// Copyright (c) 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ #include #include #include #include #include #include "libspirv.hpp" namespace spvtools { namespace opt { class Pass; } // C++ interface for SPIR-V optimization functionalities. It wraps the context // (including target environment and the corresponding SPIR-V grammar) and // provides methods for registering optimization passes and optimizing. // // Instances of this class provides basic thread-safety guarantee. class Optimizer { public: // The token for an optimization pass. It is returned via one of the // Create*Pass() standalone functions at the end of this header file and // consumed by the RegisterPass() method. Tokens are one-time objects that // only support move; copying is not allowed. struct PassToken { struct Impl; // Opaque struct for holding inernal data. PassToken(std::unique_ptr); // Tokens for built-in passes should be created using Create*Pass functions // below; for out-of-tree passes, use this constructor instead. // Note that this API isn't guaranteed to be stable and may change without // preserving source or binary compatibility in the future. PassToken(std::unique_ptr&& pass); // Tokens can only be moved. Copying is disabled. PassToken(const PassToken&) = delete; PassToken(PassToken&&); PassToken& operator=(const PassToken&) = delete; PassToken& operator=(PassToken&&); ~PassToken(); std::unique_ptr impl_; // Unique pointer to internal data. }; // Constructs an instance with the given target |env|, which is used to decode // the binaries to be optimized later. // // The instance will have an empty message consumer, which ignores all // messages from the library. Use SetMessageConsumer() to supply a consumer // if messages are of concern. explicit Optimizer(spv_target_env env); // Disables copy/move constructor/assignment operations. Optimizer(const Optimizer&) = delete; Optimizer(Optimizer&&) = delete; Optimizer& operator=(const Optimizer&) = delete; Optimizer& operator=(Optimizer&&) = delete; // Destructs this instance. ~Optimizer(); // Sets the message consumer to the given |consumer|. The |consumer| will be // invoked once for each message communicated from the library. void SetMessageConsumer(MessageConsumer consumer); // Returns a reference to the registered message consumer. const MessageConsumer& consumer() const; // Registers the given |pass| to this optimizer. Passes will be run in the // exact order of registration. The token passed in will be consumed by this // method. Optimizer& RegisterPass(PassToken&& pass); // Registers passes that attempt to improve performance of generated code. // This sequence of passes is subject to constant review and will change // from time to time. Optimizer& RegisterPerformancePasses(); // Registers passes that attempt to improve the size of generated code. // This sequence of passes is subject to constant review and will change // from time to time. Optimizer& RegisterSizePasses(); // Registers passes that attempt to legalize the generated code. // // Note: this recipe is specially designed for legalizing SPIR-V. It should be // used by compilers after translating HLSL source code literally. It should // *not* be used by general workloads for performance or size improvement. // // This sequence of passes is subject to constant review and will change // from time to time. Optimizer& RegisterLegalizationPasses(); // Register passes specified in the list of |flags|. Each flag must be a // string of a form accepted by Optimizer::FlagHasValidForm(). // // If the list of flags contains an invalid entry, it returns false and an // error message is emitted to the MessageConsumer object (use // Optimizer::SetMessageConsumer to define a message consumer, if needed). // // If all the passes are registered successfully, it returns true. bool RegisterPassesFromFlags(const std::vector& flags); // Registers the optimization pass associated with |flag|. This only accepts // |flag| values of the form "--pass_name[=pass_args]". If no such pass // exists, it returns false. Otherwise, the pass is registered and it returns // true. // // The following flags have special meaning: // // -O: Registers all performance optimization passes // (Optimizer::RegisterPerformancePasses) // // -Os: Registers all size optimization passes // (Optimizer::RegisterSizePasses). // // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an // HLSL front-end. bool RegisterPassFromFlag(const std::string& flag); // Validates that |flag| has a valid format. Strings accepted: // // --pass_name[=pass_args] // -O // -Os // // If |flag| takes one of the forms above, it returns true. Otherwise, it // returns false. bool FlagHasValidForm(const std::string& flag) const; // Allows changing, after creation time, the target environment to be // optimized for and validated. Should be called before calling Run(). void SetTargetEnv(const spv_target_env env); // Optimizes