBindToMemory(vk::Cast(pBindInfos[i].memory))) { UNSUPPORTED("vkBindImageMemory2 with invalid external memory"); return VK_ERROR_OUT_OF_DEVICE_MEMORY; } } for(uint32_t i = 0; i < bindInfoCount; i++) { vk::DeviceMemory *memory = vk::Cast(pBindInfos[i].memory); VkDeviceSize offset = pBindInfos[i].memoryOffset; auto extInfo = reinterpret_cast(pBindInfos[i].pNext); while(extInfo) { switch(extInfo->sType) { case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO: /* Do nothing */ break; #ifndef __ANDROID__ case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: { auto swapchainInfo = reinterpret_cast(extInfo); memory = vk::Cast(swapchainInfo->swapchain)->getImage(swapchainInfo->imageIndex).getImageMemory(); offset = 0; } break; #endif default: LOG_TRAP("pBindInfos[%d].pNext sType = %s", i, vk::Stringify(extInfo->sType).c_str()); break; } extInfo = extInfo->pNext; } vk::Cast(pBindInfos[i].image)->bind(memory, offset); } return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags *pPeerMemoryFeatures) { TRACE("(VkDevice device = %p, uint32_t heapIndex = %d, uint32_t localDeviceIndex = %d, uint32_t remoteDeviceIndex = %d, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures = %p)", device, heapIndex, localDeviceIndex, remoteDeviceIndex, pPeerMemoryFeatures); ASSERT(localDeviceIndex != remoteDeviceIndex); // "localDeviceIndex must not equal remoteDeviceIndex" UNSUPPORTED("remoteDeviceIndex: %d", int(remoteDeviceIndex)); // Only one physical device is supported, and since the device indexes can't be equal, this should never be called. } VKAPI_ATTR void VKAPI_CALL vkCmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t deviceMask = %d", commandBuffer, deviceMask); vk::Cast(commandBuffer)->setDeviceMask(deviceMask); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { TRACE("(VkCommandBuffer commandBuffer = %p, baseGroupX = %u, baseGroupY = %u, baseGroupZ = %u, groupCountX = %u, groupCountY = %u, groupCountZ = %u)", commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX, groupCountY, groupCountZ); vk::Cast(commandBuffer)->dispatchBase(baseGroupX, baseGroupY, baseGroupZ, groupCountX, groupCountY, groupCountZ); } VKAPI_ATTR void VKAPI_CALL vkResetQueryPool(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { TRACE("(VkDevice device = %p, VkQueryPool queryPool = %p, uint32_t firstQuery = %d, uint32_t queryCount = %d)", device, static_cast(queryPool), firstQuery, queryCount); vk::Cast(queryPool)->reset(firstQuery, queryCount); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDeviceGroups(VkInstance instance, uint32_t *pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) { TRACE("(VkInstance instance = %p, uint32_t* pPhysicalDeviceGroupCount = %p, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties = %p)", instance, pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties); return vk::Cast(instance)->getPhysicalDeviceGroups(pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties); } VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { TRACE("(VkDevice device = %p, const VkImageMemoryRequirementsInfo2* pInfo = %p, VkMemoryRequirements2* pMemoryRequirements = %p)", device, pInfo, pMemoryRequirements); auto extInfo = reinterpret_cast(pInfo->pNext); while(extInfo) { LOG_TRAP("pInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } VkBaseOutStructure *extensionRequirements = reinterpret_cast(pMemoryRequirements->pNext); while(extensionRequirements) { switch(extensionRequirements->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { auto requirements = reinterpret_cast(extensionRequirements); vk::Cast(device)->getRequirements(requirements); #if SWIFTSHADER_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER if(vk::Cast(pInfo->image)->getSupportedExternalMemoryHandleTypes() == VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) { requirements->prefersDedicatedAllocation = VK_TRUE; requirements->requiresDedicatedAllocation = VK_TRUE; } #endif } break; default: LOG_TRAP("pMemoryRequirements->pNext sType = %s", vk::Stringify(extensionRequirements->sType).c_str()); break; } extensionRequirements = extensionRequirements->pNext; } vkGetImageMemoryRequirements(device, pInfo->image, &(pMemoryRequirements->memoryRequirements)); } VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2 *pInfo, VkMemoryRequirements2 *pMemoryRequirements) { TRACE("(VkDevice device = %p, const VkBufferMemoryRequirementsInfo2* pInfo = %p, VkMemoryRequirements2* pMemoryRequirements = %p)", device, pInfo, pMemoryRequirements); auto extInfo = reinterpret_cast(pInfo->pNext); while(extInfo) { LOG_TRAP("pInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } VkBaseOutStructure *extensionRequirements = reinterpret_cast(pMemoryRequirements->pNext); while(extensionRequirements) { switch(extensionRequirements->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: { auto requirements = reinterpret_cast(extensionRequirements); vk::Cast(device)->getRequirements(requirements); } break; default: LOG_TRAP("pMemoryRequirements->pNext sType = %s", vk::Stringify(extensionRequirements->sType).c_str()); break; } extensionRequirements = extensionRequirements->pNext; } vkGetBufferMemoryRequirements(device, pInfo->buffer, &(pMemoryRequirements->memoryRequirements)); } VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements2(VkDevice