the given SPIR-V module |original_binary| and writes the // optimized binary into |optimized_binary|. The optimized binary uses // the same SPIR-V version as the original binary. // // Returns true on successful optimization, whether or not the module is // modified. Returns false if |original_binary| fails to validate or if errors // occur when processing |original_binary| using any of the registered passes. // In that case, no further passes are executed and the contents in // |optimized_binary| may be invalid. // // By default, the binary is validated before any transforms are performed, // and optionally after each transform. Validation uses SPIR-V spec rules // for the SPIR-V version named in the binary's header (at word offset 1). // Additionally, if the target environment is a client API (such as // Vulkan 1.1), then validate for that client API version, to the extent // that it is verifiable from data in the binary itself. // // It's allowed to alias |original_binary| to the start of |optimized_binary|. bool Run(const uint32_t* original_binary, size_t original_binary_size, std::vector* optimized_binary) const; // DEPRECATED: Same as above, except passes |options| to the validator when // trying to validate the binary. If |skip_validation| is true, then the // caller is guaranteeing that |original_binary| is valid, and the validator // will not be run. The |max_id_bound| is the limit on the max id in the // module. bool Run(const uint32_t* original_binary, const size_t original_binary_size, std::vector* optimized_binary, const ValidatorOptions& options, bool skip_validation) const; // Same as above, except it takes an options object. See the documentation // for |OptimizerOptions| to see which options can be set. // // By default, the binary is validated before any transforms are performed, // and optionally after each transform. Validation uses SPIR-V spec rules // for the SPIR-V version named in the binary's header (at word offset 1). // Additionally, if the target environment is a client API (such as // Vulkan 1.1), then validate for that client API version, to the extent // that it is verifiable from data in the binary itself, or from the // validator options set on the optimizer options. bool Run(const uint32_t* original_binary, const size_t original_binary_size, std::vector* optimized_binary, const spv_optimizer_options opt_options) const; // Returns a vector of strings with all the pass names added to this // optimizer's pass manager. These strings are valid until the associated // pass manager is destroyed. std::vector GetPassNames() const; // Sets the option to print the disassembly before each pass and after the // last pass. If |out| is null, then no output is generated. Otherwise, // output is sent to the |out| output stream. Optimizer& SetPrintAll(std::ostream* out); // Sets the option to print the resource utilization of each pass. If |out| // is null, then no output is generated. Otherwise, output is sent to the // |out| output stream. Optimizer& SetTimeReport(std::ostream* out); // Sets the option to validate the module after each pass. Optimizer& SetValidateAfterAll(bool validate); private: struct Impl; // Opaque struct for holding internal data. std::unique_ptr impl_; // Unique pointer to internal data. }; // Creates a null pass. // A null pass does nothing to the SPIR-V module to be optimized. Optimizer::PassToken CreateNullPass(); // Creates a strip-debug-info pass. // A strip-debug-info pass removes all debug instructions (as documented in // Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized. Optimizer::PassToken CreateStripDebugInfoPass(); // Creates a strip-reflect-info pass. // A strip-reflect-info pass removes all reflections instructions. // For now, this is limited to removing decorations defined in // SPV_GOOGLE_hlsl_functionality1. The coverage may expand in // the future. Optimizer::PassToken CreateStripReflectInfoPass(); // Creates an eliminate-dead-functions pass. // An eliminate-dead-functions pass will remove all functions that are not in // the call trees rooted at entry points and exported functions. These // functions are not needed because they will never be called. Optimizer::PassToken CreateEliminateDeadFunctionsPass(); // Creates an eliminate-dead-members pass. // An eliminate-dead-members pass will remove all unused members of structures. // This will not affect the data layout of the remaining members. Optimizer::PassToken CreateEliminateDeadMembersPass(); // Creates a set-spec-constant-default-value pass from a mapping from spec-ids // to the default values in the form of string. // A set-spec-constant-default-value pass sets the default values for the // spec constants that have SpecId decorations (i.e., those defined by // OpSpecConstant{|True|False} instructions). Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( const std::unordered_map& id_value_map); // Creates a set-spec-constant-default-value pass from a mapping from spec-ids // to the default values in the form of bit pattern. // A set-spec-constant-default-value pass sets the default values for the // spec constants that have SpecId decorations (i.e., those defined by // OpSpecConstant{|True|False} instructions). Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( const std::unordered_map>& id_value_map); // Creates a flatten-decoration pass. // A flatten-decoration pass replaces grouped decorations with equivalent // ungrouped decorations. That is, it replaces each OpDecorationGroup // instruction and associated OpGroupDecorate and OpGroupMemberDecorate // instructions with equivalent OpDecorate and OpMemberDecorate instructions. // The pass does not attempt to preserve debug information for instructions // it removes. Optimizer::PassToken CreateFlattenDecorationPass(); // Creates a freeze-spec-constant-value pass. // A freeze-spec-constant pass specializes the value of spec constants to // their default values. This pass only processes the spec constants that have // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or // OpSpecConstantFalse instructions) and replaces them with their normal // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The // corresponding SpecId annotation instructions will also be removed. This // pass does not fold the newly added normal constants and does not process // other spec constants defined by OpSpecConstantComposite or // OpSpecConstantOp. Optimizer::PassToken CreateFreezeSpecConstantValuePass(); // Creates a fold-spec-constant-op-and-composite pass. // A fold-spec-constant-op-and-composite pass folds spec constants defined by // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or // OpConstantComposite instructions. Note that spec constants defined with // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are // not handled, as these instructions indicate their value are not determined // and can be changed in future. A spec constant is foldable if all of its // value(s) can be determined from the module. E.g., an integer spec constant // defined with OpSpecConstantOp instruction can be folded if its value won't // change later. This pass will replace the original OpSpecContantOp instruction // with an OpConstant instruction. When folding composite spec constants, // new instructions may be inserted to define the components of the composite // constant first, then the original spec constants will be replaced by // OpConstantComposite instructions. // // There are some operations not supported yet: // OpSConvert, OpFConvert, OpQuantizeToF16 and // all the operations under Kernel capability. // TODO(qining): Add support for the operations listed above. Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass(); // Creates a unify-constant pass. // A unify-constant pass de-duplicates the constants. Constants with the exact // same value and identical form will be unified and only one constant will // be kept for each unique pair of type and value. // There are several cases not handled by this pass: // 1) Constants defined by OpConstantNull instructions (null constants) and // constants defined by OpConstantFalse, OpConstant or OpConstantComposite // with value 0 (zero-valued normal constants) are not considered equivalent. // So null constants won't be used to replace zero-valued normal constants, // vice versa. // 2) Whenever there are decorations to the constant's result id id, the // constant won't be handled, which means, it won't be used to replace any // other constants, neither can other constants replace it. // 3) NaN in float point format with different bit patterns are not unified. Optimizer::PassToken CreateUnifyConstantPass(); // Creates a eliminate-dead-constant pass. // A eliminate-dead-constant pass removes dead constants, including normal // contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or // OpConstantFalse and spec constants defined by OpSpecConstant, // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or // OpSpecConstantOp. Optimizer::PassToken CreateEliminateDeadConstantPass(); // Creates a strength-reduction pass. // A strength-reduction pass will look for opportunities to replace an // instruction with an equivalent and less expensive one. For example, // multiplying by a power of 2 can be replaced by a bit shift. Optimizer::PassToken CreateStrengthReductionPass(); // Creates a block merge pass. // This pass searches for blocks with a single Branch to a block with no // other predecessors and merges the blocks into a single block. Continue // blocks and Merge blocks are not candidates for the second block. // // The pass is most useful after Dead Branch Elimination, which can leave // such sequences of blocks. Merging them makes subsequent passes more // effective, such as single block local store-load elimination. // // While this pass reduces the number of occurrences of this sequence, at // this time it does not guarantee all such sequences are eliminated. // // Presence of phi instructions can inhibit this optimization. Handling // these is left for future improvements. Optimizer::PassToken CreateBlockMergePass(); // Creates an exhaustive inline pass. // An exhaustive inline pass attempts to exhaustively inline all function // calls in all functions in an entry point call tree. The intent is to enable, // albeit through brute force, analysis and optimization across function // calls by subsequent optimization passes. As the inlining is exhaustive, // there is no attempt to optimize for size or runtime performance. Functions // that are not in the call tree of an entry point are not changed. Optimizer::PassToken CreateInlineExhaustivePass(); // Creates an opaque inline pass. // An opaque inline pass inlines all function calls in all functions in all // entry point call trees where the called function contains an opaque type // in either its parameter types or return type. An opaque type is currently // defined as Image, Sampler or SampledImage. The intent is to enable, albeit // through brute force, analysis and optimization across these function calls // by subsequent passes in order to remove the storing of opaque types which is // not legal in Vulkan. Functions that are not in the call tree of an entry // point are not changed. Optimizer::PassToken CreateInlineOpaquePass(); // Creates a single-block local variable load/store elimination pass. // For every entry point function, do single block memory optimization of // function variables referenced only with non-access-chain loads and stores. // For each targeted variable load, if previous store to that variable in the // block, replace the load's result id with the value id of the store. // If previous load within the block, replace the current load's result id // with the previous load's result id. In either case, delete the current // load. Finally, check if any remaining stores are useless, and delete store // and variable if possible. // // The presence of access chain references and function calls can inhibit // the above optimization. // // Only modules with relaxed logical addressing (see opt/instruction.h) are // currently processed. // // This pass is most effective if preceeded by Inlining and // LocalAccessChainConvert. This pass will reduce the work needed to be done // by LocalSingleStoreElim and LocalMultiStoreElim. // // Only functions in the call tree of an entry point are processed. Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass(); // Create dead branch elimination pass. // For each entry point function, this pass will look for SelectionMerge // BranchConditionals with constant condition and convert to a Branch to // the indicated label. It will delete resulting dead blocks. // // For all phi functions in merge block, replace all uses with the id // corresponding to the living predecessor. // // Note that some branches and blocks may be left to avoid creating invalid // control flow. Improving this is left to future work. // // This pass is most effective when preceeded by passes which eliminate // local loads and stores, effectively propagating constant values where // possible. Optimizer::PassToken CreateDeadBranchElimPass(); // Creates an SSA local variable load/store elimination pass. // For every entry point function, eliminate all loads and stores of function // scope variables only referenced with non-access-chain loads and stores. // Eliminate the variables as well. // // The presence of access chain references and function calls can inhibit // the above optimization. // // Only shader modules with relaxed logical addressing (see opt/instruction.h) // are currently processed. Currently modules with any extensions enabled are // not processed. This is left for future work. // // This pass is most effective if preceeded by Inlining and // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim // will reduce the work that this pass has to do. Optimizer::PassToken CreateLocalMultiStoreElimPass(); // Creates a local access chain conversion pass. // A local access chain conversion pass identifies all function scope // variables which are accessed only with loads, stores and access chains // with constant indices. It then converts all loads and stores of such // variables into equivalent sequences of loads, stores, extracts and inserts. // // This pass only processes entry point functions. It currently only converts // non-nested, non-ptr access chains. It does not process modules with // non-32-bit integer types present. Optional memory access options on loads // and stores are ignored as we are only processing function scope variables. // // This pass unifies access to these variables to a single mode and simplifies // subsequent analysis and elimination of these variables along with their // loads and stores allowing values to propagate