device, const VkImageSparseMemoryRequirementsInfo2 *pInfo, uint32_t *pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2 *pSparseMemoryRequirements) { TRACE("(VkDevice device = %p, const VkImageSparseMemoryRequirementsInfo2* pInfo = %p, uint32_t* pSparseMemoryRequirementCount = %p, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements = %p)", device, pInfo, pSparseMemoryRequirementCount, pSparseMemoryRequirements); auto extInfo = reinterpret_cast(pInfo->pNext); while(extInfo) { LOG_TRAP("pInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } auto extensionRequirements = reinterpret_cast(pSparseMemoryRequirements->pNext); while(extensionRequirements) { LOG_TRAP("pSparseMemoryRequirements->pNext sType = %s", vk::Stringify(extensionRequirements->sType).c_str()); extensionRequirements = extensionRequirements->pNext; } // The 'sparseBinding' feature is not supported, so images can not be created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag. // "If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to." *pSparseMemoryRequirementCount = 0; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2 *pFeatures) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceFeatures2* pFeatures = %p)", physicalDevice, pFeatures); vk::Cast(physicalDevice)->getFeatures2(pFeatures); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2 *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceProperties2* pProperties = %p)", physicalDevice, pProperties); VkBaseOutStructure *extensionProperties = reinterpret_cast(pProperties->pNext); while(extensionProperties) { // Casting to a long since some structures, such as // VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID and // VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT // are not enumerated in the official Vulkan header switch((long)(extensionProperties->sType)) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: // Explicitly ignored, since VK_EXT_sample_locations is not supported ASSERT(!hasDeviceExtension(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME)); break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; #ifdef __ANDROID__ case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; #endif case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" LOG_TRAP("pProperties->pNext sType = %s", vk::Stringify(extensionProperties->sType).c_str()); break; } extensionProperties = extensionProperties->pNext; } vkGetPhysicalDeviceProperties(physicalDevice, &(pProperties->properties)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2 *pFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkFormat format = %d, VkFormatProperties2* pFormatProperties = %p)", physicalDevice, format, pFormatProperties); auto extInfo = reinterpret_cast(pFormatProperties->pNext); while(extInfo) { LOG_TRAP("pFormatProperties->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &(pFormatProperties->formatProperties)); } static bool checkFormatUsage(VkImageUsageFlags usage, VkFormatFeatureFlags features) { // Check for usage conflict with features if((usage & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) { return false; } if((usage & VK_IMAGE_USAGE_STORAGE_BIT) && !(features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) { return false; } if((usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) { return false; } if((usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) { return false; } if((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !(features & (VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))) { return false; } if((usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT)) { return false; } if((usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_DST_BIT)) { return false; } return true; } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2 *pImageFormatInfo, VkImageFormatProperties2 *pImageFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo = %p, VkImageFormatProperties2* pImageFormatProperties = %p)", physicalDevice, pImageFormatInfo, pImageFormatProperties); // "If the combination of parameters to vkGetPhysicalDeviceImageFormatProperties is not supported by the implementation // for use in vkCreateImage, then all members of VkImageFormatProperties will be filled with zero." memset(&pImageFormatProperties->imageFormatProperties, 0, sizeof(VkImageFormatProperties)); const VkBaseInStructure *extensionFormatInfo = reinterpret_cast(pImageFormatInfo->pNext); const VkExternalMemoryHandleTypeFlagBits *handleType = nullptr; VkImageUsageFlags stencilUsage = 0; while(extensionFormatInfo) { switch(extensionFormatInfo->sType) { case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR: { // Explicitly ignored, since VK_KHR_image_format_list is not supported ASSERT(!hasDeviceExtension(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME)); } break; case VK_STRUCTURE_TYPE_IMAGE_STENCIL_USAGE_CREATE_INFO: { const VkImageStencilUsageCreateInfo *stencilUsageInfo = reinterpret_cast(extensionFormatInfo); stencilUsage = stencilUsageInfo->stencilUsage; } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO: { const VkPhysicalDeviceExternalImageFormatInfo *imageFormatInfo = reinterpret_cast(extensionFormatInfo); handleType = &(imageFormatInfo->handleType); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT: { // Explicitly ignored, since VK_EXT_image_drm_format_modifier is not supported ASSERT(!hasDeviceExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME)); } break; default: LOG_TRAP("pImageFormatInfo->pNext sType = %s", vk::Stringify(extensionFormatInfo->sType).c_str()); break; } extensionFormatInfo = extensionFormatInfo->pNext; } VkBaseOutStructure *extensionProperties = reinterpret_cast(pImageFormatProperties->pNext); #ifdef __ANDROID__ bool hasAHBUsage = false; #endif while(extensionProperties) { switch(extensionProperties->sType) { case VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(handleType, properties); } break; case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(properties); } break; case VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD: { // Explicitly ignored, since VK_AMD_texture_gather_bias_lod is not supported ASSERT(!hasDeviceExtension(VK_AMD_TEXTURE_GATHER_BIAS_LOD_EXTENSION_NAME)); } break; #ifdef __ANDROID__ case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID: { auto properties = reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(pImageFormatInfo, properties); hasAHBUsage = true; } break; #endif default: LOG_TRAP("pImageFormatProperties->pNext sType = %s", vk::Stringify(extensionProperties->sType).c_str()); break; } extensionProperties = extensionProperties->pNext; } VkFormat format = pImageFormatInfo->format; VkImageType type = pImageFormatInfo->type; VkImageTiling tiling = pImageFormatInfo->tiling; VkImageUsageFlags usage = pImageFormatInfo->usage; VkImageCreateFlags flags = pImageFormatInfo->flags; VkFormatProperties properties; vk::PhysicalDevice::GetFormatProperties(format, &properties); VkFormatFeatureFlags features; switch(tiling) { case VK_IMAGE_TILING_LINEAR: features = properties.linearTilingFeatures; break; case VK_IMAGE_TILING_OPTIMAL: features = properties.optimalTilingFeatures; break; default: UNSUPPORTED("VkImageTiling %d", int(tiling)); features = 0; } if(features == 0) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } // Reject any usage or separate stencil usage that is not compatible with the specified format. if(!checkFormatUsage(usage, features)) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } // If stencilUsage is 0 then no separate usage was provided and it takes on the same value as usage, // which has already been checked. So only check non-zero stencilUsage. if(stencilUsage != 0 && !checkFormatUsage(stencilUsage, features)) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } auto allRecognizedUsageBits = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT; ASSERT(!(usage & ~(allRecognizedUsageBits))); if(usage & VK_IMAGE_USAGE_SAMPLED_BIT) { if(tiling == VK_IMAGE_TILING_LINEAR) { // TODO(b/171299814): Compressed formats and cube maps are not supported for sampling using VK_IMAGE_TILING_LINEAR; otherwise, sampling // in linear tiling is always supported as long as it can be sampled when using VK_IMAGE_TILING_OPTIMAL. if(!(properties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) || vk::Format(format).isCompressed() || (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } } else if(!(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } } // "Images created with tiling equal to VK_IMAGE_TILING_LINEAR have further restrictions on their limits and capabilities // compared to images created with tiling equal to VK_IMAGE_TILING_OPTIMAL." if(tiling == VK_IMAGE_TILING_LINEAR) { if(type != VK_IMAGE_TYPE_2D) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } if(vk::Format(format).isDepth() || vk::Format(format).isStencil()) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } } // "Images created with a format from one of those listed in Formats requiring sampler Y'CBCR conversion for VK_IMAGE_ASPECT_COLOR_BIT image views // have further restrictions on their limits and capabilities compared to images created with other formats." if(vk::Format(format).isYcbcrFormat()) { if(type != VK_IMAGE_TYPE_2D) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } } vk::Cast(physicalDevice)->getImageFormatProperties(format, type, tiling, usage, flags, &pImageFormatProperties->imageFormatProperties); #ifdef __ANDROID__ if(hasAHBUsage) { // AHardwareBuffer_lock may only be called with a single layer. pImageFormatProperties->imageFormatProperties.maxArrayLayers = 1; pImageFormatProperties->imageFormatProperties.maxMipLevels = 1; } #endif return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties2 *pQueueFamilyProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pQueueFamilyPropertyCount = %p, VkQueueFamilyProperties2* pQueueFamilyProperties = %p)", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties); if(pQueueFamilyProperties) { auto extInfo = reinterpret_cast(pQueueFamilyProperties->pNext); while(extInfo) { LOG_TRAP("pQueueFamilyProperties->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } } if(!pQueueFamilyProperties) { *pQueueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount(); } else { vk::Cast(physicalDevice)->getQueueFamilyProperties(*pQueueFamilyPropertyCount, pQueueFamilyProperties); } } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkPhysicalDeviceMemoryProperties2* pMemoryProperties = %p)", physicalDevice, pMemoryProperties); auto extInfo = reinterpret_cast(pMemoryProperties->pNext); while(extInfo) { LOG_TRAP("pMemoryProperties->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } vkGetPhysicalDeviceMemoryProperties(physicalDevice, &(pMemoryProperties->memoryProperties)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2 *pFormatInfo, uint32_t *pPropertyCount, VkSparseImageFormatProperties2 *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo = %p, uint32_t* pPropertyCount = %p, VkSparseImageFormatProperties2* pProperties = %p)", physicalDevice, pFormatInfo, pPropertyCount, pProperties); if(pProperties) { auto extInfo = reinterpret_cast(pProperties->pNext); while(extInfo) { LOG_TRAP("pProperties->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } } // We do not support sparse images. *pPropertyCount = 0; } VKAPI_ATTR void VKAPI_CALL vkTrimCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlags flags) { TRACE("(VkDevice device = %p, VkCommandPool commandPool = %p, VkCommandPoolTrimFlags flags = %d)", device, static_cast(commandPool), flags); if(flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("flags %d", int(flags)); } vk::Cast(commandPool)->trim(flags); } VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue2(VkDevice device, const VkDeviceQueueInfo2 *pQueueInfo, VkQueue *pQueue) { TRACE("(VkDevice device = %p, const VkDeviceQueueInfo2* pQueueInfo = %p, VkQueue* pQueue = %p)", device, pQueueInfo, pQueue); auto extInfo = reinterpret_cast(pQueueInfo->pNext); while(extInfo) { LOG_TRAP("pQueueInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } if(pQueueInfo->flags != 0) { // The only flag that can be set here is VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT // According to the Vulkan 1.2.132 spec, 4.3.1. Queue Family Properties: // "VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT specifies that the device queue is a // protected-capable queue. If the protected memory feature is not enabled, // the VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit of flags must not be set." UNSUPPORTED("VkPhysicalDeviceVulkan11Features::protectedMemory"); } vkGetDeviceQueue(device, pQueueInfo->queueFamilyIndex, pQueueInfo->queueIndex, pQueue); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSamplerYcbcrConversion(VkDevice device, const VkSamplerYcbcrConversionCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSamplerYcbcrConversion *pYcbcrConversion) { TRACE("(VkDevice device = %p, const VkSamplerYcbcrConversionCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSamplerYcbcrConversion* pYcbcrConversion = %p)", device, pCreateInfo, pAllocator, pYcbcrConversion); auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::SamplerYcbcrConversion::Create(pAllocator, pCreateInfo, pYcbcrConversion); } VKAPI_ATTR void VKAPI_CALL vkDestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkSamplerYcbcrConversion ycbcrConversion = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(ycbcrConversion), pAllocator); vk::destroy(ycbcrConversion, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorUpdateTemplate(VkDevice device, const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate) { TRACE("(VkDevice device = %p, const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate = %p)", device, pCreateInfo, pAllocator, pDescriptorUpdateTemplate); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } if(pCreateInfo->templateType != VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET) { UNSUPPORTED("pCreateInfo->templateType %d", int(pCreateInfo->templateType)); } auto extInfo = reinterpret_cast(pCreateInfo->pNext); while(extInfo) { LOG_TRAP("pCreateInfo->pNext sType = %s", vk::Stringify(extInfo->sType).c_str()); extInfo = extInfo->pNext; } return vk::DescriptorUpdateTemplate::Create(pAllocator, pCreateInfo, pDescriptorUpdateTemplate); } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorUpdateTemplate(VkDevice device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkDescriptorUpdateTemplate descriptorUpdateTemplate = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(descriptorUpdateTemplate), pAllocator); vk::destroy(descriptorUpdateTemplate, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSetWithTemplate(VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { TRACE("(VkDevice device = %p, VkDescriptorSet descriptorSet = %p, VkDescriptorUpdateTemplate descriptorUpdateTemplate = %p, const void* pData = %p)", device, static_cast(descriptorSet), static_cast(descriptorUpdateTemplate), pData); vk::Cast(descriptorUpdateTemplate)->updateDescriptorSet(vk::Cast(device), descriptorSet, pData); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalBufferProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo *pExternalBufferInfo, VkExternalBufferProperties *pExternalBufferProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo = %p, VkExternalBufferProperties* pExternalBufferProperties = %p)", physicalDevice, pExternalBufferInfo, pExternalBufferProperties); vk::Cast(physicalDevice)->getProperties(pExternalBufferInfo, pExternalBufferProperties); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalFenceProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo, VkExternalFenceProperties *pExternalFenceProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo = %p, VkExternalFenceProperties* pExternalFenceProperties = %p)", physicalDevice, pExternalFenceInfo, pExternalFenceProperties); vk::Cast(physicalDevice)->getProperties(pExternalFenceInfo, pExternalFenceProperties); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalSemaphoreProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo, VkExternalSemaphoreProperties *pExternalSemaphoreProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo = %p, VkExternalSemaphoreProperties* pExternalSemaphoreProperties = %p)", physicalDevice, pExternalSemaphoreInfo, pExternalSemaphoreProperties); vk::Cast(physicalDevice)->getProperties(pExternalSemaphoreInfo, pExternalSemaphoreProperties); } VKAPI_ATTR void VKAPI_CALL vkGetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, VkDescriptorSetLayoutSupport *pSupport) { TRACE("(VkDevice device = %p, const VkDescriptorSetLayoutCreateInfo* pCreateInfo = %p, VkDescriptorSetLayoutSupport* pSupport = %p)", device, pCreateInfo, pSupport); vk::Cast(device)->getDescriptorSetLayoutSupport(pCreateInfo, pSupport); } VKAPI_ATTR void VKAPI_CALL vkCmdSetLineStippleEXT(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor, uint16_t lineStipplePattern) { TRACE("(VkCommandBuffer commandBuffer = %p, uint32_t lineStippleFactor = %u, uint16_t lineStipplePattern = %u)", commandBuffer, lineStippleFactor, lineStipplePattern); UNSUPPORTED("VkPhysicalDeviceLineRasterizationFeaturesEXT::stippled*Lines"); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginDebugUtilsLabelEXT(VkCommandBuffer commandBuffer, const VkDebugUtilsLabelEXT *pLabelInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkDebugUtilsLabelEXT* pLabelInfo = %p)", commandBuffer, pLabelInfo); vk::Cast(commandBuffer)->beginDebugUtilsLabel(pLabelInfo); } VKAPI_ATTR void VKAPI_CALL vkCmdEndDebugUtilsLabelEXT(VkCommandBuffer commandBuffer) { TRACE("(VkCommandBuffer commandBuffer = %p)", commandBuffer); vk::Cast(commandBuffer)->endDebugUtilsLabel(); } VKAPI_ATTR void VKAPI_CALL vkCmdInsertDebugUtilsLabelEXT(VkCommandBuffer commandBuffer, const VkDebugUtilsLabelEXT *pLabelInfo) { TRACE("(VkCommandBuffer commandBuffer = %p, const VkDebugUtilsLabelEXT* pLabelInfo = %p)", commandBuffer, pLabelInfo); vk::Cast(commandBuffer)->insertDebugUtilsLabel(pLabelInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDebugUtilsMessengerEXT *pMessenger) { TRACE("(VkInstance instance = %p, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkDebugUtilsMessengerEXT* pMessenger = %p)", instance, pCreateInfo, pAllocator, pMessenger); if(pCreateInfo->flags != 0) { // Vulkan 1.2: "flags is reserved for future use." "flags must be 0" UNSUPPORTED("pCreateInfo->flags %d", int(pCreateInfo->flags)); } return vk::DebugUtilsMessenger::Create(pAllocator, pCreateInfo, pMessenger); } VKAPI_ATTR void VKAPI_CALL vkDestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT messenger, const VkAllocationCallbacks *pAllocator) { TRACE("(VkInstance instance = %p, VkDebugUtilsMessengerEXT messenger = %p, const VkAllocationCallbacks* pAllocator = %p)", instance, static_cast(messenger), pAllocator); vk::destroy(messenger, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkQueueBeginDebugUtilsLabelEXT(VkQueue queue, const VkDebugUtilsLabelEXT *pLabelInfo) { TRACE("(VkQueue queue = %p, const VkDebugUtilsLabelEXT* pLabelInfo = %p)", queue, pLabelInfo); vk::Cast(queue)->beginDebugUtilsLabel(pLabelInfo); } VKAPI_ATTR void VKAPI_CALL vkQueueEndDebugUtilsLabelEXT(VkQueue queue) { TRACE("(VkQueue queue = %p)", queue); vk::Cast(queue)->endDebugUtilsLabel(); } VKAPI_ATTR void VKAPI_CALL vkQueueInsertDebugUtilsLabelEXT(VkQueue queue, const VkDebugUtilsLabelEXT *pLabelInfo) { TRACE("(VkQueue queue = %p, const VkDebugUtilsLabelEXT* pLabelInfo = %p)", queue, pLabelInfo); vk::Cast(queue)->insertDebugUtilsLabel(pLabelInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkSetDebugUtilsObjectNameEXT(VkDevice device, const VkDebugUtilsObjectNameInfoEXT *pNameInfo) { TRACE("(VkDevice device = %p, const VkDebugUtilsObjectNameInfoEXT* pNameInfo = %p)", device, pNameInfo); return vk::Cast(device)->setDebugUtilsObjectName(pNameInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkSetDebugUtilsObjectTagEXT(VkDevice device, const VkDebugUtilsObjectTagInfoEXT *pTagInfo) { TRACE("(VkDevice device = %p, const VkDebugUtilsObjectTagInfoEXT* pTagInfo = %p)", device, pTagInfo); return vk::Cast(device)->setDebugUtilsObjectTag(pTagInfo); } VKAPI_ATTR void VKAPI_CALL vkSubmitDebugUtilsMessageEXT(VkInstance instance, VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes, const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData) { TRACE("(VkInstance instance = %p, VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity = %d, VkDebugUtilsMessageTypeFlagsEXT messageTypes = %d, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData = %p)", instance, messageSeverity, messageTypes, pCallbackData); vk::Cast(instance)->submitDebugUtilsMessage(messageSeverity, messageTypes, pCallbackData); } #ifdef VK_USE_PLATFORM_XCB_KHR VKAPI_ATTR VkResult VKAPI_CALL vkCreateXcbSurfaceKHR(VkInstance instance, const VkXcbSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkXcbSurfaceCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); // VUID-VkXcbSurfaceCreateInfoKHR-connection-01310 : connection must point to a valid X11 xcb_connection_t ASSERT(pCreateInfo->connection); return vk::XcbSurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkBool32 VKAPI_CALL vkGetPhysicalDeviceXcbPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, xcb_connection_t *connection, xcb_visualid_t visual_id) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d, xcb_connection_t* connection = %p, xcb_visualid_t visual_id = %d)", physicalDevice, int(queueFamilyIndex), connection, int(visual_id)); return VK_TRUE; } #endif #ifdef VK_USE_PLATFORM_XLIB_KHR VKAPI_ATTR VkResult VKAPI_CALL vkCreateXlibSurfaceKHR(VkInstance instance, const VkXlibSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkXlibSurfaceCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); // VUID-VkXlibSurfaceCreateInfoKHR-dpy-01313: dpy must point to a valid Xlib Display ASSERT(pCreateInfo->dpy); return vk::XlibSurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkBool32 VKAPI_CALL vkGetPhysicalDeviceXlibPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, Display *dpy, VisualID visualID) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d, Display* dpy = %p, VisualID visualID = %lu)", physicalDevice, int(queueFamilyIndex), dpy, visualID); return VK_TRUE; } #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR VKAPI_ATTR VkResult VKAPI_CALL vkCreateWaylandSurfaceKHR(VkInstance instance, const VkWaylandSurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkWaylandSurfaceCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::WaylandSurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkBool32 VKAPI_CALL vkGetPhysicalDeviceWaylandPresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, struct wl_display *display) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d, struct wl_display* display = %p)", physicalDevice, int(queueFamilyIndex), display); return VK_TRUE; } #endif #ifdef VK_USE_PLATFORM_DIRECTFB_EXT VKAPI_ATTR VkResult VKAPI_CALL vkCreateDirectFBSurfaceEXT(VkInstance instance, const VkDirectFBSurfaceCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkDirectFBSurfaceCreateInfoEXT* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::DirectFBSurfaceEXT::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkBool32 VKAPI_CALL vkGetPhysicalDeviceDirectFBPresentationSupportEXT(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, IDirectFB *dfb) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d, IDirectFB* dfb = %p)", physicalDevice, int(queueFamilyIndex), dfb); return VK_TRUE; } #endif #ifdef VK_USE_PLATFORM_DISPLAY_KHR VKAPI_ATTR VkResult VKAPI_CALL vkCreateDisplayModeKHR(VkPhysicalDevice physicalDevice, VkDisplayKHR display, const VkDisplayModeCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDisplayModeKHR *pMode) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkDisplayKHR display = %p, VkDisplayModeCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkDisplayModeKHR* pModei = %p)", physicalDevice, static_cast(display), pCreateInfo, pAllocator, pMode); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDisplayPlaneSurfaceKHR(VkInstance instance, const VkDisplaySurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkDisplaySurfaceCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::DisplaySurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkResult VKAPI_CALL vkGetDisplayModePropertiesKHR(VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t *pPropertyCount, VkDisplayModePropertiesKHR *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkDisplayKHR display = %p, uint32_t* pPropertyCount = %p, VkDisplayModePropertiesKHR* pProperties = %p)", physicalDevice, static_cast(display), pPropertyCount, pProperties); return vk::DisplaySurfaceKHR::GetDisplayModeProperties(pPropertyCount, pProperties); } VKAPI_ATTR VkResult VKAPI_CALL vkGetDisplayPlaneCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkDisplayModeKHR mode, uint32_t planeIndex, VkDisplayPlaneCapabilitiesKHR *pCapabilities) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkDisplayModeKHR mode = %p, uint32_t planeIndex = %d, VkDisplayPlaneCapabilitiesKHR* pCapabilities = %p)", physicalDevice, static_cast(mode), planeIndex, pCapabilities); return vk::DisplaySurfaceKHR::GetDisplayPlaneCapabilities(pCapabilities); } VKAPI_ATTR VkResult VKAPI_CALL vkGetDisplayPlaneSupportedDisplaysKHR(VkPhysicalDevice physicalDevice, uint32_t planeIndex, uint32_t *pDisplayCount, VkDisplayKHR *pDisplays) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t planeIndex = %d, uint32_t* pDisplayCount = %p, VkDisplayKHR* pDisplays = %p)", physicalDevice, planeIndex, pDisplayCount, pDisplays); return vk::DisplaySurfaceKHR::GetDisplayPlaneSupportedDisplays(pDisplayCount, pDisplays); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceDisplayPlanePropertiesKHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayPlanePropertiesKHR *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pPropertyCount = %p, VkDisplayPlanePropertiesKHR* pProperties = %p)", physicalDevice, pPropertyCount, pProperties); return vk::DisplaySurfaceKHR::GetPhysicalDeviceDisplayPlaneProperties(pPropertyCount, pProperties); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceDisplayPropertiesKHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkDisplayPropertiesKHR *pProperties) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t* pPropertyCount = %p, VkDisplayPropertiesKHR* pProperties = %p)", physicalDevice, pPropertyCount, pProperties); return vk::DisplaySurfaceKHR::GetPhysicalDeviceDisplayProperties(pPropertyCount, pProperties); } #endif #ifdef VK_USE_PLATFORM_MACOS_MVK VKAPI_ATTR VkResult VKAPI_CALL vkCreateMacOSSurfaceMVK(VkInstance instance, const VkMacOSSurfaceCreateInfoMVK *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkMacOSSurfaceCreateInfoMVK* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::MacOSSurfaceMVK::Create(pAllocator, pCreateInfo, pSurface); } #endif #ifdef VK_USE_PLATFORM_METAL_EXT VKAPI_ATTR VkResult VKAPI_CALL vkCreateMetalSurfaceEXT(VkInstance instance, const VkMetalSurfaceCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkMetalSurfaceCreateInfoEXT* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::MetalSurfaceEXT::Create(pAllocator, pCreateInfo, pSurface); } #endif #ifdef VK_USE_PLATFORM_WIN32_KHR VKAPI_ATTR VkResult VKAPI_CALL vkCreateWin32SurfaceKHR(VkInstance instance, const VkWin32SurfaceCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkWin32SurfaceCreateInfoKHR* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::Win32SurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } VKAPI_ATTR VkBool32 VKAPI_CALL vkGetPhysicalDeviceWin32PresentationSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d)", physicalDevice, queueFamilyIndex); return VK_TRUE; } #endif VKAPI_ATTR VkResult VKAPI_CALL vkCreateHeadlessSurfaceEXT(VkInstance instance, const VkHeadlessSurfaceCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSurfaceKHR *pSurface) { TRACE("(VkInstance instance = %p, VkHeadlessSurfaceCreateInfoEXT* pCreateInfo = %p, VkAllocationCallbacks* pAllocator = %p, VkSurface* pSurface = %p)", instance, pCreateInfo, pAllocator, pSurface); return vk::HeadlessSurfaceKHR::Create(pAllocator, pCreateInfo, pSurface); } #ifndef __ANDROID__ VKAPI_ATTR void VKAPI_CALL vkDestroySurfaceKHR(VkInstance instance, VkSurfaceKHR surface, const VkAllocationCallbacks *pAllocator) { TRACE("(VkInstance instance = %p, VkSurfaceKHR surface = %p, const VkAllocationCallbacks* pAllocator = %p)", instance, static_cast(surface), pAllocator); vk::destroy(surface, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice physicalDevice, uint32_t queueFamilyIndex, VkSurfaceKHR surface, VkBool32 *pSupported) { TRACE("(VkPhysicalDevice physicalDevice = %p, uint32_t queueFamilyIndex = %d, VkSurface surface = %p, VKBool32* pSupported = %p)", physicalDevice, int(queueFamilyIndex), static_cast(surface), pSupported); *pSupported = VK_TRUE; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR *pSurfaceCapabilities) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkSurfaceKHR surface = %p, VkSurfaceCapabilitiesKHR* pSurfaceCapabilities = %p)", physicalDevice, static_cast(surface), pSurfaceCapabilities); return vk::Cast(surface)->getSurfaceCapabilities(pSurfaceCapabilities); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t *pSurfaceFormatCount, VkSurfaceFormatKHR *pSurfaceFormats) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkSurfaceKHR surface = %p. uint32_t* pSurfaceFormatCount = %p, VkSurfaceFormatKHR* pSurfaceFormats = %p)", physicalDevice, static_cast(surface), pSurfaceFormatCount, pSurfaceFormats); if(!pSurfaceFormats) { *pSurfaceFormatCount = vk::Cast(surface)->getSurfaceFormatsCount(); return VK_SUCCESS; } return vk::Cast(surface)->getSurfaceFormats(pSurfaceFormatCount, pSurfaceFormats); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t *pPresentModeCount, VkPresentModeKHR *pPresentModes) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkSurfaceKHR surface = %p uint32_t* pPresentModeCount = %p, VkPresentModeKHR* pPresentModes = %p)", physicalDevice, static_cast(surface), pPresentModeCount, pPresentModes); if(!pPresentModes) { *pPresentModeCount = vk::Cast(surface)->getPresentModeCount(); return VK_SUCCESS; } return vk::Cast(surface)->getPresentModes(pPresentModeCount, pPresentModes); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) { TRACE("(VkDevice device = %p, const VkSwapchainCreateInfoKHR* pCreateInfo = %p, const VkAllocationCallbacks* pAllocator = %p, VkSwapchainKHR* pSwapchain = %p)", device, pCreateInfo, pAllocator, pSwapchain); if(pCreateInfo->oldSwapchain) { vk::Cast(pCreateInfo->oldSwapchain)->retire(); } if(vk::Cast(pCreateInfo->surface)->hasAssociatedSwapchain()) { return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; } VkResult status = vk::SwapchainKHR::Create(pAllocator, pCreateInfo, pSwapchain); if(status != VK_SUCCESS) { return status; } auto swapchain = vk::Cast(*pSwapchain); status = swapchain->createImages(device, pCreateInfo); if(status != VK_SUCCESS) { vk::destroy(*pSwapchain, pAllocator); return status; } vk::Cast(pCreateInfo->surface)->associateSwapchain(swapchain); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkDestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) { TRACE("(VkDevice device = %p, VkSwapchainKHR swapchain = %p, const VkAllocationCallbacks* pAllocator = %p)", device, static_cast(swapchain), pAllocator); vk::destroy(swapchain, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount, VkImage *pSwapchainImages) { TRACE("(VkDevice device = %p, VkSwapchainKHR swapchain = %p, uint32_t* pSwapchainImageCount = %p, VkImage* pSwapchainImages = %p)", device, static_cast(swapchain), pSwapchainImageCount, pSwapchainImages); if(!pSwapchainImages) { *pSwapchainImageCount = vk::Cast(swapchain)->getImageCount(); return VK_SUCCESS; } return vk::Cast(swapchain)->getImages(pSwapchainImageCount, pSwapchainImages); } VKAPI_ATTR VkResult VKAPI_CALL vkAcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence fence, uint32_t *pImageIndex) { TRACE("(VkDevice device = %p, VkSwapchainKHR swapchain = %p, uint64_t timeout = %" PRIu64 ", VkSemaphore semaphore = %p, VkFence fence = %p, uint32_t* pImageIndex = %p)", device, static_cast(swapchain), timeout, static_cast(semaphore), static_cast(fence), pImageIndex); return vk::Cast(swapchain)->getNextImage(timeout, vk::DynamicCast(semaphore), vk::Cast(fence), pImageIndex); } VKAPI_ATTR VkResult VKAPI_CALL vkQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) { TRACE("(VkQueue queue = %p, const VkPresentInfoKHR* pPresentInfo = %p)", queue, pPresentInfo); return vk::Cast(queue)->present(pPresentInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkAcquireNextImage2KHR(VkDevice device, const VkAcquireNextImageInfoKHR *pAcquireInfo, uint32_t *pImageIndex) { TRACE("(VkDevice device = %p, const VkAcquireNextImageInfoKHR *pAcquireInfo = %p, uint32_t *pImageIndex = %p", device, pAcquireInfo, pImageIndex); return vk::Cast(pAcquireInfo->swapchain)->getNextImage(pAcquireInfo->timeout, vk::DynamicCast(pAcquireInfo->semaphore), vk::Cast(pAcquireInfo->fence), pImageIndex); } VKAPI_ATTR VkResult VKAPI_CALL vkGetDeviceGroupPresentCapabilitiesKHR(VkDevice device, VkDeviceGroupPresentCapabilitiesKHR *pDeviceGroupPresentCapabilities) { TRACE("(VkDevice device = %p, VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities = %p)", device, pDeviceGroupPresentCapabilities); for(int i = 0; i < VK_MAX_DEVICE_GROUP_SIZE; i++) { // The only real physical device in the presentation group is device 0, // and it can present to itself. pDeviceGroupPresentCapabilities->presentMask[i] = (i == 0) ? 1 : 0; } pDeviceGroupPresentCapabilities->modes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetDeviceGroupSurfacePresentModesKHR(VkDevice device, VkSurfaceKHR surface, VkDeviceGroupPresentModeFlagsKHR *pModes) { TRACE("(VkDevice device = %p, VkSurfaceKHR surface = %p, VkDeviceGroupPresentModeFlagsKHR *pModes = %p)", device, static_cast(surface), pModes); *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface, uint32_t *pRectCount, VkRect2D *pRects) { TRACE("(VkPhysicalDevice physicalDevice = %p, VkSurfaceKHR surface = %p, uint32_t* pRectCount = %p, VkRect2D* pRects = %p)", physicalDevice, static_cast(surface), pRectCount, pRects); return vk::Cast(surface)->getPresentRectangles(pRectCount, pRects); } #endif // ! __ANDROID__ #ifdef __ANDROID__ VKAPI_ATTR VkResult VKAPI_CALL vkGetSwapchainGrallocUsage2ANDROID(VkDevice device, VkFormat format, VkImageUsageFlags imageUsage, VkSwapchainImageUsageFlagsANDROID swapchainUsage, uint64_t *grallocConsumerUsage, uint64_t *grallocProducerUsage) { TRACE("(VkDevice device = %p, VkFormat format = %d, VkImageUsageFlags imageUsage = %d, VkSwapchainImageUsageFlagsANDROID swapchainUsage = %d, uint64_t* grallocConsumerUsage = %p, uin64_t* grallocProducerUsage = %p)", device, format, imageUsage, swapchainUsage, grallocConsumerUsage, grallocProducerUsage); *grallocConsumerUsage = 0; *grallocProducerUsage = GRALLOC1_PRODUCER_USAGE_CPU_WRITE_OFTEN; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetSwapchainGrallocUsageANDROID(VkDevice device, VkFormat format, VkImageUsageFlags imageUsage, int *grallocUsage) { TRACE("(VkDevice device = %p, VkFormat format = %d, VkImageUsageFlags imageUsage = %d, int* grallocUsage = %p)", device, format, imageUsage, grallocUsage); *grallocUsage = GRALLOC_USAGE_SW_WRITE_OFTEN; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkAcquireImageANDROID(VkDevice device, VkImage image, int nativeFenceFd, VkSemaphore semaphore, VkFence fence) { TRACE("(VkDevice device = %p, VkImage image = %p, int nativeFenceFd = %d, VkSemaphore semaphore = %p, VkFence fence = %p)", device, static_cast(image), nativeFenceFd, static_cast(semaphore), static_cast(fence)); if(nativeFenceFd >= 0) { sync_wait(nativeFenceFd, -1); close(nativeFenceFd); } if(fence != VK_NULL_HANDLE) { vk::Cast(fence)->complete(); } if(semaphore != VK_NULL_HANDLE) { vk::DynamicCast(semaphore)->signal(); } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkQueueSignalReleaseImageANDROID(VkQueue queue, uint32_t waitSemaphoreCount, const VkSemaphore *pWaitSemaphores, VkImage image, int *pNativeFenceFd) { TRACE("(VkQueue queue = %p, uint32_t waitSemaphoreCount = %d, const VkSemaphore* pWaitSemaphores = %p, VkImage image = %p, int* pNativeFenceFd = %p)", queue, waitSemaphoreCount, pWaitSemaphores, static_cast(image), pNativeFenceFd); // This is a hack to deal with screen tearing for now. // Need to correctly implement threading using VkSemaphore // to get rid of it. b/132458423 vkQueueWaitIdle(queue); *pNativeFenceFd = -1; return vk::Cast(image)->prepareForExternalUseANDROID(); } #endif // __ANDROID__ }