to their points of use where // possible. Optimizer::PassToken CreateLocalAccessChainConvertPass(); // Creates a local single store elimination pass. // For each entry point function, this pass eliminates loads and stores for // function scope variable that are stored to only once, where possible. Only // whole variable loads and stores are eliminated; access-chain references are // not optimized. Replace all loads of such variables with the value that is // stored and eliminate any resulting dead code. // // Currently, the presence of access chains and function calls can inhibit this // pass, however the Inlining and LocalAccessChainConvert passes can make it // more effective. In additional, many non-load/store memory operations are // not supported and will prohibit optimization of a function. Support of // these operations are future work. // // Only shader modules with relaxed logical addressing (see opt/instruction.h) // are currently processed. // // This pass will reduce the work needed to be done by LocalSingleBlockElim // and LocalMultiStoreElim and can improve the effectiveness of other passes // such as DeadBranchElimination which depend on values for their analysis. Optimizer::PassToken CreateLocalSingleStoreElimPass(); // Creates an insert/extract elimination pass. // This pass processes each entry point function in the module, searching for // extracts on a sequence of inserts. It further searches the sequence for an // insert with indices identical to the extract. If such an insert can be // found before hitting a conflicting insert, the extract's result id is // replaced with the id of the values from the insert. // // Besides removing extracts this pass enables subsequent dead code elimination // passes to delete the inserts. This pass performs best after access chains are // converted to inserts and extracts and local loads and stores are eliminated. Optimizer::PassToken CreateInsertExtractElimPass(); // Creates a dead insert elimination pass. // This pass processes each entry point function in the module, searching for // unreferenced inserts into composite types. These are most often unused // stores to vector components. They are unused because they are never // referenced, or because there is another insert to the same component between // the insert and the reference. After removing the inserts, dead code // elimination is attempted on the inserted values. // // This pass performs best after access chains are converted to inserts and // extracts and local loads and stores are eliminated. While executing this // pass can be advantageous on its own, it is also advantageous to execute // this pass after CreateInsertExtractPass() as it will remove any unused // inserts created by that pass. Optimizer::PassToken CreateDeadInsertElimPass(); // Create aggressive dead code elimination pass // This pass eliminates unused code from the module. In addition, // it detects and eliminates code which may have spurious uses but which do // not contribute to the output of the function. The most common cause of // such code sequences is summations in loops whose result is no longer used // due to dead code elimination. This optimization has additional compile // time cost over standard dead code elimination. // // This pass only processes entry point functions. It also only processes // shaders with relaxed logical addressing (see opt/instruction.h). It // currently will not process functions with function calls. Unreachable // functions are deleted. // // This pass will be made more effective by first running passes that remove // dead control flow and inlines function calls. // // This pass can be especially useful after running Local Access Chain // Conversion, which tends to cause cycles of dead code to be left after // Store/Load elimination passes are completed. These cycles cannot be // eliminated with standard dead code elimination. Optimizer::PassToken CreateAggressiveDCEPass(); // Creates an empty pass. // This is deprecated and will be removed. // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. // https://github.com/KhronosGroup/glslang/pull/2440 Optimizer::PassToken CreatePropagateLineInfoPass(); // Creates an empty pass. // This is deprecated and will be removed. // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. // https://github.com/KhronosGroup/glslang/pull/2440 Optimizer::PassToken CreateRedundantLineInfoElimPass(); // Creates a compact ids pass. // The pass remaps result ids to a compact and gapless range starting from %1. Optimizer::PassToken CreateCompactIdsPass(); // Creates a remove duplicate pass. // This pass removes various duplicates: // * duplicate capabilities; // * duplicate extended instruction imports; // * duplicate types; // * duplicate decorations. Optimizer::PassToken CreateRemoveDuplicatesPass(); // Creates a CFG cleanup pass. // This pass removes cruft from the control flow graph of functions that are // reachable from entry points and exported functions. It currently includes the // following functionality: // // - Removal of unreachable basic blocks. Optimizer::PassToken CreateCFGCleanupPass(); // Create dead variable elimination pass. // This pass will delete module scope variables, along with their decorations, // that are not referenced. Optimizer::PassToken CreateDeadVariableEliminationPass(); // create merge return pass. // changes functions that have multiple return statements so they have a single // return statement. // // for structured control flow it is assumed that the only unreachable blocks in // the function are trivial merge and continue blocks. // // a trivial merge block contains the label and an opunreachable instructions, // nothing else. a trivial continue block contain a label and an opbranch to // the header, nothing else. // // these conditions are guaranteed to be met after running dead-branch // elimination. Optimizer::PassToken CreateMergeReturnPass(); // Create value numbering pass. // This pass will look for instructions in the same basic block that compute the // same value, and remove the redundant ones. Optimizer::PassToken CreateLocalRedundancyEliminationPass(); // Create LICM pass. // This pass will look for invariant instructions inside loops and hoist them to // the loops preheader. Optimizer::PassToken CreateLoopInvariantCodeMotionPass(); // Creates a loop fission pass. // This pass will split all top level loops whose register pressure exceedes the // given |threshold|. Optimizer::PassToken CreateLoopFissionPass(size_t threshold); // Creates a loop fusion pass. // This pass will look for adjacent loops that are compatible and legal to be // fused. The fuse all such loops as long as the register usage for the fused // loop stays under the threshold defined by |max_registers_per_loop|. Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop); // Creates a loop peeling pass. // This pass will look for conditions inside a loop that are true or false only // for the N first or last iteration. For loop with such condition, those N // iterations of the loop will be executed outside of the main loop. // To limit code size explosion, the loop peeling can only happen if the code // size growth for each loop is under |code_growth_threshold|. Optimizer::PassToken CreateLoopPeelingPass(); // Creates a loop unswitch pass. // This pass will look for loop independent branch conditions and move the // condition out of the loop and version the loop based on the taken branch. // Works best after LICM and local multi store elimination pass. Optimizer::PassToken CreateLoopUnswitchPass(); // Create global value numbering pass. // This pass will look for instructions where the same value is computed on all // paths leading to the instruction. Those instructions are deleted. Optimizer::PassToken CreateRedundancyEliminationPass(); // Create scalar replacement pass. // This pass replaces composite function scope variables with variables for each // element if those elements are accessed individually. The parameter is a // limit on the number of members in the composite variable that the pass will // consider replacing. Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100); // Create a private to local pass. // This pass looks for variables delcared in the private storage class that are // used in only one function. Those variables are moved to the function storage // class in the function that they are used. Optimizer::PassToken CreatePrivateToLocalPass(); // Creates a conditional constant propagation (CCP) pass. // This pass implements the SSA-CCP algorithm in // // Constant propagation with conditional branches, // Wegman and Zadeck, ACM TOPLAS 13(2):181-210. // // Constant values in expressions and conditional jumps are folded and // simplified. This may reduce code size by removing never executed jump targets // and computations with constant operands. Optimizer::PassToken CreateCCPPass(); // Creates a workaround driver bugs pass. This pass attempts to work around // a known driver bug (issue #1209) by identifying the bad code sequences and // rewriting them. // // Current workaround: Avoid OpUnreachable instructions in loops. Optimizer::PassToken CreateWorkaround1209Pass(); // Creates a pass that converts if-then-else like assignments into OpSelect. Optimizer::PassToken CreateIfConversionPass(); // Creates a pass that will replace instructions that are not valid for the // current shader stage by constants. Has no effect on non-shader modules. Optimizer::PassToken CreateReplaceInvalidOpcodePass(); // Creates a pass that simplifies instructions using the instruction folder. Optimizer::PassToken CreateSimplificationPass(); // Create loop unroller pass. // Creates a pass to unroll loops which have the "Unroll" loop control // mask set. The loops must meet a specific criteria in order to be unrolled // safely this criteria is checked before doing the unroll by the // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information. Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0); // Create the SSA rewrite pass. // This pass converts load/store operations on function local variables into // operations on SSA IDs. This allows SSA optimizers to act on these variables. // Only variables that are local to the function and of supported types are // processed (see IsSSATargetVar for details). Optimizer::PassToken CreateSSARewritePass(); // Create pass to convert relaxed precision instructions to half precision. // This pass converts as many relaxed float32 arithmetic operations to half as // possible. It converts any float32 operands to half if needed. It converts // any resulting half precision values back to float32 as needed. No variables // are changed. No image operations are changed. // // Best if run after function scope store/load and composite operation // eliminations are run. Also best if followed by instruction simplification, // redundancy elimination and DCE. Optimizer::PassToken CreateConvertRelaxedToHalfPass(); // Create relax float ops pass. // This pass decorates all float32 result instructions with RelaxedPrecision // if not already so decorated. Optimizer::PassToken CreateRelaxFloatOpsPass(); // Create copy propagate arrays pass. // This pass looks to copy propagate memory references for arrays. It looks // for specific code patterns to recognize array copies. Optimizer::PassToken CreateCopyPropagateArraysPass(); // Create a vector dce pass. // This pass looks for components of vectors that are unused, and removes them // from the vector. Note this would still leave around lots of dead code that // a pass of ADCE will be able to remove. Optimizer::PassToken CreateVectorDCEPass(); // Create a pass to reduce the size of loads. // This pass looks for loads of structures where only a few of its members are // used. It replaces the loads feeding an OpExtract with an OpAccessChain and // a load of the specific elements. Optimizer::PassToken CreateReduceLoadSizePass(); // Create a pass to combine chained access chains. // This pass looks for access chains fed by other access chains and combines // them into a single instruction where possible. Optimizer::PassToken CreateCombineAccessChainsPass(); // Create a pass to instrument bindless descriptor checking // This pass instruments all bindless references to check that descriptor // array indices are inbounds, and if the descriptor indexing extension is // enabled, that the descriptor has been initialized. If the reference is // invalid, a record is written to the debug output buffer (if space allows) // and a null value is returned. This pass is designed to support bindless // validation in the Vulkan validation layers. // // TODO(greg-lunarg): Add support for buffer references. Currently only does // checking for image references. // // Dead code elimination should be run after this pass as the original, // potentially invalid code is not removed and could cause undefined behavior, // including crashes. It may also be beneficial to run Simplification // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to // optimize instrument code involving the testing of compile-time constants. // It is also generally recommended that this pass (and all // instrumentation passes) be run after any legalization and optimization // passes. This will give better analysis for the instrumentation and avoid // potentially de-optimizing the instrument code, for example, inlining // the debug record output function throughout the module. // // The instrumentation will read and write buffers in debug // descriptor set |desc_set|. It will write |shader_id| in each output record // to identify the shader module which generated the record. // |desc_length_enable| controls instrumentation of runtime descriptor array // references, |desc_init_enable| controls instrumentation of descriptor // initialization checking, and |buff_oob_enable| controls instrumentation // of storage and uniform buffer bounds checking, all of which require input // buffer support. |texbuff_oob_enable| controls instrumentation of texel // buffers, which does not require input buffer support. Optimizer::PassToken CreateInstBindlessCheckPass( uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false, bool desc_init_enable = false, bool buff_oob_enable = false, bool texbuff_oob_enable = false); // Create a pass to instrument physical buffer address checking // This pass instruments all physical buffer address references to check that // all referenced bytes fall in a valid buffer. If the reference is // invalid, a record is written to the debug output buffer (if space allows) // and a null value is returned. This pass is designed to support buffer // address validation in the Vulkan validation layers. // // Dead code elimination should be run after this pass as the original, // potentially invalid code is not removed and could cause undefined behavior, // including crashes. Instruction simplification would likely also be // beneficial. It is also generally recommended that this pass (and all // instrumentation passes) be run after any legalization and optimization // passes. This will give better analysis for the instrumentation and avoid // potentially de-optimizing the instrument code, for example, inlining // the debug record output function throughout the module. // // The instrumentation will read and write buffers in debug // descriptor set |desc_set|. It will write |shader_id| in each output record // to identify the shader module which generated the record. Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set, uint32_t shader_id); // Create a pass to instrument OpDebugPrintf instructions. // This pass replaces all OpDebugPrintf instructions with instructions to write // a record containing the string id and the all specified values into a special // printf output buffer (if space allows). This pass is designed to support // the printf validation in the Vulkan validation layers. // // The instrumentation will write buffers in debug descriptor set |desc_set|. // It will write |shader_id| in each output record to identify the shader // module which generated the record. Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set, uint32_t shader_id); // Create a pass to upgrade to the VulkanKHR memory model. // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR. // Additionally, it modifies memory, image, atomic and barrier operations to // conform to that model's requirements. Optimizer::PassToken CreateUpgradeMemoryModelPass(); // Create a pass to do code sinking. Code sinking is a transformation // where an instruction is moved into a more deeply nested construct. Optimizer::PassToken CreateCodeSinkingPass(); // Create a pass to fix incorrect storage classes. In order to make code // generation simpler, DXC may generate code where the storage classes do not // match up correctly. This pass will fix the errors that it can. Optimizer::PassToken CreateFixStorageClassPass(); // Creates a graphics robust access pass. // // This pass injects code to clamp indexed accesses to buffers and internal // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules. // // TODO(dneto): Clamps coordinates and sample index for pointer calculations // into storage images (OpImageTexelPointer). For an cube array image, it // assumes the maximum layer count times 6 is at most 0xffffffff. // // NOTE: This pass will fail with a message if: // - The module is not a Shader module. // - The module declares VariablePointers, VariablePointersStorageBuffer, or // RuntimeDescriptorArrayEXT capabilities. // - The module uses an addressing model other than Logical // - Access chain indices are wider than 64 bits. // - Access chain index for a struct is not an OpConstant integer or is out // of range. (The module is already invalid if that is the case.) // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits // wide. // // NOTE: Access chain indices are always treated as signed integers. So // if an array has a fixed size of more than 2^31 elements, then elements // from 2^31 and above are never accessible with a 32-bit index, // signed or unsigned. For this case, this pass will clamp the index // between 0 and at 2^31-1, inclusive. // Similarly, if an array has more then 2^15 element and is accessed with // a 16-bit index, then elements from 2^15 and above are not accessible. // In this case, the pass will clamp the index between 0 and 2^15-1 // inclusive. Optimizer::PassToken CreateGraphicsRobustAccessPass(); // Create descriptor scalar replacement pass. // This pass replaces every array variable |desc| that has a DescriptorSet and // Binding decorations with a new variable for each element of the array. // Suppose |desc| was bound at binding |b|. Then the variable corresponding to // |desc[i]| will have binding |b+i|. The descriptor set will be the same. It // is assumed that no other variable already has a binding that will used by one // of the new variables. If not, the pass will generate invalid Spir-V. All // accesses to |desc| must be OpAccessChain instructions with a literal index // for the first index. Optimizer::PassToken CreateDescriptorScalarReplacementPass(); // Create a pass to replace each OpKill instruction with a function call to a // function that has a single OpKill. Also replace each OpTerminateInvocation // instruction with a function call to a function that has a single // OpTerminateInvocation. This allows more code to be inlined. Optimizer::PassToken CreateWrapOpKillPass(); // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and // capabilities. Optimizer::PassToken CreateAmdExtToKhrPass(); } // namespace spvtools #endif